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Chapter 1

Introduction and motivations

Chemotaxis (from chemo + taxis) is the movement of an organism in response to a chemical stimulus.
Somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according
to certain chemicals in their environment. This is important for bacteria to find food (glucose) by
swimming toward the highest concentration of food molecules, or to flee from poisons (phenol). In
multicellular organisms, chemotaxis is critical to early development (movement of sperm towards the egg
during fertilization) and subsequent phases of development (migration of neurons or lymphocytes) as well
as in normal functions and health (migration of leukocytes during injury or infection). In addition, it
has been recognized that mechanisms that allow chemotaxis in animals can be subverted during cancer
metastasis.

Positive chemotaxis occurs if the movement is toward a higher concentration of the chemical in
question; negative chemotaxis if the movement is in the opposite direction. The description of chemotaxis
was first given by T. W. Engelmann (1881) and W.F. Pfeffer (1884) in bacteria and H.S. Jennings (1906)
in ciliates (see [17]). The significance of chemotaxis in biology and clinical pathology was widely accepted
in the 1930s. The most fundamental definitions belonging to the phenomenon were also drafted by this
time. The most important aspects in quality control of chemotaxis assays were described by H.Harris in
the 1950s (see Figure 1.1).

Figure 1.1: Milestones in chemotaxis research.
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CHAPTER 1. INTRODUCTION AND MOTIVATIONS

However, to talk about the modern chemotaxis, which started with the revolution of technology, the well-
known Keller-Segel model (KS model) should be introduced. Theoretical and mathematical modeling of
chemotaxis dates to the works of Patlak in the 1950s and Keller and Segel in the 1970s (see [18]). The
general form of the model is given by two coupled PDE’s{

ut = ∇(k1(u, v)∇u− k2(u, v)u∇v) + k3(u, v),

vt = Dv∆v + k4(u, v)− k5(u, v)v,
(1.1)

where u = u(x, t) and v = v(x, t) are functions defined in all points x in the 3D space and instant of
time t that denote respectively the cell density and the concentration of the chemical signal, k1 is the
diffusion of the cells, k2 is the chemotactic sensitivity, k3 describes the cell growth and death. In signal
concentration model, k4 and k5 describe the production and degradation of the chemical signal. Note
that cell migration is dependent on the gradient of the signal.

The above model has been widely used for chemotaxis for its ability to capture key phenomena and
intuitive nature. For example, some bacteria, such as E. coli, have several flagella per cell (410 typically).
These can rotate in two ways:

• Counter-clockwise rotation aligns the flagella into a single rotating bundle, causing the bacterium
to swim in a straight line; and

• Clockwise rotation breaks the flagella bundle apart in such a way each flagellum points in a different
direction, causing the bacterium to tumble in place.

The directions of rotation are given for an observer outside the cell looking down the flagella toward the
cell (see Figure 1.2).

Figure 1.2: Correlation of swimming behaviour and flagellar rotation in E. coli

The overall movement of a bacterium is the result of alternating tumble and swim phases. If one
watches a bacterium swimming in a uniform environment, its movement will look like a random walk
with relatively straight swims interrupted by random tumbles that reorient the bacterium. Bacteria such
as E. coli are unable to choose the direction in which they swim, and are unable to swim in a straight line
for more than a few seconds due to rotational diffusion; in other words, bacteria “forget” the direction
in which they are going to. By repeatedly evaluating their course, and adjusting it if they are moving in
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CHAPTER 1. INTRODUCTION AND MOTIVATIONS

the wrong direction, bacteria can direct their motion to find favorable locations with high concentrations
of attractants (usually food) and avoid repellents (usually poisons).

In the presence of a chemical gradient bacteria will chemotax, or direct their overall motion based on
the gradient. If the bacterium senses that it is moving in the correct direction (toward attractant/away
from repellent), it will keep swimming in a straight line for a longer time before tumbling; however, if it is
moving in the wrong direction, it will tumble sooner and try a new direction at random. In other words,
bacteria like E. coli use temporal sensing to decide whether their situation is improving or not, and in
this way, they find the location with the highest concentration of attractant (usually the source) quite
well. Even under very high concentrations, it can still distinguish very small differences in concentration,
and fleeing from a repellent works with the same efficiency.

This biased random walk is the result of simply choosing between two methods of random movement;
namely tumbling and straight swimming. In fact, chemotactic responses such as forgetting direction and
choosing movements resemble the decision-making abilities of higher life-forms with brains that process
sensory data.

The helical nature of the individual flagellar filament is critical for this movement to occur, and the
protein that makes up the flagellar filament, flagellin, is quite similar among all flagellated bacteria.
Vertebrates seem to have taken advantage of this fact by possessing an immune receptor designed to
recognize this conserved protein.

As in many instances in biology, there are bacteria that do not follow this rule. Many bacteria,
are monoflagellated and have a single flagellum at one pole of the cell. Their method of chemotaxis is
different. Others possess a single flagellum that is kept inside the cell wall. These bacteria move by
spinning the whole cell, which is shaped like a corkscrew.

The mechanism of chemotaxis that eukaryotic cells employ is quite different from the one which
occurs in bacteria; however, sensing of chemical gradients is still a crucial step in the process. Due to
their small size, prokaryotes cannot directly detect a concentration gradient. Instead, prokaryotes sense
their environments temporally, constantly swimming and redirecting themselves each time they sense a
change in the gradient. Eukaryotic cells are much larger than prokaryotes and have receptors embedded
uniformly throughout the cell membrane. Eukaryotic chemotaxis involves detecting a concentration
gradient spatially by comparing the asymmetric activation of these receptors at the different ends of
the cell. Activation of these receptors results in migration towards chemoattractants, or away from
chemorepellants.

By utilizing the Keller-Segel model, we can also understand whether chemotaxis may underpin em-
bryonic pattern forming processes (formation of specialized cells, tissues and organs from a single cell,
the zygote), such as the formation of the primitive strak, pigmentation paterning in snakes, for example,
or zebras. We can also predict the tumor cell-induced angiogenesis, and macrophage invasion into tumor.

1.1 Derivation of the Keller-Segel model

We start deriving the Keller-Segel model from a very basic assumption by letting an arbitrary surface
S enclosing a volume V (see [16]), that we denote respectively with ∂Ω and Ω ⊂ R3. According to the
general conservation equation, the rate of change of the amount of material u in Ω equals the rate of flux
of u across ∂Ω out of Ω plus the u created/disappeared in Ω. Thus we have

∂

∂t

∫
Ω

udx = −
∫
∂Ω

Φ · nds+

∫
Ω

fdx,

where Φ is the flux of u and f is the source term of u. According to the divergence theorem (see 2.2),
the first term on the right results ∫

∂Ω

Φ · nds =

∫
Ω

∇ · Φdx,
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CHAPTER 1. INTRODUCTION AND MOTIVATIONS

and since the function of the cell density u is continuous, and the volume Ω is arbitrary, the integrand
must be zero. Thus, the equation can be rewritten as∫

Ω

(ut +∇ · Φ− f)dx = 0,

and then simplified the into
ut = −∇ · Φ + f. (1.2)

This equation holds for a general flux transport Φ whether by diffusion or by some other processes. Since
the flux in our chemotaxis model is the contribution of two different terms, which are cell diffusion flux
and chemotaxis flux, that is

Φtotal = Φdiff + Φchemo.

Now, if Fick’s law is considered, for the process of cell diffusion flux we write

Φdiff = −D1∇u,

where D1 is a positive constant, and for the chemotaxis flux,

Φchemo = χu∇v,

where χ is chemotactic coefficient.
Now, plugging the Φtotal into equation (1.2) and repeating the same process above, for the chemical

attractant, yields

ut = D1∆u−∇ · χu(u, v)∇v + f(u, v) in Ω× (0,∞), (1.3)

vt = D2∆v + g(u, v)− h(u, v) in Ω× (0,∞). (1.4)

Moreover, we will fix zero flux boundary conditions(isolated domain), i.e.,

∂u

∂n
=
∂v

∂n
= 0, (1.5)

in Ω× (0,∞), where ∂
∂n stands for the normal derivative on ∂Ω, non negative functions u and v, i.e.

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0. (1.6)

The mentioned Keller-Segel model is still too complicated to solve and to simulate the cell behavior. We
need to simplify our model and we come up with a minimal model(see [21]); necessary assumptions are:

• Individual cells undergo a combination of random motion and chemotaxis towards chemical attrac-
tant.

• Cell neither die nor divide.

• The attractant is produced at constant rate.

• The degradation rate attractant is linearly dependent on its concentration.

• The attractant diffuses passively over the field.

Using these assumptions, the cell proliferation/death term f(u, v) of equation (1.3) is now zero, the term
g(u, v) in the equation (1.4) is now only a function of u (), and the term h(u, v) in the equation (1.4)
is now only a function of v that regulates the degradation rate of chemical attractant. Taking D1, D2,
and χ also be positive constant, that represent respectively, the diffusion coefficient of cell, the diffusion
coefficient of chemical attractant and the chemotactic sensitivity, the parabolic quasi-linear equation can
be noted as: {

ut = D1∆u− χ∇ · (u∇v),

vt = D2∆v + g(u)− h(v),
(1.7)

with the same conditions (1.5) and (1.6).
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CHAPTER 1. INTRODUCTION AND MOTIVATIONS

1.2 Chemotaxis models: overview and known results

Systems of interacting agents are largely distributed in the physical and biological sciences, from predator-
prey models, to taxis-driven pattern formation and front propagation in mathematical biology. The
seminal papers by Keller and Segel ([21] and [22]), describe the bacterial chemotaxis, phenomenon in
which certain individual cells u = u(x, t) direct their motion towards a chemical signal v = v(x, t). A
quite general mathematical formulation of these models involves two coupled partial differential equations
of the form 

ut = ∇ · (A(u, v)∇u−B(u, v)∇v) + C(u, v) in Ω× (0,∞),
τvt = ∆v + E(u, v) in Ω× (0,∞),
∂u
∂ν = ∂v

∂ν = 0 in ∂Ω× (0,∞),
u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0 x ∈ Ω,

(1.8)

where Ω ⊂ Rn, with n ≥ 1, is a bounded domain with smooth boundary, τ ∈ {0, 1} and A,B,C and E are
functions of their arguments which depending on the problem are required to satisfy suitable regularity
assumptions. Additionally, u0(x) and v0(x) are the initial cell and chemical distributions, and ∂

∂ν is
the outward normal derivative on ∂Ω; in particular, the zero-flux boundary conditions on both u and v
indicate that no interaction with the exterior part of the domain is permitted.

For τ = 1, A(u, v) ≡ 1, B(u, v) = χu, with χ > 0, C(u, v) ≡ 0, two pioneer cases of the previous
system, widely investigated in the last decades, correspond to the choices E(u, v) = −uv and E(u, v) =
−v+u. While for positive chemical and cell distributions, the negative term −uv in the second equation
of (1.8) suggests that the signal is progressively consumed by the same cells, conversely the expression
−v+u manifests how an increase of the cells favors a production of the signal. For this latter case a very
comprehensive and extensive theory on existence and properties of global, uniformly bounded or blow-up
solutions (those that become unbounded in finite or infinite time), especially in terms of the size of the
initial data u0 and v0, is available; for a complete picture, we suggest the introduction of [19] for the
parabolic-parabolic case (i.e., τ = 1), [32] and [20] for parabolic-elliptic case (i.e., τ = 0) and in addition
the survey by [16, Hillen and Painter] where, inter alia, reviews of various models about Keller-Segel-type
systems are discussed.

A part from the size of the initial data, the existence of both bounded or unbounded solutions to
chemotaxis-systems like (1.8) is an issue also tied to the presence of the source term C(u, v) and/or the
mutual interplay between the diffusion A(u, v) and the chemotactic sensitivity B(u, v), also in terms of
the space dimension: let us briefly give some information in this regard. First we wish to cite recent
contributions (as before all focusing on the linear diffusion case A(u, v) ≡ 1, and B(u, v) = χu) dealing
with existence, blow-up and properties of solutions to the fully parabolic version of (1.8) when perturbed
by some logistic-type effects as C(u, v) ' ku − µuδ, for k ∈ R, µ > 0 and δ > 1: [44], [46],[23], [47]
and references therein. Secondly, as far as the relation between A(u, v) and B(u, v) is concerned, the
problem with A(u, v) = (u + 1)m−1 and B(u, v) = u(u + 1)α−1, for some α,m ∈ R, C(u, v) ≡ 0 and
E(u, v) = −v + u, has been studied in [11], [12] and [43], where it is essentially established that the
relation α < m+ 2

n −1 is a necessary and sufficient condition to ensure global existence and boundedness
of solutions even emanating from large initial data. Let us note that the relation mentioned above
somehow establishes that the destabilizing effect of the chemo-sensitivity B(u, v) is weaker than that
from the diffusion A(u, v), which conversely tends to provide equilibrium to the model.

In this paper C(u, v) will be assumed to be zero, whilst we will dedicate to continuous models com-
prising specific expressions for the diffusion and the chemotactic sensitivity and that idealize more natural
situations than those with A(u, v) = 1 and B(u, v) = χu (essentially corresponding to the few realistic
diffusion with infinite speed of propagation). To be precise, and with the aim of presenting and moti-
vating our investigation, by means of asymptotic methods and the underlying description at the scale of
cells at the microscopic level (see [4] and [6]), the cell-cell interaction may even lead to formulations for
A(u, v) and B(u, v) capable of modelling the effect that small changes in a stimulus modify the response
of a biological agent more heavily at a low signal level than the same changes would in the presence of
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CHAPTER 1. INTRODUCTION AND MOTIVATIONS

high signal concentration. In this direction, the signal-dependent sensitivity prototype

B(u, v) =
χ0

v
u, v > 0, with some χ0 > 0,

which covers the interest of our research, has a particular importance and is employed in the so-called
Weber-Fechner law. This law expresses the relation between the actual change in the stimulus and the
perceived change, and we suggest [41, 40] for deeper insights and details.

As to previous achievements regarding system (1.8) with singular chemo-sensitivity, results on global
existence for initial-boundary value problems with widely arbitrary initial data have been derived in the
one-dimensional setting for A(u, v) positive constant and B(u, v) = χu

v , χ > 0, C(u, v) ≡ 0, τ = 1 and
E(u, v) = −uv (see [42]). Moreover, with the same choices for τ, C(u, v) and E(u, v), in [26] and [24],

with respectively A(u, v) ≥ δum−1, δ > 0, and B(u, v) = u
v , and A(u, v) ≡ 1 and B(u, v) ' λu(u+1)α−1

v ,
λ > 0, for proper values of m and α also in terms of the dimension n, analysis concerning with global
classical solutions have been developed as well.

Further, a well established mathematical analysis of this elliptic case of (1.8)
ut = ∆u−∇ · (uχ(v)∇v) in Ω× (0,∞),
0 = ∆v − v + u in Ω× (0,∞),
∂u
∂ν = ∂v

∂ν = 0 in ∂Ω× (0,∞),
u(x, 0) = u0(x) ≥ 0 x ∈ Ω,

(1.9)

is available in the literature:

- for χ(v) = χ0

v , global existence of weak solutions under the assumption 0 < χ0 <
n
2 is proved in [7,

Biler];

- for χ(v) = χ0

v , uniform boundedness and blow-up of radial solutions are positive addressed in [33,
Nagai and Senba]; more exactly, solutions are global and remain bounded when either n ≥ 3 and
0 < χ0 <

n
n−2 or n = 2 and χ0 > 0 is arbitrary, whilst for n ≥ 3, 0 < χ0 <

n
n−2 and

∫
Ω
u0|x| is

sufficiently small, the solution blows-up in finite time;

- for 0 < χ(v) ≤ χ0

vk
, with k ≥ 1 and v > 0, global existence and uniform boundedness of classical

nonradial solutions are discussed in [15, Fujie et al.], where it is shown that the system possesses
a unique global classical solution that is uniformly bounded if 0 < χ0 <

2
n (k = 1) and 0 < χ0 <

2
n

kk

(k−1)k−1 γ
k−1 (k > 1), where γ > 0 is a constant depending on Ω and u0.
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Chapter 2

Lower bounds for the blow-up time
in a model of chemotaxis: the two-
and three-dimensional cases

In this manuscript we are interested in chemotactic collapse, a phenomenon connected to the model (1.7).
It is experimentally observed that the bacteria may concentrate in one or more points. On the other
hand, as discussed in [9] and [10], the so called isothermal collapse (related to relativistic or ultra-cold
gases) represents another possible singular scenario.

From a mathematical point of view, the collapse corresponds to the blow-up of the solution at some
finite time t∗. In this sense, the blow-up phenomena of solutions to various problems, particularly for
nonlinear parabolic systems, have received considerable attention (see,[36], [27], [28], [30], [31]).
In this chapter we derive a lower bound for the blow-up time for the more general parabolic-parabolic
system (1.7) choosing: D1 = 1, g(u) = k4u, h(v) = k3v, D2 = k2, χ = k1, where ki(i = 1, 2, 3, 4) are
positive constants in the section 2.1 and later, in the section 2.2 we making the latter dependent on the
time.

Throughout the paper we will often rely on the well known

Proposizione 2.1 (The Divergence Theorem). Let Ω be a bounded domain of Rn, n ≥ 1, and ϕ a regular
function defined on Ω and h a regular field on Ω. Then∫

Ω

h · ∇ϕdx =

∫
∂Ω

h · ϕn−
∫

Ω

ϕ∇ · h. (2.1)

In particular, if h · n = 0 on the boundary, we have∫
Ω

h · ∇ϕdx = −
∫

Ω

ϕ∇ · h. (2.2)

Proof. See [34].

Additionally other usual concepts often employed in analysis will be as well considered; these concepts
are summarized in Appendix §A.

2.1 Lower bounds for the blow-up time in a Keller-Segel model

We focus our attention on lower bounds and blow-up times of unbounded classical solutions of problem
(1.7). The form of the system is therefore the following:{

ut = ∆u− k1∇ · (u∇v),

vt = k2∆v − k3v + k4u,
(2.3)

7
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in Ω×(0, t∗) where t∗ is the time of blow-up, Ω is a bounded convex region in either R2 or R3 with smooth
boundary ∂Ω, and ki(i = 1, 2, 3, 4) are positive constants. Associated with the boundary conditions

∂u

∂n
=
∂v

∂n
= 0, (2.4)

in Ω× (0, t∗), where ∂
∂n stands for the normal derivative on ∂Ω. In addition, the non negative functions

u and v satisfy the initial conditions

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0. (2.5)

Here u is a continuous function and v is a C2 function in Ω with v satisfying appropriate compatibility
on ∂Ω.

2.1.1 Conservation mass property

A consequence easily derivable from the equations of (2.3) is the so called conservation mass property for
the u-component. This issue is both mathematically and biologically important, so that we prove it in
this

Proposizione 2.2. Let (u, v) a classical solution to (2.3)-(2.5). Then the u-component satisfies∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx =: m ∀t > 0. (2.6)

As the v-component, we have∫
Ω

v(x, t)dx ≤ L := max

{∫
Ω

v0(x),
k4m

k3

}
∀t > 0. (2.7)

Proof. By integrating over Ω the first equation of (2.3) we have∫
Ω

utdx =

∫
Ω

∇ · ∇udx− k1

∫
Ω

∇ · (u∇v)dx.

Using the Divergence Theorem (see formula (2.2)) and the zero-flux boundary conditions, we have that∫
Ω

∇ · ∇udx = 0

∫
Ω

∇ · (u∇v)dx,

so that
d

dt

∫
Ω

udx =

∫
Ω

utdx = 0,

and hence by virtue of the initial condition
∫

Ω
u0dx = m, we conclude.

On the other hand, since similar arguments applied to v give

d

dt

∫
Ω

vdx = −k3

∫
Ω

vdx + k4m,

we can explicitly solve this linear ordinary differential equation and achieve the second claim.

Remark 1. We observe that Proposition 2.2 implies that the quantity
∫

Ω
udx is conserved throughout

the time and that
∫

Ω
udx is bounded; in other words bot ‖u‖L1(Ω) and ‖v‖L1(Ω) are finite; nevertheless,

from this interesting property nothing can be deduced on the boundedness of both u and v.
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2.1.2 Blow-up time in R3

With the aim of proving our main results dealing with estimates of the blow-up time t∗ of unbounded
classical solutions to (2.3), we have to establish some necessary facts.

We define this auxiliary function to any solution (u, v) as follows:

φ(t) = α

∫
Ω

u2dx +

∫
Ω

(∆v)2dx, (2.8)

whose value at t = 0 is

φ(0) = α

∫
Ω

u2
0dx +

∫
Ω

(∆v0)2dx,

where α > 0 is a positive constant to be determined.
We also need this

Definition 2.1. The solution (u, v) to system (2.3) blows-up in φ-measure at time t∗ if

lim
t→t∗

φ(t) =∞. (2.9)

Now we can claim this

Theorem 2.3. Let (u, v) be the classical solution of (2.3)-(2.5) in a convex region Ω of R3 with smooth
boundary and compatible data, and suppose the solution blows up in φ measure at time t∗. Then t∗

satisfies

t∗ ≥
∫ ∞
φ(0)

dη

Aη
3
2 +Bη3

, (2.10)

where A and B are appropriate positive constants.

Proof. To derive a lower bound for t∗, let us differentiate with respect to the time t the auxiliary function
given in Definition 2.8: we have

dφ

dt
= 2α

∫
Ω

uutdx + 2

∫
Ω

∆v∆vtdx, (2.11)

so that replacing ut with its expression, we achieve

= 2α

∫
Ω

u[∆u− k1∇ · (u∇v)]dx + 2

∫
Ω

∆v∆vtdx. (2.12)

Applying the divergence theorem (see (2.2)) and taking into account the boundary conditions of Neumann
we have

= −2α

∫
Ω

|∇u|2dx− αk1

∫
Ω

u2∆vdx− 2

∫
Ω

∇(∆v) · ∇vtdx,

and, as before, replacing vt we have

= −2α

∫
Ω

|∇u|2dx− αk1

∫
Ω

u2∆vdx− 2

∫
Ω

∇(∆v) · ∇(k2∆v − k3v + k4u)dx

= −2α

∫
Ω

|∇u|2dx− αk1

∫
Ω

u2∆vdx− 2k2

∫
Ω

|∇(∆v)|2dx− 2k3

∫
Ω

(∆v)2dx

−2k4

∫
Ω

∇(∆v) · (∇u)dx

≤ −2α

∫
Ω

|∇u|2dx− αk1

∫
Ω

u2∆vdx− 2k2

∫
Ω

|∇(∆v)|2dx− 2k3

∫
Ω

(∆v)2dx

9
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+k4ε1

∫
Ω

|∇(∆v)|2dx +
k4

ε1

∫
Ω

(∇u)2dx. (2.13)

In the last step, we used Hölder’s inequality (see A.1), the inequality

apb1−p ≤ pa+ (1− p)b, (2.14)

with an undetermined positive weight factor ε1.
We now focus our attention on the second term on the right in (2.13) and with the same procedure

and an undetermined positive weight factor ε1 we have[
ε2

∫
Ω

u3dx

] 2
3
[

1

ε2

∫
Ω

|∆v|3dx
] 1

3

≤ 2ε2

3

∫
Ω

u3dx +
1

3ε2
2

∫
Ω

|∆v|3dx (2.15)

Substituting (2.15) in (2.13), we have

dφ

dt
≤ −2α

∫
Ω

|∇u|2dx− αk1

{
2ε2

3

∫
Ω

u3dx +
1

3ε2
2

∫
Ω

|∆v|3dx
}
− 2k2

∫
Ω

|∇(∆v)|2dx

−2k3

∫
Ω

(∆v)2dx + k4ε1

∫
Ω

|∇(∆v)|2dx +
k4

ε1

∫
Ω

(∇u)2dx,

adding up the terms we have

dφ

dt
≤ −2α

∫
Ω

|∇u|2dx− αk1

{
2ε2
3

∫
Ω

u3dx +
1

3ε2
2

∫
Ω

|∆v|3dx
}

−(2k2 − k4ε1)

∫
Ω

|∇(∆v)|2dx− 2k3

∫
Ω

(∆v)2dx +
k4

ε1

∫
Ω

(∇u)2dx. (2.16)

To bound the second term on the right in (2.16) in terms of φ,
∫

Ω
|∇u|2dx and

∫
Ω
∇(∆v)∇(∆v)dx, we

make use of an inequality (2.16) in reference [38], i.e.

∫
Ω

u3dx ≤

[
m1

∫
Ω

u2dx +m2

(∫
Ω

u2dx

) 1
2
(∫

Ω

|∇u|2
) 1

2

dx

] 3
2

. (2.17)

Using the fact that for positive a and b we have

(a+ b)
3
2 ≤ 2

1
2 (a

3
2 + b

3
2 ), (2.18)

the (2.17) becomes

≤ 2
1
2

[
m

3
2
1

(∫
Ω

u2dx

) 3
2

+m
3
2
2

(∫
Ω

u2dx

) 3
4
(∫

Ω

|∇u|2dx
) 3

4

]
,

so that using Hölder’s inequality and (2.14), with a positive and unspecified weight ε3, we obtain that

≤ 2
1
2

{
m

3
2
1

(∫
Ω

u2dx

) 3
2

+m
3
2
2

[
1

4ε3
3

(∫
Ω

u2dx

)3

+
3ε3

4

∫
Ω

|∇u|2dx

]}
, (2.19)

where we have used (2.14) and

m1 =
1

2 · 3 1
8 p0

, m2 =
1

3
9
8

(
d

p0
+ 1),

10
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and for some origin inside Ω
p0 = max

∂Ω
xini > 0, d2 = max

Ω̄
xixi,

ni being the i-th component of the unit normal vector directed outward on ∂Ω.
Similarly, using the reference [38]∫

Ω

|∆v|3 ≤ 2
1
2

{
m

3
2
1

(∫
Ω

∆v2dx

) 3
2

+m
3
2
2

[
1

4ε4
3

(∫
Ω

(∆v)2dx

)3

+
3ε4

4

∫
Ω

|∇(∆v)|2dx

]}
. (2.20)

Substituting (2.19) and (2.20) into (2.16), we obtain the differential inequality

dφ

dt
≤
[
−2α+

1√
2
m

3
2
2 k1αε2ε3 +

k4

ε1

] ∫
Ω

|∇u|2dx +

[
−2k2 + k4ε1 +

√
2k1αm

3
2
2

ε4

4ε2
2

] ∫
Ω

|∇(∆v)|2dx

+
2

3
k1αε2

[
√

2m
3
2
1

(∫
Ω

u2dx

) 3
2

+

√
2m

3
2
2

4ε3
3

(∫
Ω

u2dx

)3
]

+

√
2k1αm

3
2
1

3ε2
2

[∫
Ω

(∆v)2dx

] 3
2

+

√
2k1αm

3
2
2

12ε2
2ε

3
4

[∫
Ω

(∆v)2dx

]3

− 2k3

∫
Ω

(∆v)2dx. (2.21)

We drop the last term on the right side and choose α and the εi (i = 1, 2, 3, 4) such that

−2α+
1√
2
m

3
2
2 k1αε2ε3 +

k4

ε1
≤ 0,

−2k2 + k4ε1 +
√

2k1αm
3
2
2

ε4

4ε2
2

≤ 0,

and arrive at
dφ

dt
≤ Aφ 3

2 +Bφ3, (2.22)

where A and B are computable constants depending on the choices made for α and the εi. A possible
choice for α and the εi is

ε1 =
k2

k4
, ε2 = 1,

ε3 =

√
2

k1m
3
2
2

, ε4 =
2
√

2k2
2

k1k2
4m

3
2
2

, α =
k2

4

k2
.

An integration of (2.22) leads to

t ≥
∫ φ(t)

φ(0)

dη

Aη
3
2 +Bη3

,

and if φ(t) blow-up at time t∗ then

t∗ ≥
∫ ∞
φ(0)

dη

Aη
3
2 +Bη3

, (2.23)

where

φ(0) = α

∫
Ω

u2
0dx +

∫
Ω

(∆v0)2dx.

11
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Remark 2. Let us underline these details:

- The convexity in R3 was used in the derivation of (2.19). However, the derivation of the theorem
requires only that Ω be star shaped and convex separately in two orthogonal directions, so our
result holds for these more general regions.

- The integral (2.23) can either be evaluated or easily bounded from below. It is also useful to notice
that if it is not known whether the solution blows up or not, our bound will assure us of a safe time
period in which blow-up cannot occur.

2.1.3 Blow-up time in R2

In a similar way we establish this

Theorem 2.4. Let (u, v) be the solution of (2.3)-(2.5) in a convex region D in R2 with smooth boundary
and compatible data, and suppose that solution blows up in φ-measure (2.8) at time t∗. Then for some
positive and computable constants A1 and B1, t∗ satisfies

t∗ ≥
∫ ∞
φ(0)

dη

A1η
3
2 +B1η2

.

Proof. The arguments through (2.13) apply as before. However, (2.14) and (2.20) will be changed. In
the derivation of (2.16) in [38], the authors make use of an inequality, which in our notation is(∫

D

u4dA

) 1
2

≤
(

1

2

∮
∂D

u2|nx| ds+

∫
D

u|u,x|dA
) 1

2

×
(

1

2

∮
∂D

u2|ny| ds+

∫
D

u|u,y|dA
) 1

2

, (2.24)

using (2.14) we have:(∫
D

u4dA

) 1
2

≤ 1

4

(∮
∂D

u2|nx|ds+

∮
∂D

u2|ny|ds
)

+
1

2

(∫
D

u|u,x|dA+

∫
D

u|u,y|dA
)
,

and using the Cauchy-Schwartz inequality (see (A.1)) we have:

≤ 1

4

[(∮
∂D

u2ds

∮
∂D

u2|nx|2ds
) 1

2

+

(∮
∂D

u2ds

∮
∂D

u2|u,y|2ds
) 1

2

]

+
1

2

[(∫
D

u2dA

∫
D

u2
xdA

) 1
2

+

(∫
D

u2dA

∫
D

u2
ydA

) 1
2

]

≤
√

2

4

∮
∂D

u2ds+

√
2

2

(∫
D

u2dA

) 1
2
(∫

D

|∇u|2dA
) 1

2

, (2.25)

where in the last step we used (2.18).
Again, since D is assumed to be convex, it follows that∮

∂D

u2ds ≤ 2

p0

∫
D

u2dA+
2d

p0

(∫
D

u2dA

∫
D

|∇u|2dA
) 1

2

, (2.26)

where as before

p0 = min
∂Ω

xβnβ > 0, d2 = max
Ω̄

xβxβ , β = 1, 2. (2.27)

12
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Inserting (2.25) back into (2.26) and making use of the inequality:∫
D

u3dA ≤
(∫

D

u2dA

∫
D

u4dA

) 1
2

, (2.28)

leads to the bounds∫
D

u3dA ≤
√

2

2p0

(∫
D

u2dA

) 3
2

+

√
2

2

(
1 +

d

p0

)∫
D

u2dA

(∫
D

|∇u|2dA
) 3

2

, (2.29)

and ∫
D

|∆v|3dA ≤
√

2

2p0

(∫
D

|∆v|2dA
) 3

2

+

√
2

2

(
1 +

d

p0

)∫
D

|∆v|2dA
(∫

D

∆v∆vdA

) 1
2

. (2.30)

Following the arguments used for R3 we arrive at

t∗ ≥
∫ ∞
φ(0)

dη

A1η
3
2 +B1η2

, (2.31)

where again the values of A1, B1 and the integral are easily obtainable.

2.2 Lower bounds for the blow-up time in a Keller-Segel system
with time dependent coefficients

In the previous section we have analyzed a lower bound for the blow-up time of solutions to system
(2.3) when Ω is a bounded domain in R2 or R3. On the other and, natural observations and practical
experiences show how in specific circumstances the parameters modeling the chemotaxis phenomena can
also change in time. As a consequence, we are interested in studying a different model, where the positive
coefficients in (2.3) are herein replaced by positive time dependent coefficients. Therefore we express the
system in the following way

ut = ∆u− k1(t)∇ · (u∇v), (x, t) ∈ Ω× (0, t∗),

vt = k2(t)∆v − k3(t)v + k4(t)u (x, t) ∈ Ω× (0, t∗),

un = vn = 0 (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ Ω,

(2.32)

where t∗ is the blow-up time (0 < t∗ <∞), Ω is the bounded domain in R3 with smooth boundary ∂Ω,
un and vn are the normal derivative on ∂Ω. , u0(x) and v0(x) are assumed non-negative on Ω satisfying
the compatibility conditions on ∂Ω.

As mentioned in different places throughout this report, system (2.32) represents the following sit-
uation: the chemoattractant spreads diffusively and decays with rate k2(t) and k3(t), respectively; it
is also produced by the bacteria with rate k4(t). The bacteria diffuse with mobility 1 and also drift
in the direction of the gradient of concentration of the chemoattractant with velocity k1(t)|∇v|; k1 is
called chemosensivity. Moreover, the Neumann boundary conditions mean that no flux with the external
boundary is permitted (from now on, we also refer to the so called zero-flux boundary conditions).

We will study solutions of (2.32) which blow-up in finite time t∗. It is well known that when blow-up
occurs at t∗, explicit estimates are of a great practical interest, since, mostly, it is not possible an exact
computation of t∗. More precisely, we derive sufficient conditions on the data in order to obtain an
explicit lower bound for t∗.

Let us present the main result; we first need to introduce the following auxiliary function

W (t) = α(t)

∫
Ω

u2dx + β(t)

∫
Ω

(∆v)2dx, (2.33)

13
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whose value at t = 0 is

W (0) = α(0)

∫
Ω

u2
0dx + β(0)

∫
Ω

(∆v0)2dx,

α(t) and β(t) in (2.33) are positive and derivable functions in [0, t∗), to be determined.
Now we give the following definition.

Definition 2.2. The solution (u, v) to system (2.32) blows-up in W-measure at time t∗ if

lim
t→t∗

W (t) =∞. (2.34)

Now we state our main result, we derive an explicit lower bound for t∗. For brevity we write ki :=
ki(t), i = 1, 2, 3, 4.

Theorem 2.5. Let (u, v) be a classical solution of (2.32). Assume Ω a bounded domain in R3, with the
origin inside, star-shaped and convex in two orthogonal directions. Let W defined in (2.33) and (u,v)
becomes unbounded at some time t∗ in W-measure (2.34). Moreover assume that the coefficients ki (for
i = 1, 2, 3, 4) satisfy the following relation

2k′4
k4
− k′2
k2

+ 2k3 ≤ 0, (2.35)

and let be β(t) = exp2K3(t), with K3(t) =
∫ t

0
k3(s)dx,

α(t) =
k2

4

k2
β

Then

t∗ ≥ H−1

(
1

2W (0)2

)
, (2.36)

with H−1 the inverse function of H(t) :=
∫ t

0
ω(τ), ω(τ) being a positive function depending only on the

data.

Proof. We show that W (t) defined on solution of the system (2.32) satisfies an appropriate differential
inequality of the first order. By integrating such inequality we get the lower bound of t∗.
By differentiating W (t) we have

W ′(t) = α′
∫

Ω

u2dx + β′
∫

Ω

(∆v)2dx + 2α

∫
Ω

uutdx + 2β

∫
Ω

∆v∆vtdx. (2.37)

Now we focus our attention to the last two integrals in (2.37). By using the first equation in (2.32) and
the divergence theorem (see 2.2), we can be write∫

Ω

uutdx =

∫
Ω

u [∆u− k1(t)∇ · (u∇v)] dx

=

∫
Ω

u∆udx− k1(t)

∫
Ω

u∇ · (u∇v)dx

= −
∫

Ω

|∇u|2dx− k1(t)

∫
Ω

u∇ · (u∇v)dx

By using
∇ · (u∇v) = ∇u · ∇v + u∆v,

and the divergence theorem (see 2.2), we have∫
Ω

uutdx = −
∫

Ω

|∇u|2dx + k1(t)
1

2

∫
Ω

u2∆vdx. (2.38)

14
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Moreover, it can be checked that∫
Ω

∆v∆vtdx =

∫
Ω

∇ · (∇vt)∆vdx = −
∫

Ω

∇(∆v) · ∇vtdx,

using the second equation in (2.32), we have

= −
∫

Ω

∇(∆v) · ∇[k2(t)∆v − k3(t)v + k4(t)u]dx

= −k2(t)

∫
Ω

|∇(∆v)|2dx + k3(t)

∫
Ω

∇(∆v) · ∇vdx− k4(t)

∫
Ω

∇(∆v) · ∇udx. (2.39)

We observe that ∫
Ω

∇(∆v) · ∇vdx = −
∫

Ω

(∆v)2dx. (2.40)

Now by using Schwarz’s inequality (see (A.1)) and (A.4), we have∫
Ω

|∇(∆v)||∇u|dx =

(
ε1

∫
Ω

|∇(∆v)|2dx
) 1

2
(

1

ε1

∫
Ω

|∇u|2dx
) 1

2

≤ ε1
2

∫
Ω

|∇(∆v)|2dx +
1

2ε1

∫
Ω

|∇u|2dx (2.41)

where ε1 is an arbitrary positive and time depending function to be determined.
We now combine the terms (2.40) and (2.41) in (2.39) and obtain∫

Ω

∆v∆vt ≤ (k4(t)
ε1
2
− k2(t))

∫
Ω

|∇(∆v)|2dx− k3(t)

∫
Ω

(∆v)2dx + k4(t)
1

2ε1

∫
Ω

|∇u|2dx. (2.42)

Plugging (2.38) and (2.42) in (2.37) we lead to

W ′(t) = α′
∫

Ω

u2dx + β′
∫

Ω

(∆v)2dx + (−2α+
k4β

ε1
)

∫
Ω

|∇u|2dx

+αk1

∫
Ω

u2∆vdx− 2βk2

∫
Ω

|∇(∆v)|2dx + ε1βk4

∫
Ω

|∇(∆v)|2dx− 2k3β

∫
Ω

(∆v)2dx

Regarding term
∫

Ω
u2∆vdx, by means of Hölder’s inequality and (A.4) we obtain∫

Ω

u2∆vdx ≤ 2ε2

3

∫
Ω

u3dx +
1

3ε2
2

∫
Ω

|∆v|3dx, (2.43)

with ε2 another positive and time depending function to be chosen.
We observe that we are now under the hypotheses of LemmaA.2, which can be applied to both terms in
(2.43). In fact we can write∫

Ω

u3dx ≤
√

2

[
m

3
2
1

(∫
Ω

u2dx

) 3
2

+m
3
2
2

[
1

4ε3
3

(∫
Ω

u2dx

)3

+
3ε3

4

(∫
Ω

|∇u|2dx
)]]

, (2.44)

and∫
Ω

|∆v|3dx ≤
√

2

[
m

3
2
1

(∫
Ω

|∆v|2dx
) 3

2

+m
3
2
2

[
1

4ε3
4

(∫
Ω

|∆v|2dx
)3

+
3ε4

4

(∫
Ω

|∇(∆v)|2dx
)]]

, (2.45)
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where ε3 and ε4 are any positive and time depending functions to be determined. Hence, by employing
(2.45) and (2.44) in (2.43), we have
Then ∫

Ω

u2∆vdx ≤ 2ε2

3

√
2

[
m

3
2
1

(∫
Ω

u2dx

) 3
2

+m
3
2
2

[
1

4ε3
3

(∫
Ω

u2dx

)3

+
3ε3

4

(∫
Ω

|∇u|2dx
)]]

dx+

+

√
2

3ε2
2

[
m

3
2
1

(∫
Ω

|∆v|2dx
) 3

2

+m
3
2
2

[
1

4ε3
4

(∫
Ω

|∆v|2dx
)3

+
3ε4

4

(∫
Ω

|∇(∆v)|2dx
)]]

dx, (2.46)

by using (2.46) in (2.37), we obtain

W ′(t) ≤ α′
∫

Ω

u2dx +

[
−2α+

1√
2
m

3
2
2 k1αε2ε3 +

k4β

ε1

] ∫
Ω

|∇u|2dx

+

[
k4ε1β − 2k2β +

√
2αk1m

3
2
2

ε4

4ε2
2

] ∫
Ω

|∇∆v|2dx

+
2
√

2

3
αk1ε2

[
m

3
2
1

(∫
Ω

u2dx

) 3
2

+
m

3
2
2

4ε3
3

(∫
Ω

u2dx

)3
]

+

√
2

3ε2
2

αk1

[
m

3
2
1

(∫
Ω

(∆v)2dx

) 3
2

+
m

3
2
2

4ε3
4

(∫
Ω

(∆v)2dx

)3
]

+(β′ − 2k3β)

∫
Ω

(∆v)2dx. (2.47)

Now we choose α(t) and β(t) in (2.47) as

α(t) =
k2

4β

k2
, β(t) = e2K3(t), with K3(t) =

∫ t

0

k3(s)ds (2.48)

and the arbitrary functions εi(fori = 1, ..., 4) as

ε1(t) =
k2

k4
, ε2 = 1, ε3(t) =

√
2

k1m
3
2
2

, ε4(t) =
2
√

2k2
2

k1k2
4m

3
2
2

(2.49)

By using these values, the coefficients of
∫

Ω
|∇u|2dx and

∫
Ω
|∇∆v|2dx in (2.47) vanish.

Moreover

α′ =
βk2

4

k2

(
2k′4
k4
− k′2
k2

+ 2k3

)
≤ 0,

from hypothesis (2.35). In these circumstances we neglect in (2.47) the non negative terms and drop the
terms whose coefficients are zero due to the choice of εi(t) and α(t) and β(t). By using the inequality
aγ + bγ ≤ (a+ b)γ , valid for γ > 1 and a and b non negative, at the end we obtain

W ′(t) ≤ A(t)W
3
2 (t) +B(t)W 3(t), (2.50)

where 
A = A(t) =

√
2m

3
2
1 αk1
3 = maxt∈[0,t∗]

(
2ε2

α
3
2
, 1

ε22β
3
2

)
,

B = B(t) =
√

2m
3
2
2 αk1

12 = maxt∈[0,t∗]

(
2

α3ε33
, 1
ε34

)
.
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With the aim to simplify (2.50) , we compare the values of W (t) in the time interval [0, t∗) with the initial
value W0 = W (0). We recall that W (t) is assumed blowing up at t*. If W (t) is non decreasing in [0, t∗),
then W (t) ≥ W0, ∀t ∈ [0, t∗); on the contrary, if W is non increasing, there exists a time t1 ∈ (0, t∗)
where W (t1) = W0 and as a consequence,W (t) ≤W0, ∀t ∈ [t1, t

∗). This fact implies that

W (t)
3
2 ≤W

−3
2

0 W 3(t), t ∈ [t1, t
∗), (2.51)

Inserting (2.51) in (2.50), we obtain the desired differential inequality

w(t) ≥ W ′(t)

W 3(t)
, (2.52)

being

w(t) = W
−3
2

0 A+B.

By integrating (2.52) between t1 and t∗, we obtain

H(t∗) :=

∫ t∗

0

w(τ)dτ ≥
∫ t∗

t1

w(τ)dτ ≥ 1

2W 2
0

. (2.53)

This inequality provides a lower bound T for t∗ with

T := H−1

(
1

2W 2
0

)
,

H−1 being the inverse of H; in this way the theorem is proved.

Remark 3. Since ki are strictly positive and continuous functions in [0, t∗], also w(t) of Theorem (2.5) is

positive; H is defined in t∗ and, in particular, 0 < H(t∗) = limt→t∗
∫ t

0
w(τ)dτ <∞ .

Remark 4 (Another lower bound). Hypothesis (2.35) on the time depending coefficients ki, is not strictly
necessary to derive a lower bound of t∗; in fact, from (2.48) and (2.49), (2.47) is also reduced to

W ′(t) ≤ 2
√

2

3
αk1ε2

[
m

3
2
1

(∫
Ω

u2dx

) 3
2

+
m

3
2
2

4ε3
3

(∫
Ω

u2dx

)3
]

+

√
2

3ε2
2

αk1

[
m

3
2
1

(∫
Ω

(∆v)2dx

) 3
2

+
m

3
2
2

4ε3
4

(∫
Ω

(∆v)2dx

)3
]

+α′
∫

Ω

u2dx + β′
∫

Ω

(∆v)2dx. (2.54)

where we have neglected the negative term −2k3β
∫

Ω
(∆v)2dx.This implies

W ′(t) ≤ AW 3
2 (t) +BW 3(t) + CW (t),

where A and B have been previously computed and C is

C = C(t) = max
t∈[0,t∗]

(
α′

α
,
β′

β
),

α and β given by (2.48). Therefore, following the same reasoning of Theorem 2.5, if this function

w̃(t) = W
− 3

2
0 A+B + CW−2

0 ,
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is considered, this inequality

H̃(t∗) :=

∫ t∗

0

w̃(τ)dτ ≥
∫ t∗

t1

w̃(τ)dτ ≥ 1

2W 2
0

,

provides another lower bound for t∗, given by

T̃ = H̃−1

(
1

2W 2
0

)
.

Of course, since w̃(t) ≥ w(t), T̃ ≤ T , so that not considering hypothesis (2.35) returns a less accurate
estimate of t∗ than that given by (2.36).

As expected, we also have the bi-dimensional version of the previous theorem:

Theorem 2.6. Let (u, v) be a classical solution of (2.32). Assume D a bounded domain in R3, with the
origin inside, star-shaped and convex in two orthogonal directions. Let W defined in (2.33) and (u, v)
becomes unbounded at some time t∗ in W -measure (2.34). Moreover assume that the coefficients ki (for
i = 1, 2, 3, 4) satisfy the following relation

2k′4
k4
− k′2
k2

+ 2k3 ≤ 0, (2.55)

and let be β(t) = exp2K3(t), with K3(t) =
∫ t

0
k3(s)dx,

α(t) =
k2

4

k2
β

Then

t∗ ≥ H̄−1

(
1

2W (0)2

)
, (2.56)

with H̄−1 the inverse function of H̄(t) :=
∫ t

0
ω̄(τ), ω(τ) being a positive function depending only on the

data.

Proof. If problem (2.32) is considered in a convex domain D ⊂ R2, this lower bound for t∗ can be
obtained:

t∗ ≥ H̄−1

(
1

W0

)
, (2.57)

where H̄−1 is the inverse of

H̄(t∗) :=

∫ t∗

0

w̄(τ)dτ,

w̄(τ) being a positive function depending only on the data.
In fact, by means of a similar previously used technique can be replaced by∫

Ω

u3dx ≤
√

2

3
m1

(∫
Ω

u2dx

) 3
2

+

√
2

2
m2

∫
Ω

u2dx

(∫
Ω

|∇u|2dx
) 1

2

,

and ∫
Ω

|∆v|3dx ≤
√

2

3
m1

(∫
Ω

|∆v|2dx
) 3

2

+

√
2

2
m2

∫
Ω

|∆v|2dx
(∫

Ω

|∇(∆v)|2dx
) 1

2

,

m1 and m2 in Lemma A.3.
Finally, by arranging the proof of Theorem 2.5, estimate (2.57) can be checked.
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Chapter 3

Numerical resolution method for the
Keller–Segel system

There exist numerous papers devoted to the quantitative analysis of blowing up solutions of problems
defined on bounded or unbounded domains (see [1] and [3]). In this sense, starting from the natural
weak formulation associated to problem (2.3), we propose an algorithm based on a mixed Finite Element
Method in space and Euler Method in time (see [25]) capable of numerically solving such system. This
resolution approach is implemented in the 2D case to analyze the behaviors of the norm of the maximum
of some blowing up solutions of (2.3) with different domains and (2.32), where the ki coefficients are even
time-dependent regular functions.

We wish to remark that in Appendix §B we include some known and classical concepts often employed
in numerical analysis to simulate models formulated by means of partial differential equations.

3.1 Semi-discretization in space

If a mesh of Ω ⊂ Rn(n = 2, 3) is fixed and N represents the total number of nodes of Ω, let (U, V ) be the
numerical approximation of the solution (u, v) of (2.3) and (2.32): therefore, by separating variables

U(x, t) =

N∑
i=1

ui(t)φi(x),

V (x, t) =

N∑
i=1

vi(t)φi(x),

(3.1)

where φi(x) is the standard quadratic basis function at the vertex xi, for i = 1, ..., N .
Thanks to the divergence theorem and the homogeneous boundary conditions of the Keller-Segel system,
by multiplying its first two equations by a generic test function φj , the following variational form in space
is achieved: 

∫
Ω

Utφ
j dx+

∫
Ω

∇U · ∇φj = k1

∫
Ω

(U∇V ) · ∇φj ,∫
Ω

Vtφ
j dx+ k2

∫
Ω

∇V · ∇φj = k4

∫
Ω

Uφj − k3

∫
Ω

V φj .
(3.2)

If (·; ·) denotes the usual L2 inner product{
(Ut, φ

j) + (∇U,∇φj) = k1(U∇V,∇φj),
(Vt, φ

j) + k2(∇V,∇φj) = k4(U, φj)− k3(V, φj).
(3.3)
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Semi-discretization in time

To compute the time evolutions of both coefficients ui and vi appearing in 3.1, let ∆t = tm+1 − tm be
a given time step, with m = 0, 1, 2, ...(t0 = 0), and (Um, Vm) the approximation of (U(x, t), V (x, t)) at
time tm. By applying an implicit Euler finite difference approximation to system 3.3, it is seen that

1

∆t
(Um+1 − Um, φj) + (∇Um+1,∇φj) = k1(Um∇Vm,∇φj),

1

∆t
(Vm+1 − Vm, φj) + k2(∇Vm+1,∇φj) = k4(Um, φ

j)− k3(Vm, φ
j),

i.e., taking into account (3.1),

M
um+1 − um

∆t
+ Kum+1 = k1F(um,vm),

and

M
vm+1 − vm

∆t
+ k2Kvm+1 = k4Mum − k3Mvm,

with M ∈ RN×N (mass matrix), K ∈ RN×N (stiffness matrix) and F(um,vm) ∈ RN such that

Mij =

∫
Ω

φi(x)φj(x)dx,

Kij =

∫
Ω

∇φi(x) · ∇φj(x)dx,

F(um,vm)j =

∫
Ω

(

N∑
p,q=1

upmv
q
mφ

p(x)∇φq(x)) · ∇φj(x)dx,

being um = (u1
m, ..., u

N
m)T and vm = (v1

m, ..., v
N
m)T , where T indicates the transposition operator. Under

these circumstances, (uim, v
i
m) represents the approximation of the solution (u, v) of problem Keller-Segel

at time tm, for m = 0, 1, 2, ..., and at space point xi, for i = 1, 2, ..., N .

In this way the continuous solution of the nonlinear system Keller-Segel is identified to the discrete
solution of the linear system {

Aum+1 = b,

Bvm+1 = c,

with 

A =
1

∆t
M + K,

B =
1

∆t
M + k2K,

b =
1

∆t
Mum + k1F(um,vm),

c =
1

∆t
Mvm + k4Mum − k3Mvm.

3.2 Numerical tests for n = 2

Let us dedicate to simulate some specific cases of our main system (2.3). In particular, since we want to
examine more general situations, we precisely will analyze this problem{

ut = k0∆u− k1∇ · (u∇v),

vt = k2∆v − k3v + k4u,
(3.4)
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with usual Neuman boundary conditions and initial data. Herein, moreover, ki, i = 0, 1, 2, 3, 4 may be
functions of the time variable t and the space variable x.

Let us consider the domain Q = Ω×R+
0 , being Ω = [−2, 2]×[−2, 2] the square with center in the origin

of the axes O(0, 0) and length 4. We take a uniform mesh, obtained by dividing each side of the square

into 200 equal parts (i.e. 40401 vertexes and 80000 triangles). We also choose v0 = 0.55e−(x2+y2)(4 −
x2)2(4−y2)2 (the chemical signal at time t0 = 0) and u0(x) = 1.15e−(x2+y2)(4−x2)(4−y2)2 (the bacteria
at time t0 = 0) as initial conditions and ε0 = 104 as the threshold and ∆t = 10−4 as the integration step.

As to the blow-up scenario, we establish this criterion to decide whether is happens or not: let us fix
the threshold ε0 = 104 and the integer numberN = 250. We say that u blows-up at a certain point xi of
the mesh and a certain time tj if u(xi, t

j) > ε0, for some j = 1, . . . , N . Conversely u does not blow-up
and it is global.

In order to solve the below tests, we use the free software called Freefem ++, which is a robust and
friendly programming language focused on solving partial differential equations using the finite element
method. In particular, for the convenience of the reader, we add the entire code of a specific case in
Appendix §C.

3.2.1 Tests with time and space dependent coefficients

Let us apply the numerical method previously proposed to some precise cases. In particular, once these
data are set, we will solve system (3.4) in six different cases, all of these characterized by coefficients ki
which depend on time and space: the first four cases dealing with time dependent coefficients (for brevity
TDC − Test) and the remaining two with space dependent coefficients (i.e., SDC − Test)

In particular we will fix the same square than above and these initial data:{
u0(x) = 1.15e−(x2+y2)(4− x2)(4− y2)2,

v0(x) = 0.55e−(x2+y2)(4− x2)2(4− y2)2.

star with three tests, where we will study system (3.4) when k0 and k2 vary over time and k1 = 0.2,
k3 = 0.1 and k4 = 1. In the fourth test we study the case in which k0 and k2 vary over time but unlike
previous ones, the value k1 is 0.1. In the last two tests, we will study, the case in which k0 varies in space.
In the first test we choose k0 = x2 + y2 and in the second test we choose k0 = 3xy.

Time dependent coefficient case

- Test TDC − Test1: k0 = t2, k1 = 0.2, k2 = k4 = 1 and k3 = 0.1. The graphical result is shown
in Figures 3.1 and 3.2. We can observe that the same qualitative results are obtain if we consider
these other data: k0 = t, k1 = 0.2, k2 = k4 = 1 and k3 = 0.1.

- Test TDC − Test2: k0 = 1, k1 = 0.2, k2 = t2, k3 = 0.1 and k4 = 1. The graphical result is shown
in Figures 3.3 and 3.4. We can observe that the same qualitative results are obtain if we consider
these other data: k0 = 1, k1 = 0.2, k2 = t, k3 = 0.1 and k4 = 1.

- Test TDC − Test3: k0 = t, k1 = 0.2, k2 = t2, k3 = 0.1, k4 = 1. The graphical result is shown
in Figures 3.5 and 3.6. We can observe that the same qualitative results are obtain if we consider
these other data: k0 = t2, k1 = 0.2, k2 = t, k3 = 0.1 and k4 = 1, and k0 = t, k1 = 0.2, k2 = t,
k3 = 0.1 and k4 = 1.

- Test TDC − Test4: k0 = t, k1 = 0.1, k2 = t, k3 = 0.1 and k4 = 1. The graphical result is shown
in Figures 3.7 and 3.8. We can observe that the same qualitative results are obtain if we consider
these other data: k0 = t2, k1 = 0.1, k2 = t, k3 = 0.1 and k4 = 1 and k0 = t, k1 = 0.1, k2 = t2,
k3 = 0.1 and k4 = 1. It is worth to observe that replacing k1 = 0.2 with k1 = 0.1, the instability
does not appear. Subsequently, from this observation and the analysis of the presented tests , we
could conclude that such a singular behavior may be related to the fact that, unlike the previous
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cases, both the coefficients of the diffusive terms associated to u and v are herein time-dependent
and the largeness of k1.

(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.1: Test TDC − Test1: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 309.574. Note that the red
color (maximum value) is 307.694 and the or-
ange color (minimum value) is 8.31606.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 895.039. Note that the red
color (maximum value) is 889.18 and the or-
ange color (minimum value) is 24.0319.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 3968.85. Note that the red
color (maximum value) is 3780.28 and the or-
ange color (minimum value) is 102.17.

(d) Solution u at time t ≈ 0.0149;
maxu = u(O) ≈ 10931.2. Note that the red
color (maximum value) is 11234.8 and the or-
ange color (minimum value) is 303.643.

Figure 3.2: Test TDC−Test1: numerical solution. Evolution of u and its graphical representation: with
t increasing the value of u at O increases. According to the blow-up criterion given at page 21, u blows-up
at t ≈ 0.0149.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.3: Test TDC − Test2: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 308.981. Note that the red
color (maximum value) is 307.501 and the or-
ange color (minimum value) is 8.31083.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 819.652. Note that the red
color (maximum value) is 818.223 and the or-
ange color (minimum value) is 22.1142.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 2265.37. Note that the red
color (maximum value) is 2245.26 and the or-
ange color (minimum value) is 60.6832.

(d) Solution u at time t ≈ 0.018;
maxu = u(O) ≈ 10389.3. Note that the red
color (maximum value) is 10677.9 and the or-
ange color (minimum value) is 288.592.

Figure 3.4: Test TDC−Test2: numerical solution. Evolution of u and its graphical representation: with
t increasing the value of u at O increases. According to the blow-up criterion given at page 21, u blows-up
at t ≈ 0.018.

Remark 5. It is worth to mention that the phenomenon detected in Figures 3.6 and 3.8, precisely corre-
sponding to the appearance of certain instabilities, can be justified by different motivations. Indeed, if
from the one hand once could imagine that it is tied to some numerical problem (for instance connected
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.5: Test TDC − Test3: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 309.592. Note that the red
color (maximum value) is 307.694 and the or-
ange color (minimum value) is 8.31606.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 935.582. Note that the red
color (maximum value) is 926.759 and the or-
ange color (minimum value) is 25.0476.

(c) Solution u at time t ≈ 0.0113;
maxu = u(O) ≈ 10685.4. Note that the red
color (maximum value) is 11116.2 and the or-
ange color (minimum value) is -4390.79.

Figure 3.6: Test TDC−Test3: numerical solution. Evolution of u and its graphical representation: with
t increasing the value of u presents instability.

to the size of the mesh or of the time interval), on the other it is also reasonable that such “irregu-
larity” might be associated to the model; in fact, this biological phenomena are very sensitive to small
perturbations of the data.

Further, this same instability (possibly also tied to some numerical issue) makes that, in a very
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.7: Test TDC − Test4: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 301.932. Note that the red
color (maximum value) is 305.136 and the or-
ange color (minimum value) is 8.24692.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 521.607. Note that the red
color (maximum value) is 526.811 and the or-
ange color (minimum value) is 14.2381.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 965.639. Note that the red
color (maximum value) is 972.294 and the or-
ange color (minimum value) is 26.2782.

(d) Solution u at time t ≈ 0.0175;
maxu = u(O) ≈ 10300.6. Note that the red
color (maximum value) is 10774.3 and the or-
ange color (minimum value) is -6280.17.

Figure 3.8: Test TDC−Test4: numerical solution. Evolution of u and its graphical representation: with
t increasing the value of u presents instability.

unexpected way, the u-component achieve also negative values; this is of course inconsistent with the
physical and mathematical problem.
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Space dependent coefficient case

- Test SDC −Test1: k0 = x2 + y2, k1 = 0.2, k2 = k4 = 1 and k3 = 0.1. The graphical result is shown
in Figures 3.9 and 3.10

- Test SDC − Test2: k0 = 3xy, k1 = 0.2, k2 = k4 = 1 and k3 = 0.1. The graphical result is shown in
Figures 3.11 and 3.12

3.2.2 Tests with constant coefficients

Under the same hypotheses made in §3.2.1, precisely on the domain, mesh, initial functions, threshold ε0

and integration step, let us analyze solutions of system (3.4) with k1 varying, fixing the other data as{
k0 = 1, k2 = k4 = 1, k3 = 0.1,

u0(x) = 1.15−(x2+y2)(4− x2)(4− y2)2, v0(x) = 0.55e−(x2+y2)(4− x2)2(4− y2)2.

As before, in order to select and distinguish properly our cases we identify a single test with ConstCoef−
Test

- Test ConstCoef −Test1 k0 = 1, k1 = 0.01, k2 = k4 = 1 and k3 = 0.1. The graphical result is shown
in Figures 3.13 and 3.14

- Test ConstCoef −Test2: k0 = 1, k1 = 0.1, k2 = k4 = 1 and k3 = 0.1. The graphical result is shown
in Figures 3.15 and 3.16

- Test ConstCoef −Test3: k0 = 1, k1 = 0.2, k2 = k4 = 1 and k3 = 0.1. The graphical result is shown
in Figures 3.17 and 3.18

Remark 6. From the three numerical tests ConstCoeff − Test, it is clear that as expected the blow-up
scenario is tied to the largeness of the cross-diffusive term k1, once of course the other parameters are
fixed and maintained throughout the tests.

Tests with ki constants and different initial functions

Now we analyze the solutions of the system (3.4) in case we have ki constants and the same hypotheses
made in §3.2.1 regarding domain, mesh, threshold ε0 and integration step. To be precise we set{

k0 = 1, k1 = 0.2, k2 = k4 = 1, k3 = 0.1,

v0(x) = 0.55e−(x2+y2)(4− x2)2(4− y2)2,

and change initial functions u0.

- Test InitialFunc−Test1, for u0(x) = 1.15−(x2+y2)(4−x2)(4− y2)2. The graphical result is shown
in Figures 3.19 and 3.20

- Test InitialFunc− Test2, for u0(x) = 24(((x2 − 4)2 + (y2 − 4)2 + 1)− 0.05((x2 − 4)4 + (y2 − 4)4)).
The graphical result is shown in Figures 3.21 and 3.22

Remark 7. We see that in the Test InitialFunc − Test2 the blow-up point is the center of the square
despite the fact that in the second case u0 has a minimum in such center. This is not a general rule;
indeed, there are cases where the blow-up point is far from the center or more than a single blow-up point
appear.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.9: Test SDC − Test1: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 308.356. Note that the red
color (maximum value) is 307.308 and the or-
ange color (minimum value) is 8.30562.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 708.579. Note that the red
color (maximum value) is 712.566 and the or-
ange color (minimum value) is 19.2589.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 1309.82. Note that the red
color (maximum value) is 1324.28 and the or-
ange color (minimum value) is 35.7942.

(d) Solution u at time t ≈ 0.025;
maxu = u(O) ≈ 3284.48. Note that the red
color (maximum value) is 3375.72 and the or-
ange color (minimum value) is 91.237.

Figure 3.10: Test SDC − Test1: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases.

Tests with ki constants and different domains

Now, we analyze the solutions of the system (3.4) where ki are constants and we have the same hypotheses
made in §3.2.1 regarding initial functions, mesh, threshold ε0 and integration step, but on different
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.11: Test SDC − Test2: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 307.752. Note that the red
color (maximum value) is 307.115 and the or-
ange color (minimum value) is 8.30041.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 646.403. Note that the red
color (maximum value) is 652.532 and the or-
ange color (minimum value) is 17.6372.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 1309.82. Note that the red
color (maximum value) is 1049.85 and the or-
ange color (minimum value) is 28.3845.

(d) Solution u at time t ≈ 0.025;
maxu = u(O) ≈ 3284.48. Note that the red
color (maximum value) is 1816.75 and the or-
ange color (minimum value) is 49.1768.

Figure 3.12: Test SDC − Test2: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases.

domains. We, again, set:{
k0 = 1, k1 = 0.2, k2 = k4 = 1, k3 = 0.1,

u0(x) = 1.15−(x2+y2)(4− x2)(4− y2)2, v0(x) = 0.55e−(x2+y2)(4− x2)2(4− y2)2.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.13: Test CCT − Test1: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 294.614. Note that the red
color (maximum value) is 302.652 and the or-
ange color (minimum value) is 8.17977.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 298.06. Note that the red
color (maximum value) is 306.259 and the or-
ange color (minimum value) is 8.27733.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 299.674. Note that the red
color (maximum value) is 307.973 and the or-
ange color (minimum value) is 8.32397.

(d) Solution u at time t ≈ 0.025;
maxu = u(O) ≈ 298.872. Note that the red
color (maximum value) is 307.174 and the or-
ange color (minimum value) is 8.30324.

Figure 3.14: Test CCT − Test1: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases.

- Test DiffDom− Test1: Let us consider the domain Q = Ω×R+
0 , being Ω the triangle of vertices

(0, 0), (1, 0), (0, 1). The graphical result is shown in Figures 3.23 and 3.24

- Test DiffDom − Test2: Let us consider the domain Q = Ω × R+
0 , being Ω the ellipsoidal crown.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.15: Test CCT − Test2: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 301.354. Note that the red
color (maximum value) is 304.949 and the or-
ange color (minimum value) is 8.24185.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 473.484. Note that the red
color (maximum value) is 480.423 and the or-
ange color (minimum value) is 12.9845.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 696.19. Note that the red
color (maximum value) is 307.694 and the or-
ange color (minimum value) is 707.903.

(d) Solution u at time t ≈ 0.025;
maxu = u(O) ≈ 1220.2. Note that the red
color (maximum value) is 307.694 and the or-
ange color (minimum value) is 1254.09.

Figure 3.16: Test CCT − Test2: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases.

x = 1.5 cos(t), y = sin(t) for t = (2π, 0) ; x = 2 cos(t), y = 2 sin(t) for t = (0, 2π). The graphical
result is shown in Figures 3.25 and 3.26

Remark 8. Tests DiffDom − Test1 and DiffDom − Test2 show that our problem is also sensitive to
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.17: Test CCT − Test3: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 308.963. Note that the red
color (maximum value) is 307.501 and the or-
ange color (minimum value) is 8.31083.

(b) Solution u at time t = 0.0067;
maxu = u(O) ≈ 787.755. Note that the red
color (maximum value) is 788.237 and the or-
ange color (minimum value) is 21.3038.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 1842.19. Note that the red
color (maximum value) is 1844.61 and the or-
ange color (minimum value) is 49.8547.

(d) Solution u at time t ≈ 0.0226;
maxu = u(O) ≈ 10295.2. Note that the red
color (maximum value) is 10581.2 and the or-
ange color (minimum value) is 285.98.

Figure 3.18: Test CCT − Test3: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases. According to the blow-up criterion given at page 21, u
blows-up at t ≈ 0.0226.

the domain. Indeed, fixing the parameters and the initial data we note two different behaviors of the
solution when the domain is starry (L-shape) and when it is a double crown; in the first case blow-up
appears, in the second it does not.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.19: Test IFT − Test1: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 308.963. Note that the red
color (maximum value) is 307.501 and the or-
ange color (minimum value) is 8.31083.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 787.755. Note that the red
color (maximum value) is 788.237 and the or-
ange color (minimum value) is 21.3038.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 1842.19. Note that the red
color (maximum value) is 1844.61 and the or-
ange color (minimum value) is 49.854.

(d) Solution u at time t ≈ 0.0226;
maxu = u(O) ≈ 10295.2. Note that the red
color (maximum value) is 10581.2 and the or-
ange color (minimum value) is 285.98.

Figure 3.20: Test IFT − Test1: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases. According to the blow-up criterion given at page 21, u
blows-up at t ≈ 0.0226.

3.2.3 Test with negative k1 coefficient

With the same hypotheses made in §3.2.1 regarding domain, mesh, initial functions, threshold ε0 and
integration step, now in the Figures 3.27 and 3.28 we analyze the solutions of the system (3.4) in the case
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.21: Test IFT − Test2: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu ≈ 262.189. Note that the red color
(maximum value) is 270.035 and the orange
color (minimum value) is 30.7664.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 510.394. Note that the red
color (maximum value) is 508.682 and the or-
ange color (minimum value) is 45.4471.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 1240.01. Note that the red
color (maximum value) is 1241.08 and the or-
ange color (minimum value) is 72.2492.

(d) Solution u at time t ≈ 0.025;
maxu = u(O) ≈ 8949.44. Note that the red
color (maximum value) is 9198 and the orange
color (minimum value) is 249.853.

Figure 3.22: Test IFT −Test2: numerical solution. Evolution of u and its graphical representation: with
t increasing the value of u at O increases and the values of u in P1, P2, P3 and P4 decrease, even with
the same behaviors.

of the term k1 = −0.2. Let us fix then{
k0 = 1, k2 = k4 = 1, k3 = 0.1,

u0(x) = 1.15−(x2+y2)(4− x2)(4− y2)2, v0(x) = 0.55e−(x2+y2)(4− x2)2(4− y2)2.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.23: Test DDT − Test1: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu = u(O) ≈ 308.957. Note that the red
color (maximum value) is 306.611 and the or-
ange color (minimum value) is 42.4312.

(b) Solution u at time t ≈ 0.0067;
maxu = u(O) ≈ 786.927. Note that the red
color (maximum value) is 787.006 and the or-
ange color (minimum value) is 36.343.

(c) Solution u at time t ≈ 0.0133;
maxu = u(O) ≈ 1837.51. Note that the red
color (maximum value) is 1839.82 and the or-
ange color (minimum value) is 57.232.

(d) Solution u at time t ≈ 0.0226;
maxu = u(O) ≈ 10249.4. Note that the red
color (maximum value) is 10534 and the or-
ange color (minimum value) is 287.949.

Figure 3.24: Test DDT − Test1: numerical solution. Evolution of u and its graphical representation:
with t increasing the value of u at O increases. According to the blow-up criterion given at page 21, u
blows-up at t ≈ 0.0226.

Remark 9. Observing Figure 3.28, we can see that unlike the other cases, the maximum of the initial
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.25: Test DDT − Test2: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu ≈ 70.8213. Note that the red color
(maximum value) is 66.6987 and the orange
color (minimum value) is 1.8027.

(b) Solution u at time t ≈ 0.0067;
maxu ≈ 82.8182. Note that the red color
(maximum value) is 85.257 and the orange
color (minimum value) is 2.39074.

(c) Solution u at time t ≈ 0.0133;
maxu ≈ 78.2526. Note that the red color
(maximum value) is 80.5618 and the orange
color (minimum value) is 2.42335.

(d) Solution u at time t ≈ 0.025;
maxu ≈ 70.5846. Note that the red color
(maximum value) is 72.5354 and the orange
color (minimum value) is 2.30628.

Figure 3.26: Test DDT − Test1: numerical solution. Evolution of u and its graphical representation.

data u0, centered in this test in the origin of the domain, is not maintained in the succeeding iterations.

Indeed, it is shown in the intermediate phases that such a maximum of u0 decreases in the origin,
achieving a minimum (see Sub-Figure 3.29b), and then increases again (see Sub-Figure 3.28d). On the
other hand the maximum of the solution is distributed on a circular crown.
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(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

Figure 3.27: Analysis of the behaviors of u(x, t) and v(x, t)

(a) Solution u at time t ≈ 0.0003;
maxu ≈ 279.278. Note that the red color
(maximum value) is 297.292 and the orange
color (minimum value) is 8.03492.

(b) Solution u at time t ≈ 0.0068;
maxu ≈ 142.068. Note that the red color
(maximum value) is 146.736 and the orange
color (minimum value) is 3.96589.

(c) Solution u at time t ≈ 0.0136;
maxu ≈ 133.839. Note that the red color
(maximum value) is 137.559 and the orange
color (minimum value) is 3.71821.

(d) Solution u at time t ≈ 0.025;
maxu ≈ 131.68. Note that the red color
(maximum value) is 135.337 and the orange
color (minimum value) is 3.659.

Figure 3.28: Test NegSensi−Test1: numerical solution. Evolution of u and its graphical representation.

Remark 10. For completeness of information, we include also the pictures of the meshes used in our
simulations, where the number of vertices and triangles are specified; this information is shown in Figures
3.30a, 3.30b and 3.30c. We outline that the performed tests are not very responsive to mesh thickening,
in the sense that a refining of a mesh infers a solution qualitatively coherent with that obtained with a
poorer mesh. In this sense, since on the contrary the computational time considerably increases with the
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(a) (b)

Figure 3.29: Test NegSensi − Test1: view of two different iterations of the intermediate phase from as
many different perspectives.

number of triangles and vertices, we believe that the used discretization is sufficient for our purposes.

For a more complete picture, we conclude our analysis by reporting below four tables; they include
some tests for which, unless specified, the same general assumptions made in the introduction to the
§3.2.1 are considered. To be precise, and specially in terms of the conservation mass property explained
in Proposition 2.6, some of these tests aim at emphasizing the influence of the mass m and/or the the
cross-diffusion term k1 on the behavior of the solution, in particular the cell distribution. It is worth to
say that, in order to interpret the corresponding results, we have to take in mind the blow-up criterion
described at page 21.

- Table 3.1: In the first table we fix the values of ki for i = 0, 2, 3, 4. In particular k0 = 1, k2 = 1,
k3 = 0.1, k4 = 1 and let us vary the coefficient k1.
As we can see when k1 increases and ki = 0, 2, 3, 4 remain fixed, the blow-up time decreases.

- Table 3.2: In the second table we fix the values of ki for i = 1, 2, 3, 4. In particular k1 = 0.2, k2 = 1,
k3 = 0.1, k4 = 1 and let us vary the coefficient k0.
Note that if k0 increases the blow-up time increases. Since k0 the diffusion coefficient of ∆u, the
model in this sense is consistent.

- Table 3.3: In the third table we fix the values of ki for i = 0, 1, 2, 3. In particular k0 = 1, k1 = 0.2,
k2 = 1, k3 = 0.1 and let us vary the coefficient k4.
The chemoattractant it is also produced by the bacteria with rate k4, so it is normal that if this
coefficient increases, the blow-up time decreases.

- Table 3.4.: In the fourth table we fix the values of ki for i = 0, 1, 2, 4. In particular k0 = 1, k1 = 0.2,
k2 = 1, k4 = 1 and let us vary the coefficient k3.
In the system (3.4) the chemoattractant decays with rate k3, therefore the fact that if k3 increases,
the time of the blow-up slowly increases is consistent with the model.

In the Table 3.5, we propose a summary table of tests performed leaving the ki for i = 0, 1, 2, 3, 4
fixed and modifying the initial function u0(x).

Note that if

∫
Ω

u0(x) increases the blow-up time decreases.
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(a) Square mesh : triangles 320, ver-
tices 1681 (b) Crown mesh: triangles 1624, ver-

tices 912

(c) Starred mesh: triangles 4092, ver-
tices 2147

k1 t∗ Properties of the u-component

0.01 0.025 global solution: t∗ =∞
0.1 0.025 global solution: t∗ =∞
0.4 0.0103 blowing up local solution: t∗ = 0.0103
0.5 0.0095 blowing up local solution: t∗ = 0.0095

Table 3.1: Influence of the cross-diffusion term k1 on the behaviour of the u-component: gloabl solution
or blowing up solution at t∗
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k0 t∗ Properties of the u-component

0.3 0.0224 blowing up local solution: t∗ = 0.0224
1 0.0226 blowing up local solution: t∗ = 0.0226
1.5 0.025 global solution
2 0.025 global solution

Table 3.2: Influence of the term k0 on the behaviour of the u-component: gloabl solution or blowing up
solution at t∗

k4 t∗ Properties of the u-component

0.3 0.025 global solution
0.5 0.025 global solution
1 0.0226 blowing up local solution: t∗ = 0.0226
2 0.0176 blowing up local solution: t∗ = 0.0176

Table 3.3: Influence of the term k4 on on the behaviour of the u-component: gloabl solution or blowing
up solution at t∗

k3 t∗ Properties of the u-component

2 0.023 blowing up local solution: t∗ = 0.023
5 0.0236 blowing up local solution: t∗ = 0.0236
15 0.025 global solution
20 0.025 global solution

Table 3.4: Influence of the term k4 on the behaviour of the u-component: gloabl solution or blowing up
solution at t∗

u0(x)

∫
Ω

u0(x) Properties of the u-component

0.8e(−x2−y2)(4− x2)2(4− y2)2 408.053 global solution

0.9e(−x2−y2)(4− x2)2(4− y2)2 459.06 global solution

e(−x2−y2)(4− x2)2(4− y2)2 510.067 blowing up local solution: t∗ = 0.0243

1.15e(−x2−y2)(4− x2)2(4− y2)2 586.577 blowing up local solution: t∗ = 0.0226

1.75e(−x2−y2)(4− x2)2(4− y2)2 892.617 blowing up local solution: t∗ = 0.0183

2e(−x2−y2)(4− x2)2(4− y2)2 1020.13 blowing up local solution: t∗ = 0.0172

Table 3.5: Influence of the size of the mss m on the behaviour of the u-component: gloabl solution or
blowing up solution at t∗
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Chapter 4

General conclusions and future
works

In this thesis we have studied a model coming from bio-mathematics and described by a system of
two coupled differential equations. The formulation idealizes the so called chemotaxis, a phenomenon
according to which some species directs its movement by virtue of the presence of a chemical signal
in the same environment. By the mathematical point of view, it it precisely the interplay between
the distributions of the population and the chemical that makes the problem complex and challenging.
Indeed, during the last decades, many researchers have been analyzing this field and throughout the time
many questions are positively addressed whilst other remain open.

The original chemotaxis model is attributed to the scientists Keller and Segel, who proposed two
pioneer formulations of the mathematical model. The main difference between these formulations is
essentially tied to the influence of the population on the chemical; specifically, in a chemo-production
model the cells produce the signal whilst in the chemo-consumption model the cells consume the signal.
Such situations are translated in so many mathematical formulations, where the so-called cross-diffusive
term (chemo-sensitivity) measures the power of the interaction between the population and the chemical
and essentially destabilizes the effect of the diffusion for the evolution of the cells distribution. To be more
precise, real experiments show that the general behavior of the cells throughout the time is, in general, far
to be regular and homogeneous: indeed, if from one hand the diffusion tends to stabilize the evolution of
the cells, the counterpart given by the interaction population-chemical breaks this equilibrium tendency.
So, from that, different scenarios are possible: homogeneous or heterogeneous distribution for the cells
in time, pattern formations and/or aggregation phenomena in one or more points of the environment
(chemotactic collapse).

As far as this report is concerned, we herein limited our interest in considering the classical Keller–Segel
model, that is a production model presenting a chemo-sensitivity which is a linear function of the cells
distribution. Moreover, such chemo-sensitivity is oppositely directed to the direction of the diffusion.
This idealizes the situation where the cells are attracted by the chemical, so that an increase of the
chemical somehow produces a similar increase for the cells. Additionally, we confined our study to two–
and three–dimensional domains, which in particularly are totally insulated; this leads to a coupled-system
of parabolic equations with Neumann boundary conditions.

In order to provide a more general and comprehensive picture of the general problem we dedicated
to both theoretical and numerical analysis of the problem, giving a certain importance to unbounded
solutions. More exactly, as to the theoretical approach we considered two main results which infer
lower bounds for the blow-up time of such solutions; on the other hand, we largely illustrated some
numerical examples, simulated by a mixed Finite-Element (in space) and Finite-Difference (in time)
method. These simulations, which have been of great support, show properties of the solutions which are
not straightforwardly achievable by a simple theoretical analysis. In this direction, it is worst to mention
that the easiest repulsion model deals with the same problem described above when the directions of
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the diffusion and the chemo-sensitivity coincide. In this case, the cells are repelled so that the blow-
up phenomena is not naturally expected. The theoretical analysis is so far rather poor, in view of its
complexity; in particular we did not spend any comments on it. Conversely, we discussed some numerical
cases concerning with complex this situation.

Even though in this thesis we did not confine to summarize and list the main results concerning this
interesting field, but conversely we also dedicated time to a number of numerical experiments, we are
aware about the great difficulties (both theoretical and numerical) linked to the general comprehension
of the problem. In this sense, further and natural works arising from this report are connected to cases
where other expressions of the diffusion and/or the sensitivity define the problem. We can imagine, for
instance nonlinear diffusion expression for the cells distribution, singular cross-diffusive terms, presence
of logistic-sources for the evolution equations of the species, different boundary conditions and so on.
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Appendix A

Some essential results on theoretical
analysis

Let us briefly give some well-known results within the general Mathematical Analysis theory.

A.1 Overview on the Lp spaces

Let (Ω,M, µ) denote a measure space, i.e., Ω is a set and

(i) M is a σ-algebra in Ω, i.e., M is a collection of Ω such that:

(a) ∅ ∈ M,

(b) A ∈M⇒ Ac ∈M,

(c) ∪∞n=1An ∈M whenever An ∈M ∀n,

(ii) µ is a measure, i.e., µ : M→ [0,∞] satisfies

(a) µ(∅) = 0,

(b) µ(∪∞n=1An) = ∪∞n=1µ(An) whenever An is a disjoint countable family of members of M.

The members of M are called the measurable sets.

(iii) Ω is σ-finite, i.e., there exists a countable family (Ωn) inM such that Ω = ∪∞n=1Ωn and µ(Ωn) <∞
∀n.

The sets E ∈M with the property that µ(E) = 0 are called the null sets. We say that a property holds
a.e. (or for almost all x ∈ Ω) if it holds everywhere on Ω except on a null set.

We denote by L1(Ω, µ), or simply L1(Ω), the space of integrable functions from Ω into R.

A.1.1 Definition and elementary properties of Lp spaces: main inequalities

Definition A.1. Let p ∈ R with 1 < p <∞; we set

Lp(Ω) = {f : Ω→ R; f is measurable and |f |p ∈ L1(Ω)}

with

‖f‖pL = ‖f‖p =

[∫
Ω

|f(x)|pdµ
]
.

Definition A.2. We set
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L∞(Ω) =

{
f : Ω→ R, f is measurable and there is a constant C such that |f(x)| ≤ C a.e. on Ω

}
with

‖f‖∞L = ‖f‖∞ = inf{C; |f(x)| ≤ C a.e. on Ω}.

Notation. Let 1 ≤ p ≤ ∞; we denote by p′ the conjugate exponent,

1

p
+

1

p′
= 1.

Theorem A.1 (Hölder’s inequality.). Assume that f ∈ Lp and g ∈ Lp′ with 1 ≤ p ≤ ∞. Then fg ∈ L1

and ∫
|fg| ≤ ‖f‖p‖g‖p′ . (A.1)

In the case p = p′ = 2 we recover the well-known Cauchy–Shwarz inequality.

A.2 Sobolev spaces: definitions and elementary properties of
W 1,p(Ω)

Let Ω ⊂ RN be an open set and let p ∈ R with 1 ≤ p ≤ ∞.

Definition A.3. The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) =

{
u ∈ Lp(Ω)| ∃g1, g2, ..., gN ∈ Lp(Ω) such that

∫
Ω

u
∂φ

∂xi
= −

∫
Ω

giφ ∀φ ∈ C∞c (Ω), ∀i = 1, 2, ..., N

}
We set

H1(Ω) = W 1,2(Ω)

For u ∈W 1,p(Ω) we define ∂u
∂xi

= gi, and we write

∇u = grad u =

(
∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xN

)
.

The space W 1,p(Ω) is equipped with the norm

‖u‖W 1,p = ‖u‖Lp +

N∑
i=1

‖ ∂u
∂xi
‖Lp ,

or sometimes with the equivalent norm(
‖u‖pLp +

N∑
i=1

‖ ∂u
∂xi
‖pLp

) 1
p

.

The space H1(Ω) is equipped with the scalar product

(u, v)H1 = (u, v)L2 +

N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2

,

the associated norm

‖u‖H1 =

(
‖u‖2L2 +

N∑
i=1

‖ ∂u
∂xi
‖2L2

) 1
2

,

is equivalent to the W 1,2 norm.
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A.2.1 The space W 1,p
0

Definition A.4. Let 1 < p <∞; W 1,p
0 denotes the closure of C1

c (Ω) in W 1,p. Set

H1
0 (Ω) = W 1,2

0 (Ω).

The functions in W 1,p
0 (Ω) are “roughly” those of W 1,p(Ω) that “vanish on ∂Ω”.

We denote by W−1,p′(Ω) the dual space of W 1,p
0 (Ω), 1 ≤ p <∞, and by H−1(Ω) the dual of H1

0 (Ω).
The dual of L2(Ω) is identified with L2(Ω), but we do not identify H1

0 (Ω) with its dual. We have the
inclusions

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω),

where these injections are continuous and dence.
If Ω is bounded then

W 1,p
0 (Ω) ⊂ L2(Ω) ⊂W−1,p′(Ω),

if 2N
N+2 ≤ p < ∞, with continuous and dence injections. If Ω is not bounded, the same holds, but only

for the range 2N
N+2 ≤ p ≤ 2.

The element of W−1,p′ are completely described by the following result:

Lemma A.2. Let F ∈W−1,p′(Ω). Then there exist functions f0, f1, f2, ..., fN ∈ Lp
′
(Ω) such that

〈F, v〉 =

∫
Ω

f0v +

N∑
i=1

∫
Ω

fi
∂v

∂xi
∀v ∈W 1,p

0 (Ω),

‖F‖ = max
0≤i≤N

‖fi‖p′ .

If Ω is bounded we can take f0 = 0.

A.2.2 Some Sobolev type inequalities

Lemma A.3. Sobolev type inequality Let v be a non negative C1 function, defined in a bounded
domain Ω ∈ R3 with the origin inside, assumed to be star-shaped and convex in two orthogonal directions.
Then ∫

Ω

v
3n
2 dx ≤

[
3

2p0

∫
Ω

vndx +
n

2

(
1 +

d

p0

)∫
Ω

vn−1|∇v|ddx
] 3

2

(A.2)

valid for n ≥ 1, with p0 := min∂Ω(x · ν) and d := maxΩ̄ |x|

From (A.2) we derive a bounded for
∫

Ω
v3dx, to be used in the proof on the main theorem.

Lemma A.4. Under the hypotheses of (A.2)∫
Ω

v3dx ≤
√

2

[
m

3
2
1

(∫
Ω

v2dx

) 3
2

+
m

3
2
2

4ε3

(∫
Ω

v2dx

)3

+
3

4
m

3
2
2 ε

∫
Ω

|∇v|2dx

]
(A.3)

with m1 := 3
2p0

, m2 := 1 + d
p0

and ε an arbitrary positive function.

Proof. We point out that (A.3) can be derived by (A.2). We use (A.2) with n = 2 and by using Schwarz
inequality in the second integral, we get∫

Ω

v3dx ≤

[
m1

∫
Ω

v2ddx +m2

(∫
v2dx

) 1
2
(∫

Ω

|∇v|2
) 1

2

dx

] 3
2
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By applying first the arithmetic inequality (a + b)
3
2 ≤
√

2(a
3
2 + b

3
2 ), valid with a, b > 0, and the Hölder

inequality, we obtain

∫
Ω

v3dx ≤
√

2

m 3
2
1

(∫
Ω

v2dx

) 3
2

+m
3
2
2

[(∫
Ω

v2dx

)3
] 1

4 (∫
Ω

|∇v|2
) 3

4

dx



≤
√

2

[
m

3
2
1

(∫
Ω

v2dx

) 3
2

+m
3
2
2

[
1

4ε3

(∫
Ω

v2dx

)3

+
3

4
ε

∫
Ω

|∇v|2dx

]]

where in the last inequality we use

arb1−r ≤ ra+ (1− r)b, a, b > 0, 0 < r < 1, (A.4)

and ε is any positive function; the lemma is so proved.
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Appendix B

Some essential results on numerical
analysis

B.1 Numerical methods for parabolic equations

Let us focus on some fundamental theoretical results for the numerical resolution of parabolic problems.
As a classical model of parabolic equations, we consider the following heat equation and study corre-

sponding finite difference methods and finite element methods
ut −∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0 in Ω.

(B.1)

Here u = u(x, t) is a function of spatial variable x ∈ Ω and time variable t ∈ (0, T ) and the Laplace
differential operator ∆ is taking with respect to the spatial variable.

B.2 Variational formulation

The first attempt is to multiply by a test function v ∈ H1
0 (Ω) the first equation of (B.1) and apply the

integration by part. We obtain a this variational formulation: given an f ∈ L2(Ω)× (0, T ], for any t > 0,
find u(·, t) ∈ H1

0 (Ω), ut ∈ L2(Ω) such that

(ut, v) + a(u, v) = (f, v) for all v ∈ H1
0 (Ω). (B.2)

We then refine the weak formulation (B.2). The right hand side could be generalized to f ∈ H−1(Ω).
Since ∆ map H1

0 (Ω) to H−1(Ω), we can treat ut(·, t) ∈ H−1(Ω) for a fixed t. We then introduce the
Sobolev space for the time dependent functions

Lq(0, T ;W k,p(Ω)) := {u(x, t)| ‖u‖Lq(0,T ;Wk,p(Ω)) :=

(∫ T

0

‖u(·, t)‖qk,pdt

) 1
q

<∞}.

Our refined weak formulation will be : given f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ H1
0 (Ω), find u ∈ L2(0, T ;H1

0 (Ω))
and ut ∈ L2(0, T ;H−1(Ω)) such that{

〈ut, v〉+ a(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω), and a.e.t ∈ (0, T ),

u(·, 0) = u0.
(B.3)
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We assume the equation (B.3) is well posed.
To easy the stability analysis, we treat t as a parameter and the function u = u(x, t) as a mapping

u : [0, T ]→ H1
0 (Ω),

defined as

u(t)(x) := u(x, t) x ∈ Ω, 0 ≤ t ≤ T.

With a slight abuse of the notation, here we still use u(t) to denote the map. The norm ‖u(t)‖ or ‖ut‖1
is taken with respect to the spatial variable.

We then introduce the differential operator

L : L2(0, T ;H1
0 (Ω))→ L2(0, T ;H−1(Ω))×H1

0 (Ω)

as

(Lu)(·, t) = ∂tu−∆u in H−1(Ω), for t ∈ (0, T ] a.e.

(Lu)(·, 0) = u(·, 0).

Then the equation (B.3) can be written as

Lu = (f, u0).

Here we explicitly include the initial condition. Note that the spatial boundary condition is build into
the space H1

0 (Ω)

B.3 Finite difference methods for the 1-D heat equation

In this section, we consider a simple 1-D heat equation

ut = uxx + f in (0, 1)× (0, T ), (B.4)

u(0) = u(1) = 0, u(x, 0) = u0(x). (B.5)

to illustrate the main issues in the numerical methods for solving parabolic equations.
Let Ω = (0, 1) be decomposed into a uniform grid {0 = x0 < x1 < ... < xN+1 = 1} with xi = ih,

h = 1
N , and time interval (0, T ) be decomposed into {0 = t0 < t1 < ... < tM = T} with tn = nδt, δt = T

M .
The tensor product of these two grids gives a two dimensional rectangular grid for the domain Ω× (0, T ).
We now introduce two finite difference methods by discretizing the equation (B.4) on grid points.

B.3.1 The forward Euler method

We shall approximate the function value u(xi, tn) by U in and uxx by second order central difference

uxx(xi, tn) ≈ U i−1
n + U i+1

n − 2U in
h2

.

For the time derivative, we use the forward Euler scheme

ut(x
i, tn) ≈

U in+1 − U in
δt

. (B.6)
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Together with the initial condition and the source F in = f(xi, tn), we then end with a system

U in+1 − U in
δt

=
U i−1
n + U i+1

n − 2U in
h2

+ F in 1 ≤ i ≤ N, 1 ≤ n ≤M, (B.7)

U i0 = u0(xi), 1 ≤ i ≤ N,n = 0. (B.8)

To write (B.7) in a compact form, we introduce the parameter λ = δt/h
2 and the vector

Un = (U1
n, U

2
n, ..., U

N
n )t

. Then (B.7) can be written as, for n = 0, ...,M

Un+1 = AUn + δtFn,

where

A = I + λ∆h =


1− 2λ λ 0 0
λ 1− 2λ λ 0
... ... ... ...
0 λ 1− 2λ λ
0 0 λ 1− 2λ

 . (B.9)

Starting from t = 0, we can evaluate point values at grid points from the initial condition and thus obtain
U0. After that, the unknown at next time step is computed by one matrix-vector multiplication and
vector addition which can be done very efficiently without strong the matrix. This method also called
time marching. The first issue is on the stability in time. When f = 0, that is, heat equation without
source, in the continuous level, the solution should exponential decay. In the discrete level, we have
Un+1 = AUn and want to control the magnitude of U in certain norm.

Theorem B.1. When the time step δt ≤ h2/2, the forward Euler method is stable in the maximum norm
in the sense that if Un+1 = AUn then

‖Un‖∞ ≤ ‖U0‖∞ ≤ ‖u0‖∞.

B.3.2 The backward Euler method

Now we study backward Euler to remove the strong constrain on the time step for the stability. The
method is simply using backward difference to approximate the time derivative. We list the system below:

U in − U in−1

δt
=
U i−1
n + U i+1

n − 2U in
h2

+ F in 1 ≤ i ≤ N, 1 ≤ n ≤M, (B.10)

U i0 = u0(xi) 1 ≤ i ≤ N,n = 0. (B.11)

In the matrix form (B.10) reads as

(I − λ∆h)Un = Un−1 + δtFn. (B.12)

Starting from U0, to compute the value at the next time step, we need to solve an algebraic equation to
obtain

Un = (I − λ∆h)−1(Un−1 + δtFn).

The inverse of the matrix, which involves the stiffness matrix of Laplacian operator, is not easy in high
dimensions. For 1-D problem, the matrix is tri-diagonal and can be solved very efficiently. The gain is
the unconditional stability.

Theorem B.2. For the backward Euler method without source term, that is, (I − λ∆h)Un = Un−1, we
always have the stability

‖Un‖∞ ≤ ‖Un−1‖∞ ≤ ‖u0‖∞.

51



APPENDIX B. SOME ESSENTIAL RESULTS ON NUMERICAL ANALYSIS

B.4 Finite element method: semidiscretization in space

Let {Th, h → 0} be a quasi-uniform family of triangulations of Ω. The semi-discretized finite element
method is: given f ∈ V′h × (0, T ], u0,h ∈ Vh, find uh ∈ L2(0, T ;Vh) such that{

(∂t, ut) + a(uh, vh) = 〈f, vh〉 , ∀vh ∈ Vh, t ∈ R+

uh(·, 0) = u0,h

(B.13)

The scheme (B.13) is called semi-discretization since uh is still a continuous function of t. The initial
condition u0 is approximated by u0,h ∈ Vh and the choice of u0,h is not unique.

We can expand uh =
∑N
i=1 ui(t)ϕi(x), where ϕi is the standard hat basis at the vertex xi for i =

1, .., N , the number of interior nodes, and the corresponding coefficient ui(t) now is a function of time t.
The solution ut can be computed by solving an ODE system

u̇ + Au = f,

where u = (u1, ..., uN )t, A is the stiffness matrix, and f = (f1, ..., fN )t.

B.5 Finite element method: semidiscretization in time

We consider the semi-discretization in time. We first discretize the time. We first discretize the time
interval (0, T ) by a uniform grid with size δt = T/N and denote by tn = n∂t for n = 0, ..., N . A
continuous function in time will be interpolated into a vector by (Inf)(·, tn) = f(·, tn). Recall that
A = −∆ : H1

0 → H−1
0 . We list there schemes in operator form.

• Forward Euler. u0
h = u0,h

(
unh − u

n−1
h

δt
, vh) + a(un−1

h , vh) =
〈
fn−1
h , vh

〉
, ∀vh ∈ Vh, 1 ≤ n ≤ N.

• Backward Euler. u0
h = u0,h

(
unh − u

n−1
h

δt
, vh) + a(unh, vh) = 〈fnh , vh〉 , ∀vh ∈ Vh, 1 ≤ n ≤ N.

Stability

We write the discretization using operator form and the stability in L2 norm is very natural. Let
A = −∆|Vh .

• Forward Euler

unh = (I − δtA)un−1
h + δtf

n−1
h .

• Backward Euler

unh = (I − δtA)−1(un−1
h + δtf

n
h ).

Since A = −∆ is symmetric in the L2 inner product, to obtain the stability in L2 norm, we only need to
study the spectral radius of these operators.

• Forward Euler

ρ(I − δtA) = |1− δtλmax(A)| ≤ 1,
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provided

δt ≤
2

λmax(A)
.

Note that λmax(A) = O(h−2). We need the time step is in the size of h2 to make the forward Euler
stable

• Backward Euler For any δt > 0, since A is SPD, that is λmax(A) > 0

ρ((I − δtA)−1) = (1 + δtλmin(A))−1 ≤ 1.

Theorem B.3. For forward Euler, when δt <
1

λmax(A)

‖unh‖ ≤ ‖u0
h‖+

n−1∑
k=0

δt‖fkh‖.

For backward Euler,

‖unh‖ ≤ ‖u0
h‖+

n−1∑
k=0

δt‖fk+1
h ‖.
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Numerical algorithm: a specific case

As announced above, let us present the code for the test InitialFunc−−Test1 discussed at page 26.

load "iovtk"//VTK it consists of an open source C++ library for displaying

different types of data

//Pre-processing

COMMENT: In the processing phase the mesh function of Freefem ++ automatically generates a mesh of
triangles Th on the considered domain which in this case is a square domain.

//1.1 Mesh

int n=200; //number of iterations

mesh Th=square(n,n,[4*x-2,4*y-2]);//example of mesh on square domain

COMMENT: A finite element space is, usually, a space of polynomial functions on elements. Here fespace Vh
(Th, P1) defines Vh to be the space of continuous functions on each triangle of Th. As it is a linear vector
space of finite dimension, basis can be found.

//1.2 Fespace and functions(FEM)

//Semi-discretization in space

fespace Vh(Th,P1);

Vh u,ut,uold;

Vh v,vt,vold;

//definition of a called gradient function

macro gradient(u)[dx(u),dy(u)];

//1.3 Semi-discretization in time and data definition

real t=0;

int N=250;

real dt=1e-4;//1e-4

real k3=0.1;// +u

real k4=1;//-v

real k2=1;//grad(v)

real k1=0.2;//non linear term

func u0=1.15*exp(-x^2-y^2)*(4-x^2)^2*(4-y^2)^2;

//func u0= 24*(((x^2-4)^2+(y^2-4)^2 + 1)-0.05*((x^2-4)^4+(y^2-4)^4));

func v0=0.55*exp(-x^2-y^2)*(4-x^2)^2*(4-y^2)^2;

//2.Processing

uold=u0;
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vold=v0;

//plot(vold,uold,value=1,wait=1);//plots of initial data

real intu0 = int2d(Th)(uold);

cout << "intu0=" << intu0 << "(4pi=" << 4*pi <<")" << endl;

problem kellerSegel([u,v],[ut,vt])=

int2d(Th)( u*ut+dt*gradient(u)’*gradient(ut))

+int2d(Th)(v*vt+k2*dt*gradient(v)’*gradient(vt))

-int2d(Th)(uold*ut+k1*dt*uold*gradient(vold)’*gradient(ut))

-int2d(Th)(vold*vt-k3*dt*vold*vt+k4*dt*uold*vt);

problem kellerSegelV(v,vt)=

int2d(Th)(

v*vt+k2*dt*gradient(v)’*gradient(vt)

)

-int2d(Th)(vold*vt-k3*dt*vold*vt+k4*dt*uold*vt)

;

problem kellerSegelU(u,ut)=

int2d(Th)(

u*ut+dt*gradient(u)’*gradient(ut)

)

-int2d(Th)(uold*ut+k1*dt*uold*gradient(vold)’*gradient(ut)

);

//Time interation

real[int] xx(N+1), yymax(N+1), yymin(N+1);

xx[0]=0;

yymax[0]=abs(uold[].max);

yymin[0]=abs(uold[].min);

uold=u0;

vold=v0;

//plot(uold,wait=1,dim=3,value=1);

real s0=clock();

int k=0;

savevtk("vtk/kS-" + k + ".vtk", Th, uold,vold, dataname="u v");

real eps0=1.e+4;

real maxu=0;

real minu=0;

while( k<N && maxu<eps0) {

k++;

t=t+dt;

cout<< "iter "<< k<<", t = "<< t <<endl;

xx[k] = t;

cout<< ", xx = "<< xx[k] <<endl;

kellerSegelU;

kellerSegelV;

vold= v;

uold= u;
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maxu=u[].max;

minu=u[].min;

yymax[k]=abs(maxu);

yymin[k]=abs(minu);

plot(u,dim=3,wait=1,fill=true, value=1);//graph at each iteration

cout<< "max(u) = " <<maxu <<endl;

cout<< "min(u) = " <<minu <<endl;

savevtk("vtk/kelleSegel-" + k + ".vtk", Th, u,v, dataname="u v");

}

if (maxu<eps0)

cout<<"No hay blow-up para eps0="+eps0+

" N iter="+k+

" t="+t <<endl;

else

cout<<"hay blow-up para eps0="+eps0+

" N iter="+k+

" t="+t <<endl;

//plot(u,dim=3,wait=1,fill=true, value=1);

if(1)

{

ofstream file("plotmax.txt");

for (int i=0; i<=k; i++)

{

file << xx[i]<< " " << yymax[i] << endl;

}

}

{

ofstream file("plotmin.txt");

for (int i=0; i<=N; i++)

{file << xx[i]<< " " << yymin[i] << endl;

}

}

real s1=clock();

cout << "tempo trascorso " << s1-s0 <<endl;

plot(u,v,dim=3,fill=true,wait=1,value=1);

system("python3 plotmax.py");
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