Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization

El Mehtedi M.;
2014-01-01

Abstract

Friction stir welding (FSW) of aluminum alloys is currently used in modern automotive and transportation industry. The welded sheets must possess adequate elastic-plastic response and formability levels similar to that of the base alloy sheet. In the last few years different FSW processing and configurations have been proposed. In this study, a double side friction stir welding (DS-FSW) process was compared to conventional pin and pinless FSW of AA6082 sheet. The microstructure modifications and the local mechanical response, namely, hardness and elastic modulus, were here investigated. Nanoindentation was used to mechanically characterize the different welded zones of interest, the thermomechanical heat affected zone (TMAZ), the stirred zone (SZ), in the advancing and the retreating side, at different sheet section depths. The better microstructure uniformity, at the stirred zone, and the closer hardness and elastic modulus values to those of the base metal can explain the better formability showed by the DS-FSW, with respect to the conventional FSW.
2014
2013
Inglese
590
209
217
9
https://www.sciencedirect.com/science/article/pii/S092150931301126X?via=ihub
Esperti anonimi
internazionale
scientifica
DS-FSW; Elastic modulus; FSW; Hardness; Nanoindentation;
FSW; DS-FSW; Nanoindentation; Hardness; Elastic modulus
no
Cabibbo, M.; Forcellese, A.; El Mehtedi, M.; Simoncini, M.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
4
reserved
Files in This Item:
File Size Format  
Mater Sci Eng A 590 2014 209.pdf

Solo gestori archivio

Description: articolo online
Type: versione editoriale
Size 4.34 MB
Format Adobe PDF
4.34 MB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie