Vettori

- (1) Dati i vettori $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}, \mathbf{w} = -\mathbf{i} 3\mathbf{j} 6\mathbf{k}$, trovare il modulo del vettore $\mathbf{v} + 2\mathbf{w}$.
- (2) Determinare una base di \mathbb{R}^3 rispetto alla quale il vettore v = (1, 1, 2) ha componenti (-1, 1, 1).
- (3) Determinare i valori del parametro reale q per i quali i tre vettori di \mathbb{R}^3

$$\mathbf{u} = (1, 1, 0)$$
 $\mathbf{v} = (q, 2, 1)$ $\mathbf{w} = (-1, 1, 1)$

sono linearmente dipendenti. Per tali valori esprimere uno dei tre vettori come combinazione lineare degli altri due.

- (4) Trovare un versore che formi angoli uguali con i versori $\mathbf{i}, \mathbf{j}, \mathbf{k}$
- (5) Dire se i vettori

$$\mathbf{u} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$$
 $\mathbf{v} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$ $\mathbf{w} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

formano una base. In caso affermativo trovare le componenti del vettore $\mathbf{v}_1 = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ rispetto a questa base.

- (6) Trovare il vettore \mathbf{v} di modulo 5, che forma un angolo di $\frac{2\pi}{3}$ con \mathbf{i} . Trovare poi il versore di vettore \mathbf{v} .
- (7) Siano dati due vettori \mathbf{u} e \mathbf{v} tali che il modulo di \mathbf{u} sia 13, il modulo di \mathbf{v} sia 19, e $\|\mathbf{u} + \mathbf{v}\| = 24$. Calcolare $\|\mathbf{u} \mathbf{v}\|$.
- (8) I vettori \mathbf{u} e \mathbf{v} formano un angolo di $\frac{\pi}{3}$. Inoltre sappiamo che $\|\mathbf{u}\| = 5$, $\|\mathbf{v}\| = 3$. Calcolare $\|\mathbf{u} + \mathbf{v}\|$ e $\|\mathbf{u} \mathbf{v}\|$.
- (9) Dati i tre vettori di \mathbb{R}^2

$$\mathbf{u} = \mathbf{i} + 7\mathbf{j}$$
 $\mathbf{v} = 3\mathbf{i} + 5\mathbf{j}$ $\mathbf{w} = 2\mathbf{i} - \mathbf{j}$

Determinare i valori di $a \in \mathbb{R}$ per cui il vettore $\mathbf{v}_1 = 3\mathbf{u} + \mathbf{v} + a\mathbf{w}$ è un multiplo di \mathbf{j} .

(10) Dati i vettori

$$\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
 $\mathbf{v} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$ $\mathbf{w} = a\mathbf{i} - \mathbf{j} + \mathbf{k}$,

determina per quali valori di a sono complanari.