Conducting Anilate-Based Mixed-Valence Fe(II)Fe(III) Coordination Polymer: Small-Polaron Hopping Model for Oxalate-Type Fe(II)Fe(III) 2D Networks

Suchithra Ashoka Sahadevan
First
;
Maria Laura Mercuri
Penultimate
;
2018-01-01

Abstract

The mixed-valence FeIIFeIII2D coordination polymer formulated as [TAG][FeIIFeIII(ClCNAn)3]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn2-= chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeIIFeIII(ClCNAn)3]-establish in the ab plane, with an intralayer metal-metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe-O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C3symmetry to the structure and engages in intermolecular N-H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10-3S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeIIFeIII2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones.
2018
Chemistry (all); Material Chemistry
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie