Generalized cross validation for ℓ p-ℓ q minimization

Buccini A.
;
Reichel L.
2021-01-01

Abstract

Discrete ill-posed inverse problems arise in various areas of science and engineering. The presence of noise in the data often makes it difficult to compute an accurate approximate solution. To reduce the sensitivity of the computed solution to the noise, one replaces the original problem by a nearby well-posed minimization problem, whose solution is less sensitive to the noise in the data than the solution of the original problem. This replacement is known as regularization. We consider the situation when the minimization problem consists of a fidelity term, that is defined in terms of a p-norm, and a regularization term, that is defined in terms of a q-norm. We allow 0 < p,q ≤ 2. The relative importance of the fidelity and regularization terms is determined by a regularization parameter. This paper develops an automatic strategy for determining the regularization parameter for these minimization problems. The proposed approach is based on a new application of generalized cross validation. Computed examples illustrate the performance of the method proposed.
2021
Inglese
88
1595
1616
22
Esperti anonimi
internazionale
scientifica
Generalized cross validation; Inverse problem; Iterative method; Regularization parameter; lp-lq minimization
Buccini, A.; Reichel, L.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
2
none
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie