Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing

Rossi A.
Member of the Collaboration Group
;
2019-01-01

Abstract

Memristive devices based on mixed ionic–electronic resistive switches have an enormous potential to replace today's transistor-based memories and Von Neumann computing architectures thanks to their ability for nonvolatile information storage and neuromorphic computing. It still remains unclear however how ionic carriers are propagated in amorphous oxide films at high local electric fields. By using memristive model devices based on LaFeO3 with either amorphous or epitaxial nanostructures, we engineer the structural local bonding units and increase the oxygen-ionic diffusion coefficient by one order of magnitude for the amorphous oxide, affecting the resistive switching operation. We show that only devices based on amorphous LaFeO3 films reveal memristive behavior due to their increased oxygen vacancy concentration. We achieved stable resistive switching with switching times down to microseconds and confirm that it is predominantly the oxygen-ionic diffusion character and not electronic defect state changes that modulate the resistive switching device response. Ultimately, these results show that the local arrangement of structural bonding units in amorphous perovskite films at room temperature can be used to largely tune the oxygen vacancy (defect) kinetics for resistive switches (memristors) that are both theoretically challenging to predict and promising for future memory and neuromorphic computing applications.
2019
2018
Inglese
29
5
12
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1616-3028
Esperti anonimi
internazionale
scientifica
amorphous; LaFeO; 3; memristor; ReRAM; resistive switch; XPS
Article number 1804782 Impact factor = 15.621; rivista di tipo Q1 nelle categorie: CHEMISTRY, MULTIDISCIPLINARY - SCIECHEMISTRY, PHYSICAL - SCIENANOSCIENCE & NANOTECHNOLOGY - SCIEMATERIALS SCIENCE, MULTIDISCIPLINARY - SCIEPHYSICS, APPLIED - SCIEPHYSICS, CONDENSED MATTER - SCIE
Schmitt, R.; Kubicek, M.; Sediva, E.; Trassin, M.; Weber, M. C.; Rossi, A.; Hutter, H.; Kreisel, J.; Fiebig, M.; Rupp, J. L. M.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
10
reserved
Files in This Item:
File Size Format  
Schmitt_et_al-2019-Advanced_Functional_Materials.pdf

Solo gestori archivio

Description: Articolo principale
Type: versione editoriale
Size 2.51 MB
Format Adobe PDF
2.51 MB Adobe PDF & nbsp; View / Open   Request a copy
Schmitt_et_al-2019-Advanced_Functional_Materials.sup-1.pdf

Solo gestori archivio

Description: supplementary information
Type: versione editoriale
Size 823.45 kB
Format Adobe PDF
823.45 kB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie