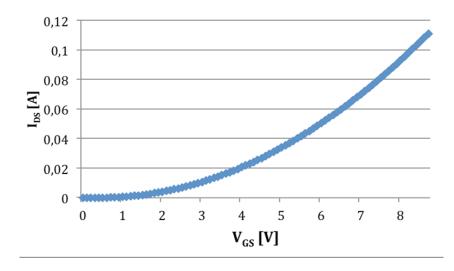

TUTORATO MOSFET – 24 NOVEMBRE 2017

1. Si considerino le curve Id-Vd prese su un dispositivo MOSFET e mostrate in figura. Si definisca il tipo di MOSFET su cui sono state prese (ovvero se a canale p o n) e si ricavino i parametri elettronici che è possibile ricavare da questa curva. Disegnare infine approssimativamente le curve transcaratteristiche nella regione di saturazione e in quella lineare.

- 2. Dati i seguenti grafici IdVg, ricavati in zona di saturazione e in zona lineare, provenienti da misure effettuate su un transistor MOSFET a canale n ad arricchimento stimare :
 - o la tensione di drain in corrispondenza della quale è stata fatta la misura nei due casi ;
 - o nota la capacità dell'ossido (3.45· 10^{-8} F/cm²) e il drogaggio di substrato (10^{17} cm³), il valore del rapporto Z/L



3. Si consideri la seguente transcaratteristica in zona di saturazione di un MOSFET.

Di tale transistor si conosce inoltre il drogaggio del substrato ($N_B = 10^{17} \text{ cm}^{-3}$) e che q $\phi_{MS} = -1 \text{ eV}$.

- a. Indicare, giustificando la risposta, il tipo di transistor (canale p/canale n) e il regime di funzionamento (arricchimento/svuotamento);
- b. Supponendo che il processo realizzativo utilizzato introduca una densità di carica nell'ossido pari a -1·10⁻⁹ C cm⁻² al centro dello strato dielettrico, ricavare lo spessore del dielettrico di gate (supposto di ossido di silicio);

c. Supponendo che il processo realizzativo consenta di ottenere una lunghezza di canale minima L = 90 nm, ricavare la larghezza di canale.

4. Di un transistor a canale n ($d_{ox} = 1$ nm, $\epsilon_{r,SiOx} = 3.5$, Z/L = 100, $V_{FB} = 0$ V, $V_{BS} = 0$ V) sono fornite le seguenti misure:

V _{DS} [V]	V _{GS} [V]	I _{DS} [A]	V _{DS} [V]	V _{GS} [V]	I _{DS} [A]
0	4	0	0	5	0
1	4	0.45	1	5	0.65
2	4	0.9	2	5	1.3
3	4	1.1	3	5	1.8
4	4	1.2	4	5	1.9
5	4	1.2	5	5	2
6	4	1.2	6	5	2

- a. determinare la conduttanza di canale, in regione lineare e in saturazione, per entrambi i valori di V_{GS} ;
- b. determinare la transconduttanza in saturazione;
- c. determinare la tensione di soglia e la mobilità.

SUGGERIMENTO: può essere utile riportare i punti dati su un grafico.

- 5. Due MOSFET a canale n hanno la medesima area, sono realizzati su un medesimo substrato (N_A = 10¹⁷ cm⁻³) e con il medesimo metallo di gate. Il primo (M1) ha una capacità di isolante (ossido di silicio) pari a C_{OX1} e una densità di carica fissa uniformemente distribuita al centro dello strato isolante di -30 nCcm⁻². Il secondo (M2) ha invece una capacità di isolante (ossido di silicio) C_{OX2} = 2C_{OX1}.
 - a. Se V_{Tn1} =2* V_{Tn2} , e φ_{MS} = 0, stabilire lo spessore degli isolanti di gate dei due dispositivi, e calcolare di conseguenza le due tensioni di soglia;
 - b. Indicare se esiste un valore plausibile del rapporto x/d_{OX1} tale da determinare il cambio di segno della V_{Tn1} ;
 - c. Se i due dispositivi hanno la medesima lunghezza di canale, stabilire il rapporto tra le larghezze di M1 e M2, Z1/Z2, necessario ad avere nei due transistor la medesima corrente per V_{GS} = 11 V e V_{DS} = 3 V (considerare i valori di tensione di soglia al punto 1).