Preparation of anisotropic multiscale micro-hydrogels via two-photon continuous flow lithography

Michele Schlich;
2022-01-01

Abstract

Hypothesis: Polymeric anisotropic soft microparticles show interesting behavior in biological environments and hold promise for drug delivery and biomedical applications. However, self-assembly and substrate-based lithographic techniques are limited by low resolution, batch operation or specific particle geometry and deformability. Two-photon polymerization in microfluidic channels may offer the required resolution to continuously fabricate anisotropic micro-hydrogels in sub-10 µm size-range. Experiments: Here, a pulsed laser source is used to perform two-photon polymerization under microfluidic flow of a poly(ethylene glycol) diacrylate (PEGDA) solution with the objective of realizing anisotropic micro-hydrogels carrying payloads of various nature, including small molecules and nanoparticles. The fabrication process is described via a reactive-convective-diffusion system of equations, whose solution under proper auxiliary conditions is used to corroborate the experimental observations and sample the configuration space. Findings: By tuning the flow velocity, exposure time and pre-polymer composition, anisotropic PEGDA micro-hydrogels are obtained in the 1–10 μm size-range and exhibit an aspect ratio varying from 1 to 5. Furthermore, 200 nm curcumin-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles and 100 nm ssRNA-encapsulating lipid nanoparticles were entrapped within square PEGDA micro-hydrogels. The proposed approach could support the fabrication of micro-hydrogels of well-defined morphology, stiffness, and surface properties for the sustained release of therapeutic agents.
2022
2021
Italiano
608
622
633
12
Esperti anonimi
internazionale
scientifica
Anisotropic soft particles; Micro-hydrogels; Microfluidics; Two-photon polymerization
Manghnani, Purnima N.; Di Francesco, Valentina; Panella La Capria, Carlo; Schlich, Michele; Elvino Miali, Marco; Lee Moore, Thomas; Zunino, Alessandro ...espandi
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
9
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Questionario e social

Condividi su:
Impostazioni cookie