Comparison of different populations of granular features in the solar photosphere

PUGLISI, GIOVANNI;
2017-01-01

Abstract

Context. The granulation is the most visible manifestation of convective motions occurring in the uppermost layers of the solar convection zone. Strong magnetic fields hinder these motions, but the appearance of bright structures such as umbral dots (UDs) and light bridges (LBs) in sunspots also shows that in strong magnetic field regions, the convection is not completely suppressed. Aims. We aim to investigate the properties of the granules identified by a new segmentation algorithm in regions characterized by different magnetic field strength, in order to improve the current knowledge of the mechanism behind the appearance of the different bright structures in sunspots. Methods. We analyzed data acquired by the CRisp Imaging SpectroPolarimeter at the Swedish Solar Telescope on 6 August 2011 relevant to a large sunspot with a LB observed in NOAA AR 11263. We applied a new segmentation algorithm to the data acquired along the Fe I 630.15 nm line. Results. We found that the granules in the LB have a diameter between 0.22 and 0.99, that is, smaller than the granules in a nearby plage region (PL) and similar to those of the UDs. We observed values of the mean continuum intensity between 0.42 Icand 0.98 Icfor the LB granules, which are similar to those of the UDs. PL granules have higher values, probably reflecting different conditions of the plasma convection. Mean Doppler velocity and mean magnetic field strength have been studied and even for these physical parameters we found similar values between LB granules and UDs. Conclusions. Different values for the physical properties analyzed have been found between the granules of the PL and LB granules of the three analyzed solar regions. In particular, we show that the granules in PL and sunspot regions have different physical properties. This clearly depends on the different physical conditions of the regions where these two kind of granular structures are embedded. We also confirm the recent findings on the similarity between granules in PL and quiet Sun regions. We show values of the various physical quantities analyzed in PL granules in agreement with those reported in the literature for quiet Sun granules. Finally, a noteworthy result is that the granules observed in the faint LB have physical properties similar to those found for UDs.
2017
Inglese
605
20
Esperti anonimi
internazionale
scientifica
Sun: granulation; Sun: photosphere; Sunspots; Astronomy and astrophysics; Space and planetary science
no
Falco, M.; Puglisi, Giovanni; Guglielmino, S. L.; Romano, P.; Ermolli, I.; Zuccarello, F.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
6
reserved
Files in This Item:
File Size Format  
A&A_2017.pdf

Solo gestori archivio

Type: versione post-print
Size 1.97 MB
Format Adobe PDF
1.97 MB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie