Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

Eynon, Nir;Massidda, Myosotis;
2017-01-01

Abstract

Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10-8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.
2017
2017
Inglese
8
12
https://www.nature.com/articles/ncomms16015
Esperti anonimi
internazionale
scientifica
Chemistry (all); Biochemistry; Genetics and Molecular Biology (all); Physics and Astronomy (all); genome-wide association; growth-factor-alpha; mendelian randomization; skeletal-muscle; genetic influcences; metaanalysis; disease; instruments; fractures; variants
Willems, Sara M.; Wright, Daniel J.; Day, Felix R.; Trajanoska, Katerina; Joshi, Peter K.; Morris, John A.; Matteini, Amy M.; Garton, Fleur C.; Grarup ...espandi
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
161
none
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie