A doubly relaxed minimal-norm Gauss–Newton method for underdetermined nonlinear least-squares problems

Pes F.
;
Rodriguez G.
2022-01-01

Abstract

When a physical system is modeled by a nonlinear function, the unknown parameters can be estimated by fitting experimental observations by a least-squares approach. Newton's method and its variants are often used to solve problems of this type. In this paper, we are concerned with the computation of the minimal-norm solution of an underdetermined nonlinear least-squares problem. We present a Gauss–Newton type method, which relies on two relaxation parameters to ensure convergence, and which incorporates a procedure to dynamically estimate the two parameters, as well as the rank of the Jacobian matrix, along the iterations. Numerical results are presented.
2022
2021
Inglese
171
233
248
16
Esperti anonimi
internazionale
scientifica
Gauss–Newton method; Minimal-norm solution; Nonlinear least-squares problem; Parameter estimation
no
Pes, F.; Rodriguez, G.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
2
reserved
Files in This Item:
File Size Format  
drmn21.pdf

Solo gestori archivio

Type: versione editoriale
Size 611.87 kB
Format Adobe PDF
611.87 kB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie