Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells

Bongiovanni, Giovanni;Mura, Andrea;
2023-01-01

Abstract

The development of an environmentally friendly fabrication process for non-fullerene acceptor organic solar cells is an essential condition for their commercialization. However, devices fabricated by processing the active layer with green solvents still struggle to reach, in terms of efficiency, the same performance as those fabricated with halogenated solvents. The reason behind this is the non-optimal nanostructure of the active layer obtained with green solvents. Additives in solution have been used to fine-tune the nanostructure and improve the performance of organic solar cells. Therefore, the identification of non-halogenated additives and the study of their effects on the device performance and stability are of primary importance. In this work, we propose the use of diphenyl ether (DPE) as additive, in combination with the non-halogenated solvent o-xylene, to fabricate organic solar cells with a completely halogen-free process. Thanks to the addition of DPE, a best efficiency of 11.7% have been obtained for the system TPD-3F:IT-4F, an increase over 15% with respect to the efficiency of devices fabricated without additive. Remarkably, the stability under illumination of the solar cells is also improved when DPE is used. The addition of DPE has effects on the molecular organization in the active layer, with an enhancement in the donor polymer ordering, showing a higher domain purity. The resulting structure improves the charge carrier collection, leading to a superior short-circuit current and fill factor. Furthermore, a reduction of the non-radiative recombination losses and an improved exciton diffusion, are the results of the superior molecular ordering. With a comprehensive insight of the effects of DPE when used in combination with a non-halogenated solvent, our study provides an approach to make the fabrication of organic solar cell environmentally friendlier and more suitable for large scale production.
2023
Inglese
11
5
2419
2430
12
Esperti anonimi
internazionale
scientifica
Organic solar cells
Goal 13: Climate action
Di Mario, Lorenzo; Garcia Romero, David; Pieters, Meike J; Eller, Fabian; Zhu, Chenhui; Bongiovanni, Giovanni; Herzig, Eva M; Mura, Andrea; Loi, Maria ...espandi
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
9
open
Files in This Item:
File Size Format  
2023_Di_Mario_Journal_of_Materials_Chemistry_A.pdf

open access

Description: Articolo in Rivista
Type: versione editoriale
Size 2.44 MB
Format Adobe PDF
2.44 MB Adobe PDF View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie