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Abstract—Knowledge flows within and across countries may have im-
portant consequences for both productivity and innovation. We use data on
1.5 million patents and 4.5 million citations to estimate knowledge flows
at the frontier of technology across 147 subnational regions during
1975–1996 within the frame of a gravity-like equation. We estimate that
only 20% of average knowledge is learned outside the average region of
origin, and only 9% is learned outside the country of origin. However,
knowledge in the computer sector flows substantially farther, as does
knowledge generated by technological leaders. In comparison with trade
flows, we see that knowledge flows reach much farther. External acces-
sible R&D gained through these flows has a strong positive effect on
innovative activity for a panel of 113 European and North American
regions over 22 years.

I. Introduction

THE large number of recent studies on innovation and
R&D spillovers have yet to produce a consensus on

how geography and technology can influence knowledge
flows and on their effects on productivity and subsequent
innovation. Often different approaches and research meth-
ods dealing with the same question have produced different
estimates. In particular, two branches of the literature have
progressed on separate avenues in their analysis of knowl-
edge flows and have rarely reconciled their quantitative
findings, in part because they lacked a common frame of
analysis. One branch of the literature utilizes firm-level
data, considering in great detail only a few sectors within a
country, and develops the analysis of spillovers by focusing
on technological space. We refer to this branch as the
micro-productivity literature. The other branch examines
technological flows and spillovers across large aggregate
units such as countries or country sectors, emphasizing the
geographic dimension of these flows. We call this branch
the trade-growth literature. Interest in international knowl-
edge flows was mainly generated by the theoretical analysis
initiated by the new-growth and the new-trade literature.
The idea of knowledge flows and R&D spillovers as key
determinants of growth and international trade was first
developed in seminal papers such as Krugman (1979),
Grossman and Helpman (1991), and Rivera-Batiz and Ro-
mer (1991).

The contribution of this paper is to frame the issue of
knowledge flows in a simple empirical specification, com-
patible with both the micro-productivity and the trade-
growth traditions. We use a very large and detailed data set
of cross-patent citations to learn about the relative direction
and intensity of knowledge flows at the frontier of innova-
tion across 147 subnational regions covering western Eu-
rope and North America. Further, we estimate the effect of
these flows on innovation as revealed by regional patenting
activity. The rest of the paper is organized as follows.
Section II briefly reviews the relevant literature on knowl-
edge flows. Section III describes the framework of our
analysis. Section IV presents the data and discusses speci-
fication and measurement issues. In particular we discuss
the use of patents as measures of innovation and of patent
citations as indications of knowledge flows. Section V
presents the estimates of aggregate knowledge flows across
147 European and North American regions. We qualify our
results by looking at different sectors, different specifica-
tions, and different sources of knowledge flows. Section VI
uses the estimates of knowledge flows across regions to
calculate the impact of accessible external R&D on inno-
vative output. Section VII concludes the paper.

II. Literature Review

In this brief review of the literature it is useful to distin-
guish between knowledge flows and their subsequent ef-
fects. Knowledge flows occur whenever an idea generated
by a certain institution is learned by another institution.
These flows denote a process of learning from someone
else’s ideas, effectively building a stock of accessible (or
“borrowed”) research and development (R&D) (Griliches,
1992). The effects of these flows, on the other hand, are
measured by the impact of this “accessible R&D” on actual
production or innovation. The present paper decomposes
these two steps: we first analyze the propagation of knowl-
edge through learning, and then we estimate its effect on
innovation.

Knowledge flows defined as “learning” have been exten-
sively analyzed in the micro-productivity literature follow-
ing the seminal work of Zvi Griliches (1992). Several pieces
of subsequent empirical research sharpened our understand-
ing of the process of knowledge diffusion,1 but, in actuality,
they were simply the continuation and refinements of a
well-established empirical tradition which analyzed R&D
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spillovers.2 A simple and widely used approach assumes
that knowledge flows exist only between firms within the
same “technological group”; no flows take place across
different groups. This approach was used, for instance, by
Bernstein and Nadiri (1989a, 1989b) for the U.S. high-tech
industries, by Bernstein and Mohnen (1998) for U.S. and
Japanese firms, and by Bernstein and Yan (1997) for Cana-
dian and Japanese firms. More sophisticated measures of
knowledge flows define technological distance as a bilateral
concept and allow for different intensities of flows between
each pair of firms. For example, Jaffe (1986) calculates the
flow of knowledge between firm i and firm j as the uncen-
tered correlation coefficient between the vectors of their
specialization in technological sectors. Branstetter (2001)
uses a similar methodology to analyze the impact of domes-
tic and foreign R&D spillovers for U.S. and Japanese firms.
Other studies attempting to proxy knowledge flows between
firms or sectors include Wolf and Nadiri (1987), which uses
input-output matrices; Terlecky (1980), which uses flows of
intermediate capital goods; and Scherer (1984), which con-
structs a matrix of origin versus use of patents.

Only quite recently have knowledge flows been estimated
using patent citations. This method stands out because it is
the only one using a discernible trail left by learning. Patent
citations actually document learning flows between the
citing and the cited institution. Using such data, Jaffe,
Trajtenberg, and Henderson (1992) test whether distance
matters or not for knowledge flows within the United States.
Jaffe and Trajtenberg (2002, chapters 8, 9), Adams (2002),
and Jozefowicz (2002) compare knowledge flows originat-
ing in universities, federal labs, and firms, and Maruseth and
Verspagen (2002) analyzes knowledge flows across Euro-
pean regions. Following these studies, we argue that patent
citations provide interesting information tracking knowl-
edge flows. With some caveats, citations provide the “trails
in the sand” left by the act of learning, and they can be used
to assess the direction and intensity of knowledge flows.

The trade-growth literature, on the other hand, has been
hesitant to incorporate information from the data on patent
citations, or to devote much attention to technological space
in its analysis of international knowledge flows. One notable
exception is the line of analysis pursued by Eaton and
Kortum (1996). They use a structural model of trade and
growth across countries, utilizing data on cross-country
patenting, to identify knowledge flows. In particular, infor-
mation on the share of inventions originating from country
i and patented in country j is used to estimate the flow of
knowledge between the two countries. A number of alter-
native approaches have been preferred by this literature.
Following Coe and Helpman (1995), several articles treat
trade flows as proxies for knowledge flows (for instance,
Coe, Helpman, & Hoffmeister, 1997; Keller, 2002a, Mad-

den, Savage, & Bloxham, 2001); other articles consider
foreign direct investments as adequate proxies for knowl-
edge flows.3 Finally, rather than consider flows, some papers
have inferred R&D spillovers from cross-country or cross-
region productivity correlations (Conley & Ligon, 2002;
Keller, 2002b).

Interestingly, the theoretical side of the trade-growth
literature makes an emphatic distinction between trade
flows and knowledge flows, arguing that the second, rather
than the first, are responsible for development and growth
[see, for instance, Grossman and Helpman (1991, chapter
9), Rivera-Batiz and Romer (1991)]. In spite of such theo-
retical attention, the empirical trade-growth literature has
not made an effort to develop measures of international
disembodied knowledge flows other than trade and FDI
flows. The present paper takes a step in that direction using
patent citation data as an alternative proxy of flows of
knowledge across regions.

III. Basic Framework of Analysis

Let Qit be an index of the innovative output of region i at
time t. Region i is a subnational unit within country c.
Assuming that the stock of R&D is the main input in the
innovation activity of region i, then the production of Qit can
be expressed by the following log linear production func-
tion:

Qit � Xct� Ait�
�� Ait

a��. (1)

Here Xct are institutional and policy factors specific to a
country c and possibly evolving over time t ; Ait is the stock
of R&D, accumulated from past and current R&D invest-
ments in region i, denoted R&Dit ; and Ait

a is the stock of
R&D accumulated in regions other than i and accessible
(hence the a superscript) to region i at time t. The objective
of our analysis is to construct a measure of the two stocks Ait

and Ait
a and to estimate the elasticities � and �.

Equation (1) can be seen as the production function of
innovation. The accumulation of Ait is described as �Ait �
R&Dit � �Ait, where � is the depreciation rate of the R&D
stock. We apply the perpetual inventory method to calculate
the value of Ait. Our main focus, however, is on the con-
struction of Ait

a and on the estimation of �.
If research developments in one area were completely

and immediately diffusible to all other areas, we could
consider the external R&D stock accessible to region i
simply as Ait

a � 	j
i Ajt. However, considering that diffusion
of research results across regions may be less than perfect,
the external accessible R&D stock in region i is given by
Ait

a � 	j
i �ij Ajt, where �ij � [0, 1] is the percentage of
R&D stock generated in region j that is accessible to region i.
Substituting this expression for Ait

a into equation (1) and taking
logs, we have the following equation:

2 Bresnahan (1986), Mansfield et al. (1977), Scherer (1984), Schmookler
(1951), Terlecky (1980), and Wolf and Nadiri (1987) are some notable
examples of earlier studies.

3 Blomstrom and Kokko (1998) review the main contributions of this
literature.
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ln Qit � ln Xct � � ln Ait � � ln� �
j
i

�ji Ajt� . (2)

According to equation (2), the log level of innovative output
in region i, ln Qit, depends on a set of country-time effects,
ln Xct; on the the stock of regional R&D, ln Ait; and on the
external accessible stock of R&D, ln(	j
i �ij Ajt). If the
stock of external accessible R&D has a positive impact on
innovative output (that is, if � � 0), knowledge flows have
positive effects.

However, in order to calculate the stock of external
accessible R&D, Ait

a, we need a measure of �ij for each
regional couple. To do this we use relative patent citation
frequencies across regions, which implies the following
assumption: if region i learns a certain share of knowledge
generated in region j, this is equivalent to having access to
that share of R&D resources from region j. Of course this
constitutes an indirect access to knowledge, gained through
the learning of results rather than through the direct use of
the resources. Therefore such input is entered separately
from the own stock of R&D, Ait. The parameters �ij capture
the intensity of knowledge flows and can be interpreted as
the share of the research results of region j learned by region
i. These flows depend on several bilateral characteristics of
the regions, their technological differences, their location,
and anything else that can affect the cost and the value of
learning from region j for scientists residing in region i. The
parameter � captures the the effect of accessible external
research on production.

IV. Specification, Measurement, and Data

Our empirical analysis has two parts. We first estimate the
parameters �ij using data on patent citation frequencies
between regions. We then use these estimated values along
with data on regional R&D and the number of patents
granted to each region to estimate the elasticities � and � in
equation (2). In this section we describe the data, explain
our empirical procedure, and discuss some of our assump-
tions and caveats.

A. Knowledge Flows and Patent Citations

We indicate as �ij(
) the probability that a nonobsolete
idea generated in region j at time t0 is learned in region i by
time t1 � t0 � 
. Such probability will depend on charac-
teristics of the regional couple (i, j), and on the time elapsed
since invention, 
. We approximate �ij(
) with the share of
ideas generated in region j that has been learned in region i
within 
 years of invention.4 Similarly to Jaffe and Trajten-
berg (2002, chapters 6, 7) and Caballero and Jaffe (1993),
we represent the share �ij(
) as follows:

�ij�
� � ef�i, j��1 � e��
�. (3)

The factor 1 � e��
 captures the notion that the likelihood
of research results in region j becoming available in region
i grows larger as time 
 passes. It thus represents the
cumulative probability function of region i learning the idea
within 
 years since invention. The factor ef(i,j) indicates that
the intensity of learning between sending region j and
receiving region i may depend on a large set of bilateral
regional characteristics acting as potential resistance fac-
tors.

The main simplifying assumption embedded in equation
(3) is that the effects of these resistance factors f(i,j) and the
effects of time 
 interact in a multiplicative way. This
implies that, as time passes, more ideas originating from
region j are learned in all other regions, but such an increase
is proportional for any pair of receiving regions. In our
empirical analysis we experiment with different time inter-
vals between generated and learned ideas, from 2 to 10
years. In order to characterize the diffusion of knowledge,
we fix the same interval of time 
 for all regions, collect the
constant terms, and explicitly express the function f(i,j) as
dependent on a host of geographic and technological char-
acteristics in the following manner:

�ij � Ce f �i, j� � exp �a � b1�out_region�ij

� b2�out_next�ij � b3�out_country�ij

� b4�out_lang�ij � b5�out_trbl �ij

� b6�dist�ij � ��Tech.Controls�ij�.

(4)

Equation (4) states that the (time-invariant) relative inten-
sity of knowledge flows from region j to region i depends on
several bilateral regional characteristics. Six geographic
characteristics are considered, and resistance factors de-
pending on technological characteristics are bundled in the
vector labeled Tech.Controls. The variable (out_region)ij is
a dummy which equals 0 if i � j and 1 otherwise; this
indicates whether a learned idea has crossed at least one
regional border. The variable (out_next)ij is equal to 0 if i �
j or if region i and j share a border and 1 otherwise; this
indicates whether a learned idea has crossed at least two
regional borders. The variable (out_country)ij is 0 if the two
regions belong to the same country and 1 otherwise; this
indicates whether a learned idea has crossed a national
border. The variable (out_lang)ij is 0 if the same language is
spoken in the two regions and 1 otherwise; this indicates
whether a learned idea has crossed a linguistic border. The
variable (out_trbl)ij is 0 if the two regions belong to the
same trade bloc and 1 otherwise; it indicates whether a
learned idea has crossed a trade-bloc border. Finally (dist)ij

is simply the geographic distance between region i and
region j. Estimates of the parameters b1–b6 and � would thus
provide a detailed characterization of how geographic and
technological characteristics affect the flows of ideas across
regions.

4 This share would converge to the probability for large numbers of
ideas.
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Though we do not observe �ij directly, we do observe
patents and citations between patents. Following an estab-
lished tradition, we utilize patent statistics to proxy the
generation of innovative ideas. Though not perfect, the
correspondence between patents and new ideas has been
extensively employed in economic analysis, and does seem
reasonable from both theoretical and empirical points of
view. Moreover, some of the potential distortions in this
correspondence are largely mitigated by our choice of re-
gional units and by our controls. First, according to the
standards of patentability defined by the U.S. Patent Office,
a patentable idea should be original, nonobvious, and ex-
ploitable for economic profit. This is precisely what we
consider to be a “new idea.” Second, many applied econo-
mists have drawn from the large pool of patent data, and
used it as a convenient measure of “new ideas” [see Grili-
ches (1990) for a survey]. Similarly, theoretical economists
[such as Romer (1990) and Grossman and Helpman (1991)]
have equated one idea to one patent in their models.

In practice, however, two sources of “noise” prevent a
perfect correspondence between patents and ideas. The first
is that the propensity to patent a new idea may vary across
regions. The second is that patents may have dissimilar
contents of ideas, with some patents containing many ideas
and other relatively few (see, for instance, Jaffe & Trajten-
berg, 2002, chapter 2). Relative to firm-level studies, our
analysis much diminishes this second problem. Because we
rely on a very large number of patents in each region
(almost 10,000 per region on average), differences in the
content of ideas for individual patents are likely to be
averaged out in large aggregates. Addressing the first issue,
we allow the propensity to patent to differ across regions,
denoting it as 1/�j (not observable), so that the relation
between the number of ideas generated in region j, �j, and
the count of patents granted to region j, Pj, is �j � �jPj. We
designate a patent’s region of origin as the region of resi-
dence of its first inventor. This method, as documented by
Jaffe et al. (1992), allows us to attribute each patent to the
region where the idea was actually developed. The regions
considered in our analysis correspond to subnational areas
with territorial unity as well as some administrative auton-
omy.

Whereas patents proxy new ideas, citations between pat-
ents proxy the diffusion of these ideas through learning. All
patent applicants in the United States are required to iden-
tify the “prior art” used in developing the patent, which they
do by including citations to previous patents. A citation
informs us that the researcher knew about an existing idea
and that that idea had some relevance in the research
process. Jaffe et al. (1992) argue that such citations establish
a “learning” link and that they are limited to those patents
that had strict relevance to the development of the new
ideas. Patent reviewers, in fact, may drop some citations if
they judge them irrelevant. By the same token, inventors do
not want to proliferate citations, as that would excessively

restrict their claims on the use of the patent and reduce their
potential profits. Therefore, unlike the incentives for writers
of academic articles, there is an economic incentive for
inventors not to overcite. What introduces noise for our use
of citations is the fact that reviewers may add citations to the
patent which do not necessarily reveal ideas known to the
author. Thus we assume that reviewers simply add noise to
the information contained in patent citations.

We use the extremely large number of citation links
available in our data (approximately 4.5 million in total,
implying an average of approximately 200 citations for each
regional couple) to estimate the relative flows of knowledge
from each region j to any other region i. Defining cij as the
count of citations from patents in region i to patents in
region j, and �ij as the actual flow of ideas from region j to
region i, we assume the following relationship between
citations and knowledge flows:

cij � �i �ij eεij. (5)

Here �i is a citing-region fixed effect that allows the average
number of citations per patent to differ across (citing)
regions, �ij is the effective number of ideas generated in
region j and learned in region i, and eεij is a randomly
distributed disturbance, where εij is a zero-mean random
noise.

From the relationship between patents and ideas and from
equation (5) it follows that

�ij �
�ij

�j
�

cij

�i�jPje
εij

� Ce f �i, j�. (6)

The first equality is a definition: �ij equals the number of
ideas learned in i (�ij) relative to the total number ideas
produced in j (�j). The second equality is obtained by
substituting the definitions of �ij and �j. The last equality
comes from the first part of equation (4). Substituting
equation (4) into (6) and rearranging, we obtain the follow-
ing estimable specification:

cij � exp ��i � �j � b1�out_region�ij � b2�out_next�ij

� b3�out_country�ij � b4�out_lang�ij

� b5�out_trbl �ij � b6�dist�ij

� ��Tech.Controls�ij � εij].

(7)

This equation has an easy interpretation along with some
features that appeal both to the micro-productivity and
trade-growth literatures. The dependent variable is the count
of citation links calculated for region i as citing region and
region j as cited region. As mentioned above, such a mea-
sure proxies for the flow of ideas from region j to region i.
It depends on citing-region fixed effects �i � ln �i, and on
cited-region fixed effects �j � ln(�jPj). The first set of
effects controls for different propensities to cite across
regions; the second set controls for the different numbers of
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patents (Pj) and different propensities to patent (�j) across
regions. In general, the fixed effects control for any citing-
and cited-region-specific characteristics. Let me emphasize
that, as a consequence, the information used to identify
relative flows of ideas is completely orthogonal to the
regional propensity to patent new ideas, the regional pro-
pensity to cite ideas, and the total amount of regional
patenting. The identifying variation is thus given by the
frequency of citations from the average patent in region j to
the average patent in region i, relative to the frequency of
citations between patents of region j itself.5 Once we control
for fixed effects and we allow for random errors εij, we can
estimate the parameters b1–b6 and �.

The regression (7) is familiar in the micro-productivity
literature and is often estimated using either a nonlinear
least squares regression (for example, Jaffe & Trajtenberg,
2002, chapter 7) or, because citations are count data, a
negative-binomial regression (Branstetter, 2000). On the
other hand if we take logs on both sides of equation (7), we
obtain a linear regression which is reminiscent of a gravity
equation very popular and heavily used in the recent trade
literature.6 Typically, the trade literature would estimate
such an equation using OLS and simply omit the regional
couples with no trade between them.

B. Own R&D, Accessible External R&D, and Innovation

In section VI we estimate the effect of a region’s stock
and the external accessible stock of R&D on the region’s
innovative output. We construct �̂ij, the estimated share of
the knowledge flowing from j to i, by substituting the
estimated parameters b1–b6 and � from the regression (7)
into equation (4). Such weights, plus measures of Ajt, are
used to construct the estimated stock of accessible external
R&D for each region i: Ait

a � 	j
i �̂ji Ajt. We adopt the
standardization a � 0 in equation (4) so that, by construc-
tion, �̂ii � 1. This means that, by definition, the results Ait

of research generated in region i are fully accessible to
region i itself.

Equation (2) is estimated using citation-weighted patent
counts Pit as measures of Qit. The coefficients �̂ji are
estimated using information orthogonal to the amount of
patenting and to the propensities to patent and to cite in each
region. They are based only on relative frequencies. The
construction of the variable Ait

a , therefore, does not introduce
any mechanical correlation with the dependent variable Pit.

The stock Ait in each region for the period 1975–1996 is
constructed using the perpetual inventory method. We ini-
tialize R&D stocks for the year 19757 and use the recursive
formula Ait � (1 � �) Ai t � 1 � (R&D)it to calculate the

stock in the following years. The value chosen for �, the
depreciation of R&D capital, is 10%, a calibration value
preferred by most of the literature (see Keller, 2002b).
Finally we control for country-time fixed effects Dct.8 This
implies that time-varying institutional or policy differences
across countries, or country-specific propensities to patent
in the United States, or indeed any other factor changing
with country and time, does not affect our estimates of � and
�. The variations that identify the coefficients are strictly
the differences (in patenting and R&D) across regions
within countries. Including a zero-mean random disturbance
uit, the estimated equation is

ln Pit � Dct � � ln Ait � � ln��
j
i

�̂ji Ajt� � uit . (8)

C. Description of the Data

Patent and citation data originate from the NBER Patent
and Citation data set, which is publicly available and de-
scribed in detail by Hall, Jaffe, and Trajtenberg (2001). This
data set contains all the patents granted by the U.S. patent
office and, since 1975, all citations made by each patent of
other patents. We choose the sample of patents granted
between 1975 and 1996 whose inventor is a resident of one
of the 147 subnational regions within one of eighteen
countries listed in appendix A (all in Europe and North
America). Due to the very exacting manual effort required
in locating the residence of each inventor within a region
and in gathering regional R&D data, we limited our study to
Europe and North America. The only important innovating
country thus left out is Japan. However, its exclusion should
not affect our estimates much. Due to its remoteness, none
of its regions share any borders, languages, or trade agree-
ments with any of the regions considered here. Thus we can
think of knowledge generated in that country simply as
having a fixed common effect on European and North
American regions. Our final sample contains approximately
1.5 million patents and approximately 4.5 million pairs of
citations.

Table 1 reports some summary statistics at the regional
level. Panel A shows the average and standard deviation for
the number of patents granted each year to residents of the
147 regions, as well as for R&D spending, patent citations,
and geographic distance between regions. Panels B and C
show the identity and some characteristics of the most and
least innovative regions in our sample. The top innovator is
California, which was granted more than 6,000 patents per
year. High in the ranking are also some German, French,
and British regions. The bottom of the list is occupied by
Greek, Spanish, and East German regions, each with one or
less than one patent granted each year (on average).

Data on R&D for the period 1975–1996 are not available
for all regions. From national statistical agencies we obtain

5 Excluding self-citations.
6 For a review of the main estimates obtained using gravity equations see

Feenstra (2003, chapter 5).
7 The initial value of R&D stock is set at Ai1975 � (R&D)i1975/(� � gi),

where � is the depreciation rate of R&D capital and gi is the average
growth rate of R&D spending in the country to which region i belongs for
the period 1975–1980. 8 These effects are equivalent to the terms ln Xct in equation (2).
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the share of total national R&D in the business sector that is
performed in each region of nine important countries.9 We
then use the ANBERD data on intramural business enter-
prise R&D, measured in constant 1990 U.S. dollars, and
allocate the national aggregates according to the regional
shares. Missing years were filled by interpolation. This
method allows us to obtain a balanced panel for regions in
all the main countries, namely the United States, Canada,
Germany, France, Italy, the United Kingdom, Spain, and the
Netherlands. These countries include the 113 regions from
which virtually all the major innovations arise. Table 1
shows that the important innovators (top regions) spend
between 2% and 4% of their GDP on business R&D, and the
least active regions spend less than 1% on R&D.

V. Estimates of Knowledge Flows

A. Aggregate Flows: Geographic and Technological
Determinants

We present in this section the estimated coefficients from
equation (7). Specification I in table 2 is the baseline
regression and shows the effects of geographic and techno-
logical resistance factors on aggregate knowledge flows. We
estimate equation (7) by maximum likelihood, using a

negative-binomial specification.10 We also estimated all
specifications using OLS [after taking logs of both sides of
equation (7)], obtaining similar coefficient estimates. For
the sake of brevity we report only the negative-binomial
estimates. The dependent variable in specification I of table
2 is the count of citation links, omitting self-citations,11

between patents of region i and patents of region j generated
within the first 10 years after the cited patent was granted.
Such a time span should be long enough for us to capture
the most relevant portion of nonobsolete knowledge diffu-
sion. Nonetheless, we also analyze flows within 2 years in
specification III, flows within 6 years in specification IV,
and all citation pairs within the entire sample in specifica-
tion V. Finally, in specification VI we fix a large cohort of
originating patents, 1975–1985, and allow the citing patents
to cover the longest period available, 1975–1996.

The geographic resistance factors included in each spec-
ification are presented in section IV A. Each coefficient

9 The detailed sources for national R&D data are described in appendix
C of Peri (2003).

10 Using this method, we can include all the regional couples with zero
citations and, by assuming a generalized Poisson data-generating process,
we allow for the fact that citations are count data.

11 Self-citations are citations between patents assigned to the same
institution. Those citations denote, arguably, knowledge flows, but prob-
ably should not be included in the analysis of R&D spillovers. We also
estimated specifications including self-citations, and the only difference is
that the coefficient on crossing region border is increased by roughly
10%–15%.

TABLE 1.—DESCRIPTIVE STATISTICS RELATIVE TO 147 REGIONS IN EUROPE AND NORTH AMERICA

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max

Average number of patents granted yearly, 1975–1996 426 830 0.27 6,434
Share of GDP spent in R&D, average 1975–1996 1.77% 1.23% 0.27% 7.69%
Number of total region-to-region citations without self-citations 171 1,147 0 99,137
Geographical distance (thousands of kilometers) 4.44 3.22 0 13.70

Panel B: Representative High-Patenting Regions

Region Country
Yearly granted patents
average (1975–1996)

R&D spending (% GDP,
1975–1996)

California (overall rank: 1) USA 6,434 3.86
New York (overall rank: 2) USA 3,856 2.00
New Jersey (overall rank: 3) USA 2,978 3.59
Nordrhein-Westfalen (overall rank: 10) GER 1,507 1.86
Baden Württemberg (overall rank: 11) GER 1,423 2.93
Ile de France (overall rank: 16) FRA 1,104 3.51
Southwest U.K. (overall rank: 17) UK 976 3.45

Panel C: Representative Low-Patenting Regions

Country
Yearly granted patents
average (1975–1996)

R&D spending (% GDP,
1975–1996)

Sachsen-Anhalt GER 1.00 1.50
Mecklenburg-Vorpommern GER 0.91 1.14
Prince Edward Island CAN 0.86 0.71
Centro España SPA 0.64 0.44
Kentriki Ellada GRE 0.41 0.27
Kriti GRE 0.27 0.53

Notes: Citation frequencies are calculated omitting self-citations, that is, citations between patents whose first authors belong to the same company or institution.
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captures the reduction of knowledge flows as each desig-
nated border is crossed. To convert each value to a percent-
age drop we need to use the exponential formula. For
instance, the first coefficient of specification I in table 2
implies that on crossing the first regional border, knowledge
diminishes to 21% (� e�1.57) of its initial level. The second
coefficient implies that only 72% (� e�0.33) of the 21% of
this initial knowledge passes a second regional border.
Therefore only 15% (� 21% � 72%) of initial knowledge
flows across and beyond two regional borders. A further
19% (� 1 � e�0.19) is lost passing the country border,
leaving approximately 12% of the initial knowledge. Cross-
ing a trade-bloc border has essentially no effect (the esti-
mated coefficient is not significantly different from 0),
whereas passing a linguistic border reduces knowledge by a
further 19%. On top of these effects, geographic distance
reduces flows by 3% for each thousand kilometers traveled.
Overall, the drop in learning resulting from geographic
resistance factors is substantial.

Estimates across the specifications (I through VI) in table 2
are remarkably stable. Whether 2, 6, or 10 years elapses, the
degree of relative geographic localization of knowledge re-
mains rather stable. Even when we allow for the citing patents
to span the whole sample and we track the diffusion of
knowledge from a large cohort of cited patents (specification

VI), localization decreases only slightly. For example, 25% of
ideas generated between 1975 and 1985 were learned out of
their region of origin by 1995, as opposed to 21% estimated
when considering only the first 10 years after invention. Sim-
ilarly small differences between specifications I and VI arise
when considering the negative effect of crossing a linguistic
border (�16% rather than �19%) or the overall effect of
distance (�2% per 1,000 km, rather than �3%). In general,
given that the bulk of citation is received during the first 10
years after the invention, adding longer lags does not signifi-
cantly change the geographic pattern of diffusion.

As regions with similar levels of technological special-
ization and sophistication may be located near each other,
failing to control for technological differences across re-
gions may result in overestimating the effect of geography.
Therefore we include in each specification of table 2 two
proxies of regional technological differences. The first proxy12

captures the difference in technological specialization be-
tween two regions. Specifically, all patents granted to a
region (call it region i) are grouped into 36 technological
classes as defined by the international patent classification.13

The share of patents granted to region i in each technological

12 We follow Jaffe (1986).
13 Classes are reported in Appendix B.

TABLE 2.—BASIC SPECIFICATION: GEOGRAPHIC AND TECHNOLOGICAL DETERMINANTS OF AVERAGE KNOWLEDGE FLOWS

Specification: I II III IV V VI

Flow
Within

10 years
Within

10 years
Within
2 years

Within
6 years

All
Couples

Citing: 75–96
Cited: 75–85

Crossing region border �1.57* �1.50* �1.45* �1.57* �1.53* �1.38*
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Crossing next-region border �0.33* �0.32* �0.27* �0.31* �0.34* �0.32*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Crossing country border �0.19* �0.19* �0.19* �0.19* �0.20* �0.18*
(0.02) (0.15) (0.02) (0.02) (0.02) (0.02)

Crossing trade-block border 0.04 0.04 0.04 0.03 0.03 0.03
(0.025) (0.025) (0.03) (0.025) (0.025) (0.02)

Crossing linguistic border �0.19* �0.20* �0.16* �0.19* �0.18* �0.16*
(0.01) (0.12) (0.02) (0.01) (0.01) (0.01)

1,000 km farther �0.03* �0.03* �0.04* �0.03* �0.03* �0.02*
(0.001) (0.002) (0.002) (0.001) (0.002) (0.002)

Difference in technological �2.91* �2.85* �3.02* �2.98* �2.87* �2.82*
specializationa (0.05) (0.04) (0.07) (0.06) (0.05) (0.06)

Difference in technological �0.75* �0.22* �0.52* �0.79* �1.00*
advancementb (0.10) (0.05) (0.12) (0.10) (0.11)

Technological advantage of �0.62*
receiving region (citing) (0.10)

Technological disadvantage of �0.81*
receiving region (citing) (0.10)

Citing-region fixed effects Yes Yes Yes Yes Yes Yes
Cited-region fixed effects Yes Yes Yes Yes Yes Yes
Observations 21,609 21,609 21,609 21,609 21,609 21,609
Log likelihood �55,952.4 �55,855.9 �33,815.1 �50,758.6 �59,778.4 �52,892.7

Notes: Citations are calculated omitting self-citations, that is, citations within the same institution. Method of estimation: maximum likelihood on a negative-binomial specification. Asymptotic heteroskedasticity-
robust standard errors in parentheses. An asterisk indicates significance at 1% level.

a Index (SpecDis)ij defined in section V A.
b Difference in logged average real R&D spending per worker between the receiving and the originating region (1991–1996).
Specification I: Dependent variable: log of citations between patents with citing and cited patents less than 10 years apart during 1975–1996.
Specification II: Dependent variable: log of citations between patents with citing and cited patents less than 10 years apart during 1975–1996.
Specification III: Dependent variable: log of citations between patents with citing and cited patents less than 2 years apart during 1975–1996.
Specification IV: Dependent variable: log of citations between patents with citing and cited patents less than 6 years apart during 1975–1996.
Specification V: Dependent variable: log of citations between patents, including all the citing and cited patents, during 1975–1996.
Specification VI: Dependent variable: log of citations between patents including citing patents 1975–1996, cited patents 1975–1985.

THE REVIEW OF ECONOMICS AND STATISTICS314



class s (� 1, 2, . . . , 36) is then arranged into a vector,
Shi � (shi1, shi2, . . . , shi36). The uncentered correlation
coefficient between the vectors of regions i and j, calculated
as (SpecCorr)ij �(Sh�iShj)/[	s (shis)2 	s (shjs)2]1/2, is a mea-
sure of the similarity in technological specialization. Its
value ranges between 0 and 1; the closer it is to 1, the larger
is the overlap in technological classes of specialization.
Thus we use (SpecDis)ij � 1 � (SpecCorr)ij to proxy for the
differences in technological specialization between region i
and region j. The second index we construct captures
differences in technological development between two re-
gions. It measures the difference in logged average real
spending in R&D per worker (1991–1996) between the
region that receives and the region that originates the
knowledge flow.14

Examining both indices, we find that specialization in
different technological fields tends to impede knowledge
flows, whereas greater technological distance between two
regions tends to encourage knowledge flows from more
advanced regions. Using estimates in column I, two regions
with technological specializations in completely different
fields [(SpecDis)ij � 1] have knowledge flows only 5% (�
e�2.91) as large as two regions with identical technological
specializations [(SpecDis)ij � 0]. Moreover, a region re-
ceives 8% (� e�0.1�0.75) higher knowledge flows from a
region 10% more intensive in R&D than from a region as
R&D intensive as itself. In specification II we separate the
potential impact of differences in technological advance-
ment between cases when this difference is positive (receiv-
ing region has technological advantage) and when it is
negative (receiving region has technological disadvantage).
The estimates show, however, that the impact of a change in
R&D intensity is similar in the two cases. If the receiving
region is more R&D-intensive than the originating region,
an increase of 10% in that intensity reduces by 6.1% the
flows received; if it is less R&D-intensive, the same in-
crease reduces flows by 7.8%.

Unlike geographical distance, technological distance ap-
pears to matter more for knowledge flows as time passes.
The estimate of this coefficient grows larger (in absolute
value) as we progress from 2-year lags to the longest lags
(column VI). Thus, as time passes, knowledge from tech-
nologically advanced regions is learned proportionally more
by less advanced ones.

Several other robustness checks were performed. Most of
them are available in Peri (2003). Here we mention only two
of them. We estimate knowledge flows separately for two
subperiods (1975–1986 and 1986–1996) as well as for two
subsamples (Europe and North America). In either case our
estimated effects of the geographic and technological resis-
tance factors variables remain virtually the same.

At this point it is useful to summarize some of our results
graphically. Figure 1 represents our estimated effects of
geographic resistance factors on knowledge flows. It shows
the estimated decay of knowledge flows moving out of the
originating region, out of its neighbor, out of the country,
out of the linguistic area, out of the trade bloc, and out by
steps of 1,000 km. The total knowledge generated in a
region is standardized to 100. Five decay functions are
reported, which correspond to the estimated parameters in
specification I, III, IV, V, and VI of table 2. Visual inspection
of figure 1 confirms the significance of the drop in knowl-
edge flows when moving out of the region. We can also
appreciate from figure 1 that decay functions produced
using different estimates are rather close to each other.

B. Flows within Sectors

Table 3 reports the estimated effects of resistance factors
on knowledge flows within six sectors. We use a time
window of 10 years from the originating patent, and per-
form the usual maximum likelihood estimation on a negative-
binomial specification. The differences in technological
specializations across regions are calculated using special-
izations in subsectors within each considered sector. Differ-
ences in technological advancement are computed using
total R&D intensity, as in table 2. Figure 2 shows the decay
functions for each technological sector using the coeffi-
cients in table 3. The computer sector exhibits by far the
most extensive geographic diffusion of knowledge: its de-
cay function is significantly above those of all other sectors.
Information technology, mostly computer-related, seems an
exception in its range of diffusion and looks much like a
global technology. Close to 40% of computer-related
knowledge generated in a region is learned outside of it, and
25% of this knowledge flows all the way out of its country
and linguistic area of origin. The other sectors’ knowledge is
much more localized, although not uniformly so: ideas in
the electronics and drugs sectors spread farther than ideas in
the mechanical or chemical sector. Specifically, more than
25% of new ideas in electronics are learned outside the
region of origin, versus less than 19% and 10%, respec-
tively, for ideas in the chemical and the mechanical sector.
The relatively wider diffusion of ideas from sectors related
to information technologies (computer and electronics)
seems an illustration both of the importance of these sectors
and of the global scope of research in this area.

C. Flows from Leading Regions

As suggested by the positive effect of technological
advancement on outgoing flows of knowledge, the regions
leading world research originate ideas that are more likely
to flow to other regions. It is reasonable to think that
technological leaders not only generate larger flows toward
less advanced regions (captured by the distance in techno-
logical advancement), but also generate flows with wider

14 We also used the difference in output per worker as index of difference
in technological advancement. We prefer R&D spending per worker
because when we included both indices only the one based on R&D per
worker had a significant effect on knowledge flows.
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geographic scope. Our data show that research across re-
gions is rather concentrated. The top 20 regions (out of 147)
perform 60% of total R&D in the sample (which is approx-
imately 50% of the world R&D). The technological leaders,
therefore, may act as learning sources for other regions
more than an average region would.

To explore this aspect further, we focus on the top
twenty regions (for total R&D spending), and we con-
sider only the knowledge flows originating in those
regions. Of the top twenty regions, eleven are in the
United States, four in Germany, one in Canada, one in
France, one in the United Kingdom, one in the Nether-
lands, and one in Italy. Table 5 shows the estimated
effects of resistance factors on knowledge flows, consid-
ering only the top twenty regions as sources of learning
(regions whose patents are cited).15 Specifications I to III
use different time intervals, from 10 years (column I), to
6 years (column II) to 2 years (column III). Specification
IV uses the ideas originated in 1975–1985 and their
diffusion, measured using all citations until 1996. Con-
sistently and robustly across specifications these esti-
mates show much less geographic localization than the
average knowledge flows estimated in table 2. Even

considering the most conservative estimate (column III),
56% of knowledge originating from leading regions
crosses over at least one regional border, compared with
only 20% for the knowledge originating in the average
region. Similarly, 35% flows out of the linguistic border,
versus 10% for average knowledge, and 25% flows all the
way to 10,000 km of distance, versus only 7.5% for
average knowledge. Technological differences in special-
ization and advancement still play important roles in
knowledge diffusion. The greater quality and relevance
of knowledge generated by technological leaders likely
grants such knowledge large diffusion. Figure 3 demon-
strates the visual comparison between the decay func-
tions of knowledge flows from technological leaders
(estimates I and III in table 4) and average flows (esti-
mate I in table 2). The visual impression confirms the
strikingly broader reach of knowledge generated by tech-
nological leaders relative to the average region. Finally,
the decay function of knowledge calculated using long
lags (shaded line) is discernibly above the function cal-
culated using two-year lags (solid line).

D. Comparisons with Existing Estimates

Our estimates, which imply a high degree of localization
of knowledge flows, raise the question: are such estimates

15 We performed the same exercise using the top 15 and the top 25
regions, and we obtained very similar results.

FIGURE 1.—DECAY OF KNOWLEDGE FLOWS DUE TO GEOGRAPHICAL BARRIERS
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reasonable? In particular one may wonder how localized
these knowledge flows are, relative to trade flows. As
knowledge diffusion does not necessarily require the move-
ments of goods or people, its effective reach should be
beyond that of trade. Yet, to our knowledge, no one in the
literature has performed an empirical comparison of the
geographic scope of knowledge and trade flows.

The trade literature has extensively studied the effect of
geographic variables (mainly distance and borders) on total
trade flows. As we have precise estimates of these effects on
knowledge flows, we concentrate on these two effects and
compare our estimates with those from standard trade grav-
ity equations. To ensure maximum comparability with the
existing trade estimates, we enter distance linearly (rather
than exponentially) in equation (7), as is commonly done in
trade specifications, and we include the whole set of citing-
and cited-region fixed effects. We do not include other
controls (such as proxies for technological distance), as they
are normally not included in trade estimates. The specifica-
tion is very similar to column I in table 2, except we enter
distance in logs and we omit the technological variables. For
the sake of brevity we do not report the full estimation.16

The results of interest are as follows: the effect on knowl-
edge flows of crossing a country’s border is estimated to be

�0.20 (standard error 0.01), and the effect of log(distance)
is �0.19 (standard error 0.01). Estimates of border and
distance effects on total trade from Anderson and Van
Wincoop (2001) are �1.65 and �0.79, respectively,
whereas Feenstra (2003) estimates them to be �1.55 and
�1.25. Reasonably, borders and distance reduce trade flows
4 to 5 times more than they reduce knowledge flows.

Finally, our estimates can be also compared with some
existing estimates of the geographic reach of knowledge
flows based on patent citation data. The initial and influen-
tial work that assessed the degree of localization of knowl-
edge flows using citations across patents was Jaffe et al.
(1992). That paper used a much smaller sample, limited to
the United States, and a very different method to estimate
localization. However from the coefficients reported in their
table III, we can recover some effects that can be compared
with ours. Considering their sample without self-citations
and with originating cohort 1980 [columns 4, 5, and 6 in the
“Matching by State” panel in Jaffe et al. (1992)], they
estimate a drop of citation flows moving out of the state17

(corresponding to our “region” for the United States) of
50%–60%. Our most comparable estimates (column VI,
table 2) give a drop of approximately 75% moving out of
the region. For the country border effect, Jaffe et al. (1992)

16 This and a longer discussion of knowledge and trade flows is in Peri
(2003).

17 We obtain this effect by comparing their matching fraction within
SMSA with the matching fraction of the control group.

TABLE 3.—DETERMINANTS OF KNOWLEDGE FLOWS FOR SIX TECHNOLOGICAL CLASSES

Specification: I II III IV V VI
Flow Computers Electronics Drugs Mechanical Chemical Others

Crossing region border �1.00* �1.38* �1.57* �1.57* �1.68* �1.38*
(0.10) (0.11) (0.08) (0.11) (0.08) (0.09)

Crossing next-region border �0.21* �0.24* �0.08* �0.34* �0.31* �0.39*
(0.04) (0.03) (0.03) (0.03) (0.03) (0.03)

Crossing country border �0.14* �0.17* �0.20* �0.10* �0.19* �0.20*
(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)

Crossing trade-block border 0.05 0.06 0.01 0.03 0.04 0.04
(0.03) (0.04) (0.03) (0.03) (0.02) (0.03)

Crossing linguistic border �0.11* �0.14* �0.11* �0.17* �0.15* �0.14*
(0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

1000 km farther �0.03* �0.03* �0.03* �0.05* �0.03* �0.05*
(0.003) (0.003) (0.003) (0.002) (0.002) (0.003)

Difference in technological �2.20* �2.70* �1.17* �3.29* �2.67* �3.46*
specialization within the
sectora

(0.14) (0.12) (0.06) (0.14) (0.11) (0.12)

Difference in technological �1.00* �1.10* �0.88* �0.80* �0.20* �0.20
advancementb (0.05) (0.05) (0.09) (0.07) (0.04) (0.17)

Citing-region fixed effects Yes Yes Yes Yes Yes Yes
Cited-region fixed effects Yes Yes Yes Yes Yes Yes

Observations 21,609 21,609 21,609 21,609 21,609 21,609
Log likelihood �19,150.3 �26,503.6 �23,898.7 �32,042.4 �30,591.7 �35,340.7
Original number of citations 243,563 333,637 342,572 243,902 356,614 486,513

Notes: Citations are calculated omitting self-citations (citations within the same institution). Method of estimation: maximum likelihood on a negative-binomial specification. Asymptotic, heteroskedasticity-robust
standard errors in parentheses. An asterisk indicates significance at 1% level.

a Index (SpecDis)ij defined in section V A for subsectors within technological class.
b Difference in logged average real R&D spending per worker between the receiving and the originating region (1991–1996).
Specification I: Dependent variable: log of citations between patents in computer class with citing and cited patents less than 10 years apart.
Specification II: Dependent variable: log of citations between patents in drugs class with citing and cited patents less than 10 years apart.
Specification III: Dependent variable: log of citations between patents in electronics class with citing and cited patents less than 10 years apart.
Specification IV: Dependent variable: log of citations between patents in chemical class with citing and cited patents less than 10 years apart.
Specification V: Dependent variable: log of citations between patents in mechanical class with citing and cited patents less than 10 years apart.
Specification VI: Dependent variable: log of citations between patents in other classes with citing and cited patents less than 10 years apart.
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estimate a drop by 12%–15% of citation flows, and our
preferred estimate puts that drop at 18%–19% for 1975–
1996 overall (table 2).

Maruseth and Verspaghen (2002) use citations between
European-granted patents located in 112 European regions.
Their estimated resistance effects of (log) distance, crossing
a linguistic border, and crossing a country border are in the
ranges 0.29–0.38, 0.20–0.28, and 1.53–1.56, respectively.
The first two effects are rather similar to our estimates;
however, our estimate of the country-border effect is sig-
nificantly smaller than theirs (ranging between 0.18 and
0.20). As their estimates of country-border effects for
knowledge flows are as high as those estimated in the
literature for trade flows, we wonder if the process of patent
revision at the European Patent Office generates an exces-
sive own-country bias in the citation procedures.

Our estimates, in summary, reveal a degree of localiza-
tion of learning consistent with those revealed by other
studies of patent citations, but significantly lower than the
localization of trade.

VI. Effects of Accessible External R&D on Innovation

Finally, table 5 reports the estimates of � and � in
equation (8). As the top 20 innovating regions perform
the majority of R&D in our sample and flows of knowl-
edge from them reach substantially farther than average
knowledge flows, we first consider them as the only

source of relevant flows in constructing Ait
a . This choice

allows us to minimize potential endogeneity problems in
estimating the coefficient of Ait

a . In fact the basic speci-
fication (column I of table 5) does not include the top 20
regions in the regression as receivers of R&D spillovers,
but rather includes only the remaining 93 regions, for the
period 1975–1996. External accessible R&D in specifi-
cation I is thus measured as Ait

a � 	j�Top 20 (�̂ij
10yr Ajt). The

weights �̂ji
10yr measure the share of knowledge generated

in j and learned by i within ten years. They are estimated
using the formula in equation (4) and the coefficients
from specification I of table 4.18 The measure of innova-
tion (dependent variable) is ln Pit, where Pit is the count
of patents granted to region i in year t, weighted for the
citations received during the first 4 years.19 We fully
control for country � year fixed effects. Column II of
table 5 checks to see whether limiting our attention to
accessible R&D from the top 20 regions is a reasonable
strategy. There we include as external accessible R&D
the flow-weighted stocks originating from all regions (not
only the top 20). In spite of potential worsening of the
endogeneity problem, estimates obtained with this ap-
proach are not very different from those in column I. The
elasticity of innovation to own R&D is estimated at

18 With the usual standardization a � 0, which implies �ii � 1 for all i.
19 The elasticity estimates are similar using unweighted patents as the

measure of innovative output (not reported).

FIGURE 2.—DECAY OF KNOWLEDGE FLOWS BY TECHNOLOGICAL CLASS
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TABLE 4.—DETERMINANTS OF KNOWLEDGE FLOWS ORIGINATING FROM THE 20 MOST INNOVATIVE REGIONS

Specification: I II III IV

Flow 10 years 6 years 2 years
Citing: 75–96
Cited: 75–85

Crossing region border �0.54* �0.55* �0.58* �0.45*
(0.07) (0.07) (0.08) (0.07)

Crossing next-region border �0.14* �0.14* �0.15* �0.15*
(0.03) (0.03) (0.03) (0.03)

Crossing country border �0.10* �0.11* �0.14* �0.09*
(0.02) (0.02) (0.02) (0.03)

Crossing trade-bloc border 0.04 0.04 0.05 0.04
(0.03) (0.03) (0.03) (0.03)

Crossing linguistic border �0.25* �0.25* �0.25* �0.20*
(0.02) (0.02) (0.03) (0.02)

1000 km farther �0.02* �0.03* �0.03* �0.02*
(0.002) (0.002) (0.003) (0.002)

Difference in technological specializationb �2.92* �2.96* �3.10* �2.81*
(0.09) (0.09) (0.10) (0.08)

Difference in technological advancementb �1.35* �1.20* �0.51* �1.50*
(0.10) (0.15) (0.36) (0.22)

Citing-region fixed effects Yes Yes Yes Yes
Citied-region fixed effects Yes Yes Yes Yes

Observations 2,961 2,961 2,961 2,961
Log Likelihood �13,754.5 �12,800.5 �9,610.6 �13,206.1

Notes: Citations are calculated omitting self-citations (citations within the same institution). Method of estimation: maximum likelihood on a negative-binomial specification. Asymptotic, heteroskedasticity-robust
standard errors in parentheses. An asterisk indicates significance at 1% level.

a Index (SpecDis)ij defined in section V A within the technological class
b Difference in logged average real R&D spending per worker between the receiving and the originating region (1991–1996)
Specification I: Dependent variable: log of citations between patents with citing and cited patents less than 10 years apart during 1975–1996. Only top 20 regions for R&D spending included as cited regions.
Specification II: Dependent variable: log of citations between patents with citing and cited patents less than 6 years apart during 1975–1996. Only top 20 regions for R&D spending included as cited regions.
Specification III: Dependent variable: log of citations between patents with citing and cited patents less than 2 years apart during 1975–1996. Only top 20 regions for R&D spending included as cited regions.
Specification IV: Dependent variable: log of citations between patents with cited patents granted in 1975–1985. Only top 20 regions for R&D spending included as cited regions.

FIGURE 3.—DECAY OF KNOWLEDGE FLOWS ORIGINATING FROM TECHNOLOGICAL LEADERS
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0.74–0.81, and the elasticity of innovation to accessible
external R&D is estimated at 0.40–0.47. The contribution
to innovation of external accessible R&D is large and
very significant.

Column III and IV report the estimates of the innova-
tion function using weights �ij calculated directly from
standardized citation frequencies across regions. From
the definition (6), assuming that propensities to patent
(�j) are constant across regions and that random errors
(εij) can be ignored, we obtain the relationship �ij/�ii �
(cij/Pj)/(cii/Pi). With the standardization �ii � 1 we can
use this formula, along with data on citations cij and
patents Pi, to calculate directly the weights �ij for each
regional couple. The estimates of own R&D elasticity are
now somewhat smaller (0.60–0.65), and the estimates of
the effect of external accessible R&D are somewhat
larger (0.50–0.55). Overall, however, the results are sim-
ilar across specifications, and the two sets of estimates
give an elasticity to own R&D in the range 0.6–0.8, and
an elasticity to accessible external R&D in the range
0.4–0.5. The estimates of own R&D elasticity are similar
to those found in Branstetter (2001) (0.72), Pakes and
Griliches (1980) (0.61), and several other studies. The
estimates of the elasticity to external accessible R&D are
between 50% and 80% of the elasticities to own R&D,
which is within the range of the existing estimates from
the micro-productivity literature (see Griliches, 1992).

VII. Conclusions

Trade is clearly not the only conduit of national and
international knowledge flows. Indeed, there is much to
be learned about knowledge diffusion at the frontier of
technological innovation from the very large and detailed

data set on citations across patents, developed and used
extensively by the micro-productivity literature. The
present work uses data on citations across patents gener-
ated in Europe and North America to construct knowl-
edge flows across 147 regions and to estimate the effect
of several resistance factors on learning. We obtain ro-
bust estimates that show that only 20% of the knowledge
generated in the average region flows out of it. Moreover,
another 36% drop in learning takes place when crossing
the next regional border, and yet another 20% drop when
passing the country border. However, two important
qualifications apply. First, we find that ideas in the
information and communication technologies (computers
and electronics) diffuse much farther than average
knowledge. Second, we find that technological leaders
(the top 20 regions for total R&D) generate knowledge
that also tends to diffuse farther. One advantage of our
approach is that determinants of knowledge flows are
estimated using a gravity-like equation and therefore
could be compared quantitatively with those of trade
flows. It turns out that knowledge flows are much less
localized than trade flows. Finally, to confirm that these
flows are relevant to regional innovative activity, we
estimate the effect of accessible external knowledge on
innovation, finding that the external accessible stock of
R&D has an effect on the innovation of regions 50% to
80% as large as that of their own R&D stock.
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APPENDIX A

Regions

Austria: Ostösterreich, Sudösterreich, Westösterreich.
Belgium: Bruxelles, Vlaams Gewest, Regione Wallonne.
Canada (provinces): Newfoundland, Prince Edward Island, Nova Sco-

tia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta,
British Columbia.

Denmark: Denmark.
Finland: Finland.
France: Ile de France, Bassin Parisienne, Nord-Pas de Calais, Este,

Oueste, Sud-Ouest, Centre-Est, Mediterranée.
Germany (Länder): Baden-Wurttemberg, Bayern, Berlin, Branden-

burg, Bremen, Hamburg, Hessen, Mecklenburg-Vorpommern, Nieder-
sachsen, Nordrhein-Westfalen, Rheinland-Pfalz, Saarland, Sachsen,
Sachsen-Anhalt, Schleswig-Holstein, Thüringen.

Greece: Voraia Ellada, Kentriki Ellada, Attiki, Nisia Aigaiou, Kriti.
Ireland: Ireland.
Italy: Nord-Ovest, Lombardia, Nord-Est, Emilia Romagna, Centro,

Lazio, Abruzzo-Molise, Campania, Sud, Sicilia, Sardegna.
Luxembourg: Luxembourg.
Norway: Norway.
Portugal: Portugal.
Spain: Noroeste, Noreste, Comunidad de Madrid, Centro, Este, Sur,

Canarias.
Sweden: Sweden.
Switzerland: Regione Lemanique, Espace Mittelland, Nordwest-

schweiz, Zürich, Ostchweiz, Zentralschweiz, Ticino.
United Kingdom: North, Yorkshire and the Humber, East Midlands,

East Anglia, Southeast, Southwest, West Midlands, Northwest, Wales,
Scotland, Northern Ireland.

United States of America (states): Alabama, Alaska, Arizona, Arkansas,
California, Colorado, Connecticut, Delaware, D.C., Florida, Georgia, Hawaii,
Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Mary-
land, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana,
Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York,
North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania,
Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah,
Vermont, Virginia, Washington, West Virginia, Wisconsin, Wyoming.
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APPENDIX B

Patent Classes

Chemical: agriculture, food, textile, coating, gas, organic compounds,
resins, miscellaneous chemicals.

Computers: communications, computer hardware and software, com-
puter peripherals, information storage.

Drugs: drugs, surgical and medical instruments, biotechnology, mis-
cellaneous medical.

Electronics: electrical devices, electrical lighting, measuring and testing,
nuclear and x rays, power systems, semiconductors, miscellaneous electronics.

Mechanical: material processing and handling, metal working, motors
and engines, optics, transportations, miscellaneous mechanical.

Other: agriculture husbandry and food, amusement devices, apparel,
earth working and wells, furniture, heating, pipes and joints, receptacles,
miscellaneous other.
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