An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity

Parsons D
1996-01-01

Abstract

The Born-Kirkwood-Onsager (BKO) model of solvation, where a solute molecule is positioned inside a cavity cut into a solvent, which is considered as a dielectric continuum, is studied within the bounds of nonlocal electrostatics. The nonlocal cavity model is explicitly formulated and the corresponding nonlocal Poisson equation is reduced to an integral equation describing the behavior of the charge density induced in the medium. It is found that the presence of a cavity does not create singularities in the total electrostatic potential and its normal derivatives. Such singularities appear only in the local limit and are completely dissipated by nonlocal effects. The Born case of a spherical cavity with a point charge at its centre is investigated in detail. The corresponding one-dimensional integral Poisson equation is solved numerically and values for the solvation energy are determined. Several tests of this approach are presented: (a) We show that our integral equation reduces in the local limit to the chief equation of the local BKO theory. (b) We provide certain approximations which enable us to obtain the solution corresponding to the preceding nonlocal treatment of Dogonadze and Kornyshev (DK). (c) We make a comparison with the results of molecular solvation theory (mean spherical approximation), as applied to the calculation of solvation energies of spherical ions.
1996
Inglese
105
9
3734
3746
13
Esperti anonimi
internazionale
scientifica
molecular-dynamics simulation; mean spherical approximation; adiabatic electron-transfer; nonequilibrium solvation; charge-transfer; dielectric function; dipolar liquids; polar-solvent; computer-simulation; ionic solvation
Basilevsky, Mv; Parsons, D
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
2
reserved
Files in This Item:
File Size Format  
baspar96.pdf

Solo gestori archivio

Size 288.22 kB
Format Adobe PDF
288.22 kB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie