Classical and quantum mechanics of the nonrelativistic Snyder model in curved space

MIGNEMI, SALVATORE
2012-01-01

Abstract

The Snyder-de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales besides the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder-de Sitter (aSdS). By means of a nonlinear transformation relating the SdS phase-space variables to canonical ones, we are able to investigate the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In their flat space limit, the SdS and aSdS models exhibit rather different properties. In the SdS case, a lower bound on the localization in position and momentum spaces arises, which is not present in the aSdS model. In the aSdS case, instead, a specific combination of position and momentum coordinates cannot exceed a constant value. We explicitly solve the classical and the quantum equations for the motion of the free particle and of the harmonic oscillator. In both the SdS and aSdS cases, the frequency of the harmonic oscillator acquires a dependence on the energy. Moreover, in the aSdS model only a finite number of states is present.
2012
Inglese
29
21
215019
215019
20
Esperti anonimi
internazionale
scientifica
Article number 215019
Mignemi, Salvatore
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
1
open
Files in This Item:
File Size Format  
sndr1.pdf

open access

Type: versione pre-print
Size 234.27 kB
Format Adobe PDF
234.27 kB Adobe PDF View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie