Intelligent Data Exploitation

People

Faculty

  • Maurizio Atzori
  • Cecilia Di Ruberto
  • Andrea Loddo
  • Barbara Pes
  • Giovanni Puglisi
  • Manuela Sanguinetti

PhD students and Post-Docs

  • Alessandra Perniciano
  • Luca Zedda

 

Research Interests

  • Artificial Intelligence and Natural Language Processing
  • Knowledge Graphs and Semantic Web
  • Biomedical Image Analysis, Precision Agriculture, Image Retrieval
  • Computer Vision, Multimedia Forensics
  • Data Mining and Machine Learning
  • High-dimensional Data Analysis and Feature Selection

Events

Research Collaborations

  • Sebastiano Battiato, Università di Catania (Italy)
  • Stefano Ceri, DEIB, Politecnico di Milano (Italy)
  • Maurizio Lenzerini, DIAG, Sapienza Università di Roma (Italy)
  • Gian Luca Marcialis, DIEE, Università di Cagliari (Italy)
  • Lorenzo Putzu, DIEE, Univerità di Cagliari
  • Carlo Zaniolo, University of California, Los Angeles, UCLA (USA)
  • part of the following CINI (Consorzio Interuniversitario Nazionale per l'Informatica) National Laboratories: Data Science LabInfolife Lab, Artificial Intelligence and Intelligent Systems Lab

Selected Publications

  • Maurizio Atzori, Eleonora Calò, Loredana Caruccio, Stefano Cirillo, Giuseppe Polese, Giandomenico Solimando: Evaluating password strength based on information spread on social networks: A combined approach relying on data reconstruction and generative models. Online Social Networks and Media (Elsevier), Vol. 42: 100278 (2024)
  • Andrea Loddo, Sara Buttau, Cecilia Di Ruberto: Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method. Comput. Biol. Medicine 141: 105032 (2022)
  • Sebastiano Battiato, Oliver Giudice, Francesco Guarnera, Giovanni Puglisi: First Quantization Estimation by a Robust Data Exploitation Strategy of DCT Coefficients. IEEE Access 9: 73110-73120 (2021)
  • Sebastiano Battiato, Oliver Giudice, Francesco Guarnera, Giovanni Puglisi: Estimating Previous Quantization Factors on Multiple JPEG Compressed Images. EURASIP J. Inf. Secur. 2021(1):8 (2021)
  • Andrea Loddo, Mauro Loddo, Cecilia Di Ruberto: A novel deep learning based approach for seed image classification and retrieval. Comput. Electron. Agric. 187: 106269 (2021)
  • Andrea Loddo, F. Pili, Cecilia Di Ruberto: Deep Learning for COVID-19 Diagnosis from CT Images, Applied Sciences (Switzerland), vol. 11, Issue 17, 8227 (2021)
  • Maurizio Atzori, Georgia Koutrika, Barbara Pes, Letizia Tanca: Special issue on "Data Exploration in the Web 3.0 Age". Future Gener. Comput. Syst. 112: 1177-1179 (2020)
  • Barbara Pes: Learning From High-Dimensional Biomedical Datasets: The Issue of Class Imbalance. IEEE Access 8: 13527-13540 (2020)
  • Barbara Pes: Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains. Neural Comput. Appl. 32(10): 5951-5973 (2020)
  • Cecilia Di Ruberto, Andrea Loddo, Giovanni Puglisi: Blob Detection and Deep Learning for Leukemic Blood Image Analysis. Applied Sciences (Switzerland), vol. 10, Issue 3, Article number 1176 (2020)
  • Cecilia Di Ruberto, Andrea Loddo, Lorenzo Putzu: Detection of red and white blood cells from microscopic blood images using a region proposal approach. Comput. Biol. Medicine 116: 103530 (2020)
  • Maurizio Atzori, Giuseppe M. Mazzeo, Carlo Zaniolo: QA 3 : A natural language approach to question answering over RDF data cubes. Semantic Web 10(3): 587-604 (2019)
  • Mattia Atzeni, Maurizio Atzori: What Is the Cube Root of 27? Question Answering Over CodeOntology. ISWC (1) 2018: 285-300
  • Barbara Pes, Nicoletta Dessì, Marta Angioni: Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data. Inf. Fusion 35: 132-147 (2017)
  • Nicoletta Dessì, Barbara Pes: Similarity of feature selection methods: An empirical study across data intensive classification tasks. Expert Syst. Appl. 42(10): 4632-4642 (2015)

Alumni

  • Andrea Dessi

Former Members

  • Mattia Atzeni

Questionnaire and social

Impostazioni cookie