Litter decomposition: effects of temperature driven by soil moisture and vegetation type

Fenu, Giuseppe;Calderisi, Giulia;
2019-01-01

Abstract

Aims: We examined the importance of litter quality and microclimate on early-stage litter mass loss, analysed the importance of interactions among environmental factors in determining key decomposition parameters and compared the variation in decomposition rates in vegetation types and sites with similar climate. Methods: Following the Tea-Bag Index approach, 464 tea-bags were incubated in the soil in 79 sites, distributed across Italy, which included six vegetation types and a broad range of microclimatic conditions. Results: Litter type exerted a stronger control on mass loss compared to climatic factors. The effects of soil moisture were not the same for high and lower quality litter. In addition, the effects of temperature on the decomposition rate depended on soil moisture. The stabilization factor was strongly temperature-dependent, but the influence of temperature differed among vegetation types: those dominated by small-size plants showed a strong decrease in the potential amount of plant material entering into the soil stock under warmer temperatures. The lowest variation in decomposition rate was found in sites characterised by low temperatures, and, among the vegetation types, in alpine snowbeds. Conclusions: The role of litter quality and of the interactions among environmental conditions can potentially determine significant shifts in the expected patterns of ecosystem carbon fluxes.
2019
2018
Inglese
435
1-2
187
200
14
https://link.springer.com/article/10.1007/s11104-018-3889-x
Esperti anonimi
internazionale
scientifica
Decomposition constant; Litter quality; Microclimate; Stabilization factor; Tea-bag index; Vegetation type; Soil Science; Plant Science
no
Petraglia, Alessandro; Cacciatori, Cecilia; Chelli, Stefano; Fenu, Giuseppe; Calderisi, Giulia; Gargano, Domenico; Abeli, Thomas; Orsenigo, Simone; Ca ...espandi
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
9
reserved
File in questo prodotto:
File Dimensione Formato  
2019_Litter_decomposition_effects_Plant_Soil.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Questionario e social

Condividi su:
Impostazioni cookie