Economics of Innovation# 1 Economics of Science and Technology

Stefano Usai

Calendario

30/11 laboratorio di econometria spaziale, 4

1/12 lezione, 2

2/12 lezione, 2

6/12 presentazioni con prof Cerina, 2

7/12 laboratorio di econometria spaziale, 4

14/12 laboratorio di econometria spaziale, 4

15/12 lezione, 2

16/12 lezione, 2

11/1 lezione, 2

12/1 lezione, 2

13/1 presentazioni, 2

I. Why Study the Economics of Science & Technology?

- Why study the economics of science and technology?
 - Innovations in science and technology play an important role in economic growth.
 - Thus, it is useful to understand what factors influence the development of technology.
- In general, economists study the allocation of scarce resources.
 - In this course, the scarce resource is the *effort* utilized in the scientific process.
 - This could be money invested in R&D, labor efforts of scientists and engineers, etc.

I. Why Study the Economics of Science & Technology?

- Questions to ask:
 - 1. What determines how much effort is invested into the scientific process?
 - How do firms (or governments) decide how much to invest in R&D?
 - How do they decide which projects to invest in?
 - E.g. how much money for AIDS research vs. cancer research?
 - How do agents decide which technologies to use (adoption of technology)?

I. Why Study the Economics of Science & Technology

- Questions to ask:
 - 1. What determines how much effort is invested into the scientific process?
 - 2. How does government policy affect this process?
 - · Why is intervention necessary?
 - What are the market failures?
 - How strong should intellectual property rights be?
 - E.g. do software patents help or hinder innovation? Should developing countries recognize patents on life-saving drugs?
 - How much money should the government spend on R&D?
 - How do we evaluate the effectiveness of government R&D investments?
 - Should it subsidize private R&D?
 - How do the public and private sector work together on research?

I. Why Study the Economics of Science & Technology?

- Questions to ask:
 - 1. What determines how much effort is invested into the scientific process?
 - 2. How does government policy affect this process?
 - 3. What effect does this research have on economic wellbeing?
 - As we'll see in a moment, increases in productivity greatly affect long-run economic growth. How do scientific gains translate into productivity gains?

I. Why Study the Economics of Science & Technology?

- Questions to ask:
 - 1. What determines how much effort is invested into the scientific process?
 - 2. How does government policy affect this process?
 - 3. What affect does this research have on economic wellbeing?
 - 4. How does technological change affect government policies?
 - What policies are needed to govern information technology?
 - How does globalization affect the outcomes of technological progress?
 - How can policy promote the development of clean energy technologies?

II. The Importance of Technology

- When economists look at the effects of science and technology, we look at productivity
 - Productivity is the amount of output per unit of input
- Labor productivity output per worker
 - Labor productivity has tended to be strongly correlated with wages, and is thus a reasonable measure of changes in economic welfare.

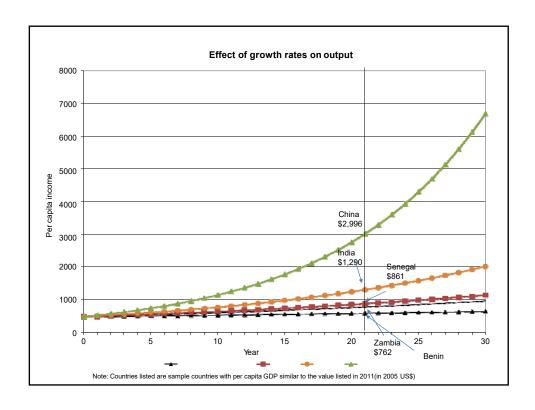
II. The Importance of Technology

- Total factor productivity (TFP) a measure of output per unit of combined inputs
 - Unlike labor productivity, this looks at the productivity of all inputs in the economy
 - A simple calculation focuses on capital and labor:
 - $\Delta Y = \Delta A + \Delta K + \Delta L$
 - We can measure changes in output, capital, and labor.
 Changes in technology are the residual.
 - TFP is simply the portion of growth that cannot be explained by changes in the inputs of the economy.

II. The Importance of Technology

• Contribution of productivity growth to U.S. GDP growth

	1948- 2001	1948- 1973	1973- 1979	1979- 1990	1990- 1995	1995- 2000	2000- 2010
Real Output	3.7	4.2	3.2	3	2.8	4.6	1.7
= growth labor*share							
labor	1.2	1.0	1.4	1.4	1.3	1.7	-0.1
+ growth capital * share							
capital	1.3	1.2	1.4	1.3	0.9	1.8	0.8
+ TFP	1.3	1.9	0.4	0.2	0.6	1.1	1.0


II. The Importance of Technology

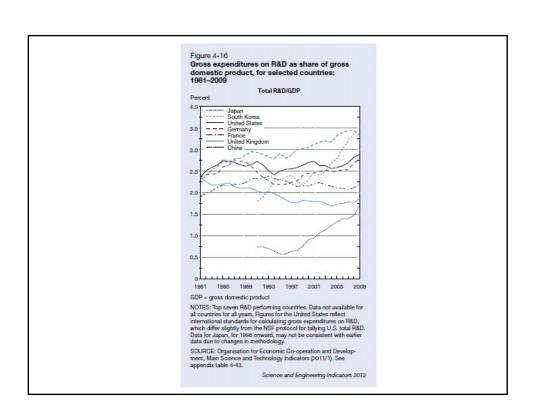
- Small differences in growth rates lead to large longterm results
- Consider China in 1990
 - Per capita GDP: \$463 (2005 US\$)
 - Similar countries in 1990: Benin (\$453), Guinea-Bissau (\$497), Kenya (\$550), India (\$403)
 - China's growth rate 1990-2011: 9.3%

II. The Importance of Technology

Compare to other growth rates

•	World:	2.4%		
•	East Asia & Pacific:	7.5%		
	China	9.3%		
	– India	4.9%		
	– Korea	4.1%		
	Singapore	3.5%		
	Vietnam	6.0%		
•	Latin America & Caribbean	1.7%		
	Argentina	2.3%		
	Brazil	1.6%		
	Mexico	1.3%		
•	• Selected high income countries			
	– US	1.7%		
	Japan	0.7%		
	Germany	1.3%		

III. Policy Relevance


- · Technological change has three parts
 - Invention: the initial development of an idea. Could be represented, for example, by a patent
 - Innovation: adopting the invention for commercial use
 - Diffusion: the spread of the new innovation throughout the economy
- Different policies affect different parts of the process

III. Policy Relevance

• R&D spending in selected countries

	Total				
	R&D	% GDP	% Govt	% Industry	% Higher Ed
US	\$402 b	2.88	11.7	70.3	13.5
Japan	\$138 b	3.33	9.2	75.8	13.4
France	\$48 b	2.21	16.3	61.9	20.6
Germany	\$83 b	2.78	14.9	67.5	17.6
Canada	\$25 b	1.92	10.1	51.7	37.6
South Korea (2008)	\$44 b	3.36	12.1	75.4	12.1
China	\$154 b	1.70	18.7	73.2	8.1
Brazil (2008; % from 2004)	\$21.6 b	1.08	21.3	40.2	38.4

2009 data unless indicated. Source: US Science & Engineering Indicators, 2012

