Experiments and modeling of mine soil inertization through mechano-chemical processing: from bench to pilot scale using attritor and impact mills

Concas A.;Montinaro S.;Lai N.;Cao G.
2020-01-01

Abstract

Mechano-chemical treatment has been recognized to be a promising technology for the immobilization of heavy metals (HMs) in contaminated soils without the use of additional reagents. Despite this, very few studies aiming to investigate the applicability of this technology at full scale have been published so far. In this study, a quantitative approach was developed to provide process design information to scale-up from laboratory- into pilot-scale mechano-chemical reactors for immobilizing heavy metals in contaminated mining soil. In fact, after preliminary experiments with laboratory-scale ball mills, experiments have been carried out by taking advantage of milling devices suited for pilot-scale applications. The experimental data of this work, along with literature ones, have been quantitatively interpreted by means of a mathematical model allowing to describe the effect of milling dynamics on the HM immobilization kinetics for applications at different scales. The results suggest that the mechanical process can trigger specific physico-chemical phenomena leading to a significant reduction of HMs leached from mining soils. Specifically, after suitably prolonged processing time, HM concentration in the leachate is lowered below the corresponding threshold limits. The observed behavior is well captured by the proposed model for different HMs and operating conditions. Therefore, the model might be exploited to infer design parameters for the implementation of this technique at the pilot and full scale. Moreover, it represents a valuable tool for designing and controlling mechano-chemical reactors at productive scale.
2020
Inglese
27
25
31394
31407
14
https://link.springer.com/article/10.1007/s11356-020-09445-1
Esperti anonimi
internazionale
scientifica
Mechano-chemical treatment; Heavy metals; Immobilization; Mathematical modeling; Attritor mill; Scale-up
no
Concas, A.; Montinaro, S.; Pisu, M.; Lai, N.; Cao, G.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
5
reserved
Files in This Item:
File Size Format  
ESPR(2020) AConcas.pdf

Solo gestori archivio

Description: articolo online
Type: versione editoriale
Size 2.31 MB
Format Adobe PDF
2.31 MB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie