Enhancing the efficiency and lifetime of a proton exchange membrane fuel cell using nonlinear model-predictive control with nonlinear observation

Usai, Elio;
2017-01-01

Abstract

The aim of this research is to develop and test in a simulation environment an advanced model-based control solution for a proton exchange membrane fuel cell (PEMFC) system. A nonlinear model-predictive control (NMPC) strategy is proposed to maximize the active catalytic surface area at the cathode catalyst layer to increase the available reaction area of the stack and to avoid starvation at the catalyst sites. The PEMFC stack model includes a spatial discretization that permits the control strategy to take into account the internal conditions of the system. These internal states are estimated and fed to the NMPC via a nonlinear distributed parameters observer. The air-fed cathode of the PEMFC simulation model includes a two-phase water model for better representation of the stack voltage. The stack temperature is regulated through the use of an active cooling system. The control strategy is evaluated in an automotive application using a driving cycle based on the New European Driving Cycle profile as the case study.
2017
2017
Inglese
64
8
6649
6659
11
https://ieeexplore.ieee.org/document/7880649
Esperti anonimi
internazionale
scientifica
Degradation; electrochemically active surface area; nonlinear model-predictive control (NMPC); nonlinear observation; proton exchange membrane fuel cells (PEMFCs); starvation; Control and Systems Engineering; Electrical and Electronic Engineering
Luna, Julio; Usai, Elio; Husar, Attila; Serra, Maria
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
4
partially_open
Files in This Item:
File Size Format  
J64-LUHS-TIE-2017-Fuel_cell_control.pdf

Solo gestori archivio

Type: versione editoriale
Size 1.51 MB
Format Adobe PDF
1.51 MB Adobe PDF & nbsp; View / Open   Request a copy
J64-LUHS-TIE-2017-Fuel_cell_control(accepted_version).pdf

open access

Description: Versione accettata post refereaggio. Sono presenti differenze con la versione editoriale per indirizzo autori e acknoledgements
Type: versione post-print
Size 1.2 MB
Format Adobe PDF
1.2 MB Adobe PDF View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie