High thermoelectric figure of merit and thermopower in layered perovskite oxides

Fiorentini, Vincenzo;Farris, Roberta;MacCioni, Maria Barbara
2019-01-01

Abstract

We predict high thermoelectric efficiency in the layered perovskite La2Ti2O7, based on calculations (mostly ab initio) of the electronic structure, transport coefficients, and thermal conductivity in a wide temperature range. The figure of merit ZT computed with a temperature-dependent relaxation time increases monotonically from just above 1 at room temperature to over 2.5 at 1200 K, at an optimal carrier density of around 1020cm -3 . The Seebeck thermopower coefficient is between 200 and 300μV/K at optimal doping, but can reach nearly 1 mV/K at low doping. Much of the potential of this material is due to its lattice thermal conductivity of order 1 W/(K m); using a model based on ab initio anharmonic calculations, we interpret this low value as due to effective phonon confinement within the layered-structure blocks.
2019
2019
Inglese
3
2
8
http://harvest.aps.org/bagit/articles/10.1103/PhysRevMaterials.3.022401/apsxml
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.022401
Esperti anonimi
internazionale
scientifica
Materials Science (all); Physics and Astronomy (miscellaneous); Thermoelectricity; ab initio calculations
no
Fiorentini, Vincenzo; Farris, Roberta; Argiolas, Edoardo; Maccioni, Maria Barbara
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
4
reserved
Files in This Item:
File Size Format  
LTO.pdf

Solo gestori archivio

Description: Articolo
Type: versione editoriale
Size 2.84 MB
Format Adobe PDF
2.84 MB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie