
Chapter 3

PHYSICAL CAPITAL

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

ALWAYS LEARNING

PEARSON

A few things before starting

Database on WB indicators

http://data.worldbank.org/products/wdi

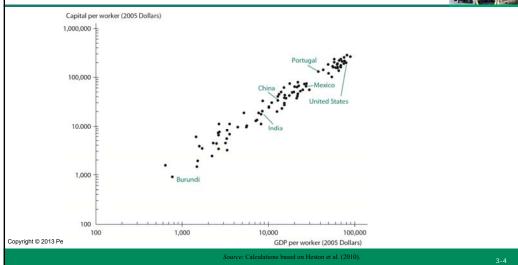
Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

ALWAYS LEARNING

PEARSON

Nature of capital

- · Capital is productive
- But it is has been produced itself...through investments. In other words capital is accumulated. Distinction between flows and stocks
- Capital depreciates
- Capital stock is made of machinery, tools, buildings, roads
- It can private or public (mainly infrastructures)


Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

NIWAYS LEADNING

PEARSON

An interesting stylised fact: GDP and Capital per Worker, 2009

Early models of economic growth

- Harrod-Domar model
- Solow model

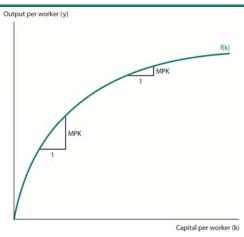
Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

3-

Capital's role in production

- Production function:
 - -Y=F(K,L)
 - -Y/L=F(K/L, 1)
 - -y=f(k)

NOTE: in a competitive environment alpha is the capital factor share, in a Cobb-Douglas model this is constant


SOLOW model: Cobb-Douglas PF

- $Y=F(K,L) = AK^{\alpha}L^{\beta}$
- Usually $\alpha+\beta=1$ (assumption of no economies of scale), in this case we can rewrite the function above as follows:
- Y=F(K,L) = $AK^{\alpha}L^{1-\alpha}$, which is also in per capita terms

3-6

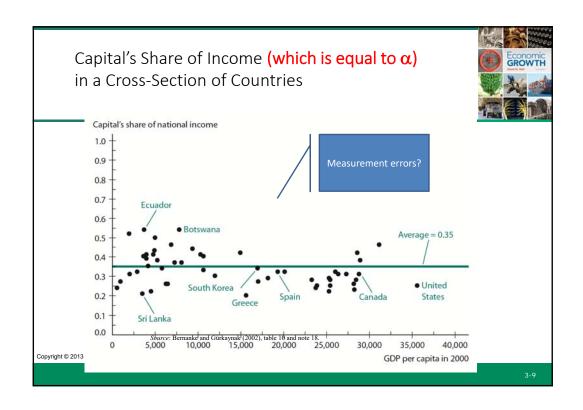
Solow model: A Production Function with Diminishing Marginal Product of Capital

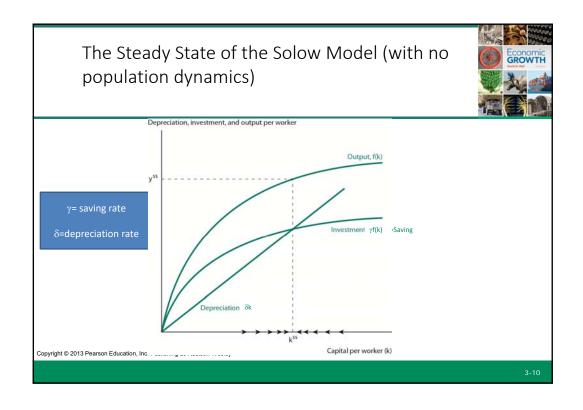
Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

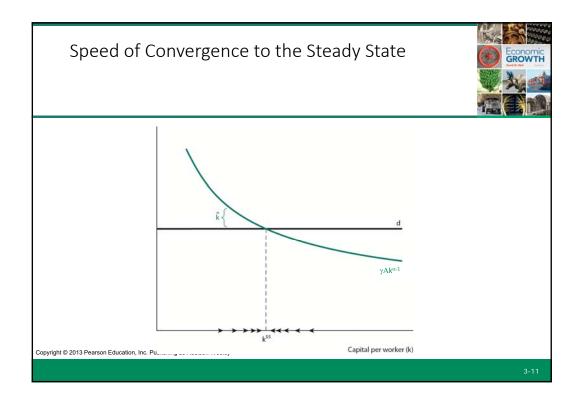
3-7

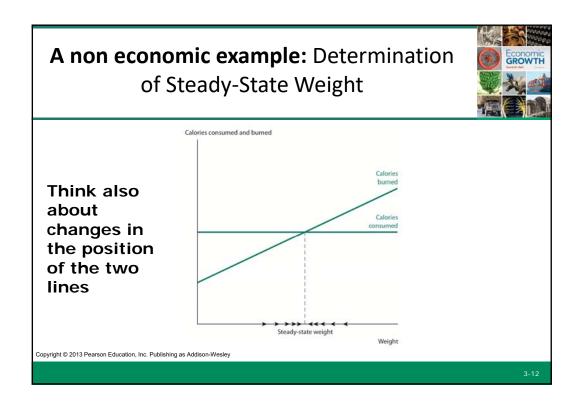
Capital's role in production

In a competitive environment, where factors are according to marginal productivity,

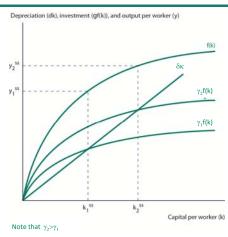

alpha is the capital factor share, and in a Cobb-Douglas model this is constant:


$$MPK = \alpha A K^{\alpha-1} L^{1-\alpha}$$


- Quota of income to capital:
- (MPK*K)/Y = $(\alpha AK^{\alpha-1}L^{1-\alpha} * K)/AK^{\alpha}L^{1-\alpha} = \alpha$


Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

2 0



Effect of Increasing the Investment Rate on the Steady State

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

12

Solow model calibration

Using $y = A k^{\alpha}$

• $\Delta \mathbf{k} = \gamma \mathbf{A} \mathbf{k}^{\alpha} - \delta \mathbf{k}$

In steady state Δk is equal to zero, that is

• $0 = \gamma A k_{ss}^{\alpha} - \delta k_{ss}$

Which implies that

•
$$\gamma A k_{ss}^{\alpha} = \delta k_{ss} \longrightarrow \gamma A k_{ss}^{\alpha} / k_{ss} \delta = 1 \longrightarrow \gamma A k_{ss}^{\alpha-1} / \delta = 1$$

•
$$k_{ss} = (\delta/\gamma A)^{1/(\alpha-1)} = (\gamma A/\delta)^{1/(1-\alpha)}$$

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

2 14

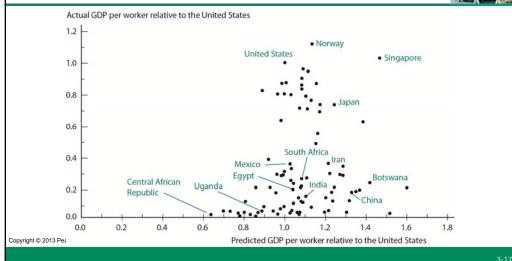
Solow model calibration

- $y_{ss} = A k_{ss}^{\alpha} = A^{1/(1-\alpha)} (\gamma/\delta)^{\alpha/(1-\alpha)}$
- If we take the value of y of steady state for country *i* and country *j*, we can compare them in the following way
- $y_{ss}^{i} / y_{ss}^{j} = (\gamma^{i}/\gamma^{j})^{\alpha/(1-\alpha)}$
- Now let us assume that country *i* has an investment rate of 20% and country *j* of 5%

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

3-1

Solow model calibration


- With alpha equal to 0.33 the previous formula gives a value of 2....
- ... do you remember the example of Silvania and Freedonia?

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

3-16

Predicted versus Actual GDP per Worker


The Solow model as a theory of relative growth rates (difference btwn s.r. and l.r.)

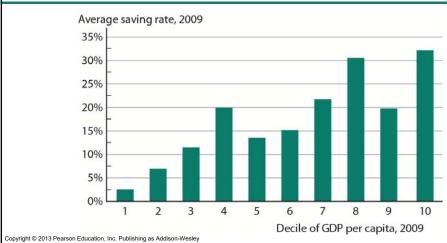
The Solow model does not provide a complete explanaton of growth rates since once a country reaches its steady state there is no longer growth!

Despite this failing we may still ask whether the model has something to say about relative growth rates - that is why some countries grow faster than others...

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

The Solow model as a theory of relative growth rates (difference btwn s.r. and l.r.)

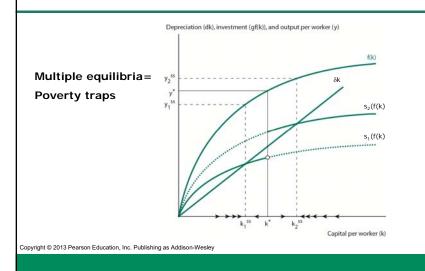
The key is to think about countries which are not in s.s.


- If two countries have the same rate of investment but different levels of income, the country with lower income will have higher growth
- If two countries have the same level of income but different rates of investment, then the country with a higher rate of investment will have higher growth
- A country that raises its level of investment will experience an increase in its rate of income growth

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

2 10

Saving Rate by Decile of Income per Capita



3-20

Solow Model with Saving Dependent on Income Level

2 21

The rise and fall of capital revisited with

- The belief that capital accumulation is the key ingredient for economic growth reached its peak after WWII (see Arthur Lewis and Soviet Union's success)
- Policies were designed accordingly
- Now economist have discarded the idea that development depends mainly on capital accumulation

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley