About
Lista pubblicazioni SCOPUS
1. Concas, A., Fais, G., Enna, M., Zucchelli, S., Caboni, P., Lai, N., Cincotti, A., Cao, G., 2023. Modeling and experimental assessment of Synechococcus nidulans cultivation using simulated Martian medium and astronauts’ urine. Acta Astronaut. 205, 185–198. https://doi.org/https://doi.org/10.1016/j.actaastro.2023.01.027
2. Atzori, F., Barzagli, F., Varone, A., Cao, G., Concas, A., 2023. CO2 absorption in aqueous NH3 solutions: Novel dynamic modeling of experimental outcomes. Chem. Eng. J. https://doi.org/10.1016/j.cej.2022.138999
3. Sidorowicz, A., Fais, G., Casula, M., Borselli, M., Giannaccare, G., Locci, A.M., Lai, N., Orrù, R., Cao, G., Concas, A., 2023. Nanoparticles from Microalgae and Their Biomedical Applications. Mar. Drugs 21, 352. https://doi.org/10.3390/md21060352.
4. Usai, A., Theodoropoulos, C., Di Caprio, F., Altimari, P., Cao, G., Concas, A., 2023. Structured population balances to support microalgae-based processes: Review of the state-of-art and perspectives analysis. Comput. Struct. Biotechnol. J. 21, 1169 – 1188. https://doi.org/10.1016/j.csbj.2023.01.042
5. Brughitta, E., Atzori, F., Gamboni, E., Foddi, S., Casula, M., Fais, G., Manca, A., Pantaleo, A., Cao, G., Concas, A., 2023. Cultivation of Cyanobacteria and Microalgae using Simulated in-situ Available Resources for the Production of useful Bio-compounds on Mars: Modelling of Experiments. Chem. Eng. Trans. 98, 111–116.
6. Vitali, L., Lolli, V., Sansone, F., Concas, A., Lutzu, G.A., 2023. Effect of Mixotrophy on Lipid Content and Fatty Acids Methyl Esters Profile by Chromochloris zofingiensis Grown in Media Containing Sugarcane Molasses. Bioenergy Res. 16, 1851 – 1861. https://doi.org/10.1007/s12155-022-10534-x
7. Meloni, P., Carcangiu, G., Licheri, R., 2023. Mix Design of Geopolymeric Formulations for Environmentally Sustainable Structural Applications. Chem. Eng. Trans. 100, 403 – 408. https://doi.org/10.3303/CET23100068
8. Atzori, F., Barzagli, F., Varone, A., Cao, G., Concas, A., 2023. Corrigendum to “CO2 absorption in aqueous NH3 solutions: Novel dynamic modeling of experimental outcomes” [Chem. Eng. J. 451 (2023) 138999] (Chemical Engineering Journal (2023) 451(P4), (S1385894722044783), (10.1016/j.cej.2022.138999)). Chem. Eng. J. 470. https://doi.org/10.1016/j.cej.2023.144201
9. Concas, A., Delogu, F., Lai, N., Cao, G., 2023. A Preliminary Investigation on the Mechanochemical Degradation of 2,6 Dichlorophenol in Simulated Sandy Soils: Modeling End Experiments. Chem. Eng. Trans. 98, 213 – 218. https://doi.org/10.3303/CET2398036
10. Olla, C., Cappai, A., Porcu, S., Stagi, L., Fantauzzi, M., Casula, M.F., Mocci, F., Corpino, R., Chiriu, D., Ricci, P.C., Carbonaro, C.M., 2023. Exploring the Impact of Nitrogen Doping on the Optical Properties of Carbon Dots Synthesized from Citric Acid. Nanomaterials 13. https://doi.org/10.3390/nano13081344
11. Vitali, L., Lolli, V., Sansone, F., Kumar, A., Concas, A., Lutzu, G.A., 2023. Lipid content and fatty acid methyl ester profile by Chromochloris zofingiensis under chemical and metabolic stress. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-023-04153-5
12. Fais, G., Manca, A., Concas, A., Pantaleo, A., Cao, G., 2022. A novel process to grow edible microalgae on Mars by exploiting in situ-available resources: Experimental investigation. Acta Astronaut. 201, 454–463. https://doi.org/https://doi.org/10.1016/j.actaastro.2022.09.058
13. Fais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., Busutti, M., Broggi, G., Sanna, P., Castillo-Aleman, Y.M., Rivero-Jiménez, R.A., Bencomo-Hernandez, A.A., Ventura-Carmenate, Y., Altea, M., Pantaleo, A., Gabrielli, G., Biglioli, F., Cao, G., Giannaccare, G., 2022. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar. Drugs 20. https://doi.org/10.3390/md20050299.
14. Sidorowicz, A., Margarita, V., Fais, G., Pantaleo, A., Manca, A., Concas, A., Rappelli, P., Fiori, P.L., Cao, G., 2022. Characterization of nanomaterials synthesized from Spirulina platensis extract and their potential antifungal activity. PLoS One 17, e0274753. https://doi.org/10.1371/JOURNAL.PONE.0274753
15. Isola, M., Soru, S., Loy, F., Malavasi, V., Isola, R., Cao, G., 2021. Suitability of the thawed algae for transmission electron microscopy study: Ultrastructural investigation on Coccomyxa melkonianii SCCA 048. Microsc. Res. Tech. 84, 675 – 681. https://doi.org/10.1002/jemt.23626
16. Concas, A., Steriti, A., Pisu, M., Cao, G., 2021. Experimental and theoretical investigation of the effects of iron on growth and lipid synthesis of microalgae in view of their use to produce biofuels. J. Environ. Chem. Eng. 9, 105349. https://doi.org/10.1016/j.jece.2021.105349
17. Satta, J., Melis, C., Carbonaro, C.M., Pinna, A., Salado, M., Salazar, D., Ricci, P.C., 2021. Raman spectra and vibrational analysis of CsPbI3: A fast and reliable technique to identify lead halide perovskite polymorphs. J. Mater. 7, 127 – 135. https://doi.org/10.1016/j.jmat.2020.08.004
18. Fais, G., Malavasi, V., Scano, P., Soru, S., Caboni, P., Cao, G., 2021. Metabolomics and lipid profile analysis of Coccomyxa melkonianii SCCA 048. Extremophiles 25, 357–368. https://doi.org/10.1007/s00792-021-01234-z
19. Concas, A., Lutzu, G.A., Pisu, M., Cao, G., 2021. Corrigendum to “On the feasibility of Pseudochloris wilhelmii cultivation in sea–wastewater mixtures: Modeling and experiments” [J. Environ. Chem. Eng. 7 (2019) 103301] (Journal of Environmental Chemical Engineering (2019) 7(5), (S2213343719304245), (10.1. J. Environ. Chem. Eng. 9. https://doi.org/10.1016/j.jece.2021.106325
20. Concas, A., Montinaro, S., Pisu, M., Lai, N., Cao, G., 2021. Mechanochemical treatment of soils contaminated by heavy metals in attritor and impact mills: Experiments and modeling. Chem. Eng. Trans. 86, 559 – 564. https://doi.org/10.3303/CET2186094
21. Concas, A., Lutzu, G.A., Pisu, M., Cao, G., 2021. Biomass and lipid production by pseudochloris wilhelmii in sea-wastewater mixtures: Modeling and experiments. Chem. Eng. Trans. 86, 121 – 126. https://doi.org/10.3303/CET2186021
22. Vassalini, I., Ribaudo, G., Gianoncelli, A., Casula, M.F., Alessandri, I., 2020. Plasmonic hydrogels for capture, detection and removal of organic pollutants. Environ. Sci. Nano 7, 3888 – 3900. https://doi.org/10.1039/d0en00990c
23. Concas, A., Montinaro, S., Pisu, M., Lai, N., Cao, G., 2020. Experiments and modeling of mine soil inertization through mechano-chemical processing: from bench to pilot scale using attritor and impact mills. Environ. Sci. Pollut. Res. 27, 31394 – 31407. https://doi.org/10.1007/s11356-020-09445-1
24. Malavasi, V., Soru, S., Cao, G., 2020. Extremophile Microalgae: the potential for biotechnological application. J. Phycol. 56, 559 – 573. https://doi.org/10.1111/jpy.12965
25. Sulis, A., Frongia, S., Liberatore, S., Zucca, R., Sechi, G.M., 2020. Combining water supply and flood control purposes in the Coghinas Basin (Sardinia, Italy). Int. J. River Basin Manag. 18, 13 – 22. https://doi.org/10.1080/15715124.2018.1476366
26. Carbonaro, C.M., Thakkar, S.V., Ludmerczki, R., Olla, C., Pinna, A., Loche, D., Malfatti, L., Cesare Marincola, F., Casula, M.F., 2020. How porosity affects the emission of fluorescent carbon dot-silica porous composites. Microporous Mesoporous Mater. 305. https://doi.org/10.1016/j.micromeso.2020.110302
27. Thakkar, S.V., Pinna, A., Carbonaro, C.M., Malfatti, L., Guardia, P., Cabot, A., Casula, M.F., 2020. Performance of oil sorbents based on reduced graphene oxide-silica composite aerogels. J. Environ. Chem. Eng. 8. https://doi.org/10.1016/j.jece.2019.103632
28. Concas, A., Pisu, M., Cao, G., 2020. Mechanochemical immobilization of heavy metals in contaminated soils: A novel mathematical modeling of experimental outcomes. J. Hazard. Mater. 388. https://doi.org/10.1016/j.jhazmat.2019.121731
29. Concas, A., Pisu, M., Cao, G., 2019. Mathematical modeling of the size-structured growth of microalgae dividing by multiple fission. Chem. Eng. Trans. 74, 199–204. https://doi.org/10.3303/CET1974034
30. Soru, S., Malavasi, V., Caboni, P., Concas, A., Cao, G., 2019. Behavior of the extremophile green alga Coccomyxa melkonianii SCCA 048 in terms of lipids production and morphology at different pH values. Extremophiles 23, 79–89.
31. Soru, S., Malavasi, V., Concas, A., Caboni, P., Cao, G., 2019. Modeling and experimental investigation of the effect of nitrogen starvation and pH variation on the cultivation of the extremophile microalga Coccomyxa melkonianii SCCA048. Chem. Eng. Trans. 74. https://doi.org/10.3303/CET1974033
32. Soru, S., Malavasi, V., Concas, A., Caboni, P., Cao, G., 2019. A novel investigation of the growth and lipid production of the extremophile microalga Coccomyxa melkonianii SCCA 048 under the effect of different cultivation conditions: Experiments and modeling. Chem. Eng. J. 377, 120589.
33. Concas, A., Lutzu, G.A., Pisu, M., Cao, G., 2019. On the feasibility of Pseudochloris wilhelmii cultivation in sea--wastewater mixtures: Modeling and experiments. J. Environ. Chem. Eng. 7, 103301.
34. Sausen, N., Malavasi, V., Melkonian, M., 2018. Molecular phylogeny, systematics, and revision of the type species of Lobomonas, L. francei (Volvocales, Chlorophyta) and closely related taxa. J. Phycol. 54, 198 – 214. https://doi.org/10.1111/jpy.12615
35. Sulis, A., 2018. Minor structures for the improvement of wave disturbance in a small harbor. Adv. Civ. Eng. 2018. https://doi.org/10.1155/2018/9247407
36. Concas, A., Malavasi, V., Pisu, M., Soru, S., Cao, G., 2017. Experiments and modeling of the growth of C. sorokiniana in lab batch and BIOCOIL photobioreactors for lipid production, Chemical Engineering Transactions. https://doi.org/10.3303/CET1757021
37. Malavasi, V., Costelli, C., Orsini, M., Cusano, R., Angius, A., Cao, G., 2017. Deep genomic analysis of the Chlorella sorokiniana SAG 211-8k chloroplast. Eur. J. Phycol. 52, 320–329.
38. Pinna, S., 2017. Alternative farming and collective goals: Towards a powerful relationships for future food policies. Land use policy 61, 339 – 352. https://doi.org/10.1016/j.landusepol.2016.11.034
39. Sulis, A., 2017. An optimisation model for reservoir operation. Proc. Inst. Civ. Eng. Water Manag. 170, 175 – 183. https://doi.org/10.1680/jwama.15.00048
40. Sulis, A., Balzano, A., Cabras, C., Atzeni, A., 2017. On the applicability of empirical formulas for natural salients to Sardinia (Italy) beaches. Geomorphology 286, 1 – 13. https://doi.org/10.1016/j.geomorph.2017.02.025
41. Orsini, M., Cusano, R., Costelli, C., Malavasi, V., Concas, A., Angius, A., Cao, G., 2016. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana. Mitochondrial DNA 27, 838–839.
42. Concas, A., Pisu, M., Cao, G., 2016. A novel mathematical model to simulate the size-structured growth of microalgae strains dividing by multiple fission. Chem. Eng. J. 287, 252–268.
43. Malavasi, V., Škaloud, P., Rindi, F., Tempesta, S., Paoletti, M., Pasqualetti, M., 2016. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS One 11, 1–25. https://doi.org/10.1371/journal.pone.0151137
44. Orsini, M., Costelli, C., Malavasi, V., Cusano, R., Concas, A., Angius, A., Cao, G., 2016. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana. Mitochondrial DNA 27, 1539–1541.
45. Concas, A., Malavasi, V., Costelli, C., Fadda, P., Pisu, M., Cao, G., 2016. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling. Bioresour. Technol. 211, 327–338. https://doi.org/10.1016/j.biortech.2016.03.089
46. Orsini, M., Costelli, C., Malavasi, V., Cusano, R., Concas, A., Angius, A., Cao, G., 2016. Complete sequence and characterization of mitochondrial and chloroplast genome of Chlorella variabilis NC64A. Mitochondrial DNA 27. https://doi.org/10.3109/19401736.2015.1007297
47. Usai, A., Peddio, D., Cincotti, A., 2016. Kinetics of nitrate-and nitrite-removal by rhodotorula glutinis: Determination of a reaction mechanism. Chem. Eng. Trans. 49, 457 – 462. https://doi.org/10.3303/CET1649077
48. Concas, A., Pisu, M., Cao, G., 2015. Microalgal cell disruption through Fenton reaction: Experiments, modeling and remarks on its effect on the extracted lipids composition, Chemical Engineering Transactions. https://doi.org/10.3303/CET1543062
49. Concas, A., Pisu, M., Cao, G., 2015. Disruption of microalgal cells for lipid extraction through Fenton reaction: Modeling of experiments and remarks on its effect on lipids composition. Chem. Eng. J. 263. https://doi.org/10.1016/j.cej.2014.11.012
50. Malavasi, V., Cao, G., 2015. The Sardinian Culture Collection of Algae (SCCA): Ex situ conservation of biodiversity and future technological applications. Nov. Hedwigia 101, 273–283. https://doi.org/10.1127/nova_hedwigia/2015/0269
51. Lutzu, G.A., Concas, A., Cao, G., 2015. Batch growth kinetics of Nannochloris eucaryotum and its cultivation in semi-batch photobioreactors under 100 %v/v CO2: Experimental and modeling analysis. Chem. Eng. Trans. 43, 355–360. https://doi.org/10.3303/CET1543060
52. Pasqualetti, M., Tempesta, S., Malavasi, V., Barghini, P., Fenice, M., 2015. Lutein production by coccomyxa sp. SCCA048 isolated from a heavy metal-polluted river in Sardinia (Italy). J. Environ. Prot. Ecol. 16, 1262–1272.
53. Concas, A., Costelli, C., Malavasi, V., Orsini, M., Cusano, R., Angius, A., Pisu, M., Cao, G., 2015. The role of mathematical modeling and genetic engineering for the microalgae based technology. Chem. Eng. Trans. 43, 511–516. https://doi.org/10.3303/CET1543086
54. Škaloud, P., Lukešová, A., Malavasi, V., Ryšánek, D., Hr?ková, K., Rindi, F., 2014. Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta). Plant Ecol. Evol. 147, 333–345. https://doi.org/10.5091/plecevo.2014.989
55. Concas, A., Steriti, A., Pisu, M., Cao, G., 2014. Mathematical modeling of the effect of iron on the growth and the bio-oil productivity of chlorella vulgaris. Chem. Eng. Trans. 38, 181–186. https://doi.org/10.3303/CET1438031
56. Furcas, C., Balletto, G., 2014. Increasing the value of dimension stone waste for a more achievable sustainability in the management of non-renewable resources. J. Solid Waste Technol. Manag. 40, 187 – 196. https://doi.org/10.5276/JSWTM.2014.185
57. Steriti, A., Rossi, R., Concas, A., Cao, G., 2014. A novel cell disruption technique to enhance lipid extraction from microalgae. Bioresour. Technol. 164, 70–77. https://doi.org/10.1016/j.biortech.2014.04.056
58. Concas, A., Steriti, A., Pisu, M., Cao, G., 2014. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresour. Technol. 153, 340–50. https://doi.org/10.1016/j.biortech.2013.11.085
59. Lutzu, G.A., Locci, A.M., Cao, G., 2012. Effect of medium composition on the growth of nannochloris eucaryotum in batch photobioreactors. J. Biobased Mater. Bioenergy. https://doi.org/10.1166/jbmb.2012.1184
60. Concas, A., Lutzu, G.A., Pisu, M., Cao, G., 2012. Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO<inf>2</inf>. Chem. Eng. J. 213. https://doi.org/10.1016/j.cej.2012.09.119
61. Montinaro, S., Concas, A., Pisu, M., Cao, G., 2012. Remediation of heavy metals contaminated soils by ball milling, Chemical Engineering Transactions. https://doi.org/10.3303/CET1228032
62. Concas, A., Corrias, G., Orrù, R., Licheri, R., Pisu, M., Cao, G., 2012. Remarks on ISRU and ISFR technologies for manned missions on moon and mars. Eurasian Chem. J. 14, 243–248.
63. Montinaro, S., Concas, A., Pisu, M., Cao, G., 2009. Rationale of lead immobilization by ball milling in synthetic soils and remediation of heavy metals contaminated tailings. Chem. Eng. J. 155, 123–131. https://doi.org/10.1016/j.cej.2009.07.005
64. Montinaro, S., Concas, A., Pisu, M., Cao, G., 2009. Rationale of lead immobilization by ball milling in synthetic soils and remediation of heavy metals contaminated tailings. Chem. Eng. J. 155. https://doi.org/10.1016/j.cej.2009.07.005
65. Montinaro, S., Concas, A., Pisu, M., Cao, G., 2008. Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chem. Eng. J. 142, 271–284. https://doi.org/10.1016/j.cej.2007.12.003
66. Montinaro, S., Concas, A., Pisu, M., Cao, G., 2007. Remediation of heavy metals contaminated soils by ball milling. Chemosphere 67, 631–9. https://doi.org/10.1016/j.chemosphere.2006.11.009
67. Concas, A., Montinaro, S., Pisu, M., Cao, G., 2007. Mechanochemical remediation of heavy metals contaminated soils: Modelling and experiments. Chem. Eng. Sci. 62, 5186–5192. https://doi.org/10.1016/j.ces.2007.02.024
68. Caschili, S., Delogu, F., Concas, A., Pisu, M., Cao, G., 2006. Mechanically induced self-propagating reactions: Analysis of reactive substrates and degradation of aromatic sulfonic pollutants. Chemosphere 63. https://doi.org/10.1016/j.chemosphere.2005.08.052
69. Cincotti, A., Mameli, A., Locci, A.M., Orrù, R., Cao, G., 2006. Heavy metals uptake by Sardinian natural zeolites: Experiment and modeling. Ind. Eng. Chem. Res. 45, 1074 – 1084. https://doi.org/10.1021/ie050375z
70. Caschili, S., Delogu, F., Cao, G., 2005. Mechanochemical degradation of aromatic sulfonic acids. Ann. Chim. 95, 813 – 821. https://doi.org/10.1002/adic.200590094
71. Concas, A., Patteri, C., Cincotti, A., Cao, G., 2004. Metal contamination from abandoned mining sites: Experimental investigation of possible remediation techniques. L. Contam. Reclam. 12, 9–20.
72. Orrù, R., Cincotti, A., Concas, A., Cao, G., 2003. Development of Processes for Environmental Protection Based on Self-Propagating Reactions. Environ. Sci. Pollut. Res. 10, 385–9.
73. Sannia, M., Orrù, R., Concas, A., Cao, G., 2001. Self-propagating Reactions for Environmental Protection: Remarks on the Treatment and Recycling of Zinc Hydrometallurgical Wastes. Ind. Eng. Chem. Res. 40, 801–807. https://doi.org/10.1021/ie000476r
74. Cincotti, A., Lai, N., Orrù, R., Cao, G., 2001. Sardinian natural clinoptilolites for heavy metals and ammonium removal: Experimental and modeling. Chem. Eng. J. 84, 275 – 282. https://doi.org/10.1016/S1385-8947(00)00286-2