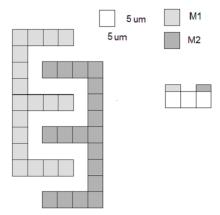

TUTORATI SUL CONTATTO METALLO-SEMICONDUTTORE

- 1) Di un contatto metallo-silicio n di tipo raddrizzante si conosce la funzione lavoro del metallo (4.75 eV) e la tensione di built –in (0.5 V).
 - a. Disegnare il diagramma a bande all'equilibrio del sistema (precisando quantitativamente le distanze tra i vari livelli energetici);
 - b. dire quanto vale la concentrazione dei droganti;
 - c. esprimere con una formula (precisando quantitativamente i vari coefficienti) la relazione $1/C^2-V$ (in cm⁴/F²) e tracciarne il grafico al variare di V (considerando almeno 3 punti)
- 2) Sapendo che una giunzione Metallo-Silicio è di tipo raddrizzante e che la funzione lavoro del metallo è pari a 4.35 eV, dire di che tipo può essere il semiconduttore e quale è il valore massimo (o minimo) di drogaggio che lo caratterizza. Ripetere l'esercizio per una funzione lavoro pari a 4.87 eV.
- 3) Si consideri un contatto metallo-semiconduttore ideale di cui sono noti i seguenti dati: $q\chi = 4$ eV, $E_g = 1.2$ eV, $n_i = 10^{10}$ cm⁻³, $N_D = 10^{16}$ cm⁻³ A* = 100 A cm⁻² K⁻².
 - a. Si considerino di volta in volta le seguenti funzioni lavoro, $q\phi_M$ = 4.1, 4.25, 4.5, 4.75, 5 eV. Tracciare il grafico della tensione di built-in in funzione della ϕ_M ;
 - b. Disegnare il circuito equivalente alla struttura M1-S-M2 in cui il semiconduttore ha le caratteristiche elencate qui sopra e i metalli hanno rispettivamente funzione lavoro pari a 5 eV e 4.1 eV. Calcolare la densità di corrente che scorre in questo circuito quando è applicata una differenza di potenziale tra M1 e M2 pari a 1 V.



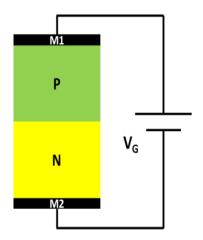
- 4) Si considerino due diodi: uno costituito da una giunzione p+-n, l'altro costituito da un contatto metallo-semiconduttore di tipo raddrizzante (diodo Schottky) entrambi di Silicio, entrambi con la stessa concentrazione di atomi donori, $N_D = 10^{17}$ cm⁻³. Di entrambi i diodi si misura, a temperatura ambiente, la caratteristica corrente tensione, ricavando i seguenti valori di corrente inversa di saturazione:
 - diodo A: $I_{0A} = 3.6 \ 10^{-16} \ A$; A = 0.001 cm²
 - diodo B: $I_{0B} = 10^{-11} \text{ A/cm}^2$ A = 0.0001 cm²

Considerare, se serve, $\tau_p = 10^{-6}$ s

- a. Indicare, giustificando quantitativamente la risposta, quale dei due diodi è Il diodo a giunzione p-n e quale è, invece, il diodo Schottky.
- b. Si consideri ora il solo diodo Schottky e si calcoli la funzione lavoro ϕ_m del metallo impiegato per realizzare il contatto Schottky.
- 5) Si supponga di voler realizzare un capacitore variabile utilizzando una giunzione pn brusca simmetrica, oppure un contatto Schottky. Noti i seguenti parametri:
 - Giunzione pn: $N_A = N_D = 10^{17} \text{ cm}^{-3}$
 - Contatto Schottky: $\Phi_m = 5 \text{ eV}$, $N_D = 10^{17} \text{ cm}^{-3}$

- a. Graficare le curve $1/(C_i)^2$ -V per ciascun dispositivo.
- b. Considerando infine che le aree dei due dispositivi siano rispettivamente 0.1 mm² per la pn e 0.0001 mm² per lo Schottky, graficare la curve corrispondenti alla serie dei due capacitori.
- 6) Un contatto metallo Silicio ($N_A = 10^{16}$ cm⁻³) ha la struttura a pettine mostrata in figura. M1 e M2 sono rispettivamente Oro (5.0 eV) e Alluminio (4.75 eV).
 - a. Quale tipo di contatto formano rispettivamente i due metalli? Qual è il circuito corrispondente a questa struttura?
 - Calcolare la/le corrente/i di saturazione inversa e/o la/le resistenze di contatto corrispondenti a ciascun contatto (trascurando le resistenze delle regioni neutre del semiconduttore);
 - c. Quanto vale la corrente totale che scorre nella struttura quando la tensione applicata tra M1 e M2 vale +3V?

7) Si consideri una giunzione metallo-semiconduttore di tipo n della quale sono state misurate le caratteristiche corrente-tensione e capacità-tensione ricavando i valori in tabella.


Calcolare:

- a. Drogaggio del semiconduttore;
- b. Altezza di barriera della giunzione;
- c. Area della giunzione;
- d. Potenziale di built-in.

V [V]	I [mA]
0.4	0.03
0.45	0.2
0.5	1.4

V [V]	C [F]
-0.5	5.8x10 ⁻¹¹
-1	4.9x10 ⁻¹¹
-2	3.9x10 ⁻¹¹

- 8) Si voglia realizzare una giunzione p^+n in Silicio a partire dalla struttura in figura (A = 10^{-5} cm²).
 - a. Si stabilisca la funzione lavoro di M1 affinché la barriera all'interfaccia M1-p+ sia nulla;
 - b. Si stabilisca la funzione lavoro di M2 affinché l'interfaccia n-M2 sia ohmica con resistenza pari a 3.9 Ω ; si ricavi di conseguenza N_D che rispetti tale condizione;
 - c. Si determini la corrente che scorre nel circuito quando al generatore V_G è applicato un potenziale di 1 V (si supponga t_p = 1 msec). Si trascuri la resistenza serie tra M1 e il semiconduttore p+.

