Super-Sparse Learning in Similarity Spaces

DEMONTIS, AMBRA
First
;
MELIS, MARCO;BIGGIO, BATTISTA
;
FUMERA, GIORGIO;ROLI, FABIO
Last
2016-01-01

Abstract

In several applications, input samples are more naturally represented in terms of similarities between each other, rather than in terms of feature vectors. In these settings, machine-learning algorithms can become very computationally demanding, as they may require matching the test samples against a very large set of reference prototypes. To mitigate this issue, different approaches have been developed to reduce the number of required reference prototypes. Current reduction approaches select a small subset of representative prototypes in the space induced by the similarity measure, and then separately train the classification function on the reduced subset. However, decoupling these two steps may not allow reducing the number of prototypes effectively without compromising accuracy. We overcome this limitation by jointly learning the classification function along with an optimal set of virtual prototypes, whose number can be either fixed a priori or optimized according to application-specific criteria. Creating a super-sparse set of virtual prototypes provides much sparser solutions, drastically reducing complexity at test time, at the expense of a slightly increased complexity during training. A much smaller set of prototypes also results in easier-to-interpret decisions. We empirically show that our approach can reduce up to ten times the complexity of Support Vector Machines, LASSO and ridge regression at test time, without almost affecting their classification accuracy.
2016
Theoretical computer science; Artificial intelligence
Files in This Item:
File Size Format  
demontis16-cim2.pdf

Solo gestori archivio

Description: Articolo principale
Type: versione editoriale
Size 3.37 MB
Format Adobe PDF
3.37 MB Adobe PDF & nbsp; View / Open   Request a copy
demontis16-cim.pdf

Solo gestori archivio

Description: Articolo principale, pre-print
Type: versione pre-print
Size 555.22 kB
Format Adobe PDF
555.22 kB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie