Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid(1-42) peptide

DIANA, ANDREA;PICHIRI, GIUSEPPINA;
2008-01-01

Abstract

Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between amyloid beta peptides (AP) and mitochondrial dysfunction has been established in cellular models of AD using Abeta concentrations capable of triggering massive neuronal death. However, mitochondrial changes related to sublethal exposure to Abeta are less known. Here we show that subtoxic, 1 microM Abeta(1-42) exposure does not change the mitochondrial shape of living cells, as visualized upon the uptake of the non-potentiometric fluorescent probe Mitotracker Green and enhanced yellow fluorescent protein (EYFP)-tagged cytochrome c oxidase expression. Immunolocalization of oxidative adducts 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanine and 8-hydroxyguanosine demonstrates that one-micromolar concentration of Abeta(1-42) is also not sufficient to elicit dramatic qualitative changes in the RNA/DNA oxidative products. However, in comparison with controls, semi-quantitative analysis of the overall mitochondrial mass by integrated fluorescence intensity reveals an ongoing down-regulation in mitochondrial biosynthesis or, conversely, an enhanced autophagic demise of Abeta treated cells. Furthermore, a significant increase of the full-length mitochondrial DNA (mtDNA) from Abeta-treated versus control cells is found, as measured by long range polymerase chain reaction (PCR). Such up-regulation is accompanied by extensive fragmentation of the unamplified mtDNA, probably due to the detrimental effect of Abeta. We interpret these results as a sequence of compensatory responses induced by mtDNA damage, which are devoted to repression of oxidative burst. In conclusion, our findings suggest that early therapeutic interventions aimed at prevention of mitochondrial oxidative damage may delay AD progression and help in treating AD patients.
2008
Inglese
32
51
58
8
Sì, ma tipo non specificato
amyloid toxicity; oxidative stress; neuroblastoma cell culture
Diana, Andrea; Simi, G; Sinforiani, E; Orrù, N; Pichiri, Giuseppina; Bono, G.
1.1 Articolo in rivista
info:eu-repo/semantics/article
1 Contributo su Rivista::1.1 Articolo in rivista
262
6
none
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie