CHAPTER 7

SOLID-ELECTROLYTE
JUNCTIONS AND
MEMBRANE TRANSPORT

When two different picces of matter are brought into contact, very often new physico-
chemical properties originate at their interface. These properties can be foreseen by the
designer, as in the case of the junction between a p-type semiconductor and an n-type
semiconductor (as described in the previous chapter), or they can rather be a complex
problem to deal with, as in the case of an artificial structure to be interfaced to the human
body (i.e., a prosthesis). Broadly speaking, the appropriate operation of all kinds of hybrid
bioelectronic devices, e.g., biosensors, critically rests on the precise characterization of
the junction between biological and artificial structures.

To make a junction, two solids (as described in Chap. 6), or a solid and a liquid solu-
tion (as we will describe in this chapter) are brought into contact. Another interesting situ-
ation is produced when two liquid regions are separated by a thin structure designed (by
human beings or nature) to selectively distribute specific molecules among the two liquid
regions. These “thin structures” are named membranes (the structure of a biological mem-
brane has been already introduced in Chap. 4). Examples of membranes relevant to two
quite separate research fields include the ion-selective membrane of a neuron and the arti-
ficial membranes designed for dialysis purposes. To summarize, solid-liquid junctions
and membranes are two very important topics for any student or researcher dealing with

bioelectronics and, more generally, with bioengineering.
In the following, the basic properties of solid-liquid interfaces and the transport prop-

erties of membranes will be considered in detail.

71 ELECTRODE-ELECTROLYTE
INTERFACES

Electrical potential differences can develop across the boundary between a solid phase

and a liquid phase, in particular an electrolyte. There are several ways in Which this poten-
tial difference can arise. If one of the phases is an electronic conductor, Le., an electrode,
and the other is an ionic conductor (electrolyte), electron-transfer reactions can occur at
the boundary and lead to the development of a potential difference. Alternatively, the elec-

tronic conductor can be deliberately charged by a flow of electrons from an external
source of electricity. Even without deliberate charging or steady electron-transfer reac-

tions, a potential difference can develop across a solid-electrolyte boundary, typically due
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FIGURE 7.1 Equivalent circuit of (a) ideally polarizable inte_rface and
face. Re = charge-transfer resistor and Cp = double-layer capacitor.

to an initial (very small and transient) charge exchange between electrode and electrolyte
solution.

In consideration of the vastness of the topic, we will start with a classification of dif-
ferent electrode-electrolyte interfaces. Then, the general scheme of the Poisson-
Boltzmann equation will be considered. Finally, the relevance of this topic to the study of

biosensors (see Chap. 10) will be briefly discussed.

7.1.1 Nonpolarizable and Polarizable Interfaces

To polarize an interface means to alter the potential difference across it. Thus, an ideally
nonpolarizable interface is characterized by the fact that the potential difference across it
is virtually fixed. On the contrary, in an ideally polarizable (or blocking) interface, the po-
tential difference changes as a consequence of any variation of the potential difference
across the whole system which includes the interface (the system consisting of an elec-
trode immersed in an electrolyte solution, a “reference” electrode, and a power supply). A
way to visualize the properties of polarizable/nonpolarizable interfaces is to make use of
the simple equivalent circuit representation of Fig. 7.1.

Suppose the capacitor-resistor configuration in Fig. 7.1 is connected to a source of po-
tential difference. Then, if the resistor is very high, the capacitor charges up to the value of
the potential difference set by the source; this is the behavior of a polarizable interface
(Fig. 7.1a). On the other hand, if the resistance in parallel with the capacitor is low, then
any attempt to change the potential difference across the capacitor is compensated by
charge leaking through the low-resistance path; this is the behavior of a nonpolarizable in-
terface (Fig. 7.1b). This description can be generalized to the frequency domain by writ-
ing down the frequency-dependent equivalent impedance Z of the circuit, in the presence
of a periodic potential:

CT
__ Rer
Z(w) TR Cp 1 (7.1)

where Rt stands for charge-transfer resistance, C,, for double layer capacitance, and @ =
2 x frequency. The meaning of the resistance and capacitance will be clarified in the fol-
lowing.

Examples of nonpolarizable interfaces are the so-called reference electrodes (e.g., the
calomel electrode and the Ag/AgCl electrode). These electrodes guarantee a constant po-
tential drop at their interface and consequently they act as a “reference.”
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At the other extreme, the classic example of a polarizable interface is the interface be-
rween mereury (I Ig) and electrolyte solution. Mercury is a liquid at ordinary temperatures.
For (solid) metals other than mercury, ideal polarizability (i.c., infinite resistance Re) is
not obtained. Only the softer metals, such as lead, tin, and gallium have large (e.g., 1 V)
ranges of applied potential in which the interface can be considered an ideal capacitor. Let
us briefly analyze in the following sections the behavior of the various kinds of interfaces.

7.1.2 An Ideally Polarizable Electrode (Hg)
in an Electrolyte Solution

In an ideally polarizable interface (connected to an external voltage source), a separation
of charges happens at the interface between electrode and solution and a potential differ-
ence develops across the interface. The separation of charge in the metal implies redistrib-
ution of electrons, the separation of charge in the electrolyte implies redistribution of ions
(which can be either hydrated or bare) and of water dipoles.

It should be underlined that no electrons leave the ideally polarized metal to cross the in-
terface and no ions and water dipoles leave the electrolyte to cross the interface.
Redistribution of charge on one side is immediately paralleled by redistribution of charge
on the other side. This is the behavior of a capacitor and the resulting interface is known as
an electrified interface. The charging of this interface can be controlled by an appropriate
external circuit including a voltage source. Electrons inside the metal are free to move as a
kind of gas (see Chap. 1). The charge distribution in the electrolyte is more complex: bare
ions can approach the surface of the metal, as water dipoles do: They form a kind of layer,
known as the inner Helmholtz plane (IHP) (von Helmholtz was one of the first to introduce
the concept of electrified interface, around 1879). Hydrated ions form a kind of second lay-
er, known as outer Helmholtz plane (OHP).
The planes IHP and OHP are sketched in
Fig. 7.2.

In summary, as a result of immersing an
ideally polarizable metal (e.g., Hg) in an
electrolyte, a redistribution of charge occurs
both in the metal and in the electrolyte. The
charge at the metal side of the interface is
partially balanced by the IHP and OHP
planes. This is a partial balance because
diffusion processes take place inside the
electrolyte; therefore also a diffuse excess of
charge has to be taken into account. This
diffuse layer, where the potential decays ex-
Ponentially, is known as the Gouy-Chapman
(G-C) layer. A classical way of describing
this diffuse layer is by solving the Poisson-

Boltzmann equation. This will be done in
Sec. 7.2.

/ Hydrated ion
Qo

S
i S Contact-adsorbed

ion

'113.1.3 A Solid Metal in an |IHP ¢
lectrolyte Solution
There ; FIGURE 7.2 The inner Helmholtz plane (IHP)
intelr—?‘ 1s always leakage of charge across the  and the outer Helmholtz plane (OHP) are shown.
erface with metals other than mercury.  The diffuse layer (Gpuy-Chapman) is not shown.
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Thus, as already mentioned, only mercury and a few of the soﬂqr metals can be cong;gq.
ered as ideally polarizable over a large (€-8., 1 V) range of potentials. In all the other cas.
es, exchange of electrons does happen across the interface as a result of reduction or ox;.
dation of dissolved species in solution. A reaction such as

O+ne =—=R (7.2)

with O the reactant and R the product on a Pt electrode, for example, will allow a current
to flow (in electrochemical books this current is named faradaic)._The movement of elec-
trons (ne) should be imaged as a kind of “hopping,” better described by quantum rather
than classic physics.! Under equilibrium conditions, electrons cross the electrified inter-
face in both directions. The result is that there is no net current, but two processes, an
electronation (or reduction) and a de-electronation (or oxidation), continue to occur, at
the same rate, in the presence of an equilibrium potential difference Ag, across the inter-
face, which is characteristic of the specific redox process.

In conclusion, at equilibrium (i.€., almost immediately after immersing a metal in solu-
tion without any external difference in potential applied) there are two currents equal in
magnitude and opposite in direction and, as a result, no net current. It can be shown!? that
their magnitude i, depends exponentially on the potential difference A,. A net current can
then be produced if the system is taken out of equilibrium, i.e., if an overpotential drop 7 s
added to the equilibrium potential drop resulting in the overall potential difference

Ad’ = A¢e 3 n (73)
The net current takes the form!-?
I= Io[e“*ﬁ)nzqf”_ ~Pmea/kT) (7.4)

where the overpotential m is the “extra part” by which the potential of the electrode de-
parts from that at equilibrium; B is a factor greater than zero but less than unity, known as
the symmetry factor.!? Of course, if n = 0, then [ = 0. Equation (7.4) is known as the
Butler-Volmer equation, and it represents the starting point for any study concerning non-
ideal polarized electrodes in electrolyte solutions. Similarities with the diode equation
[Eq. (6.53)] should be evident to the reader. By the way, an electrical equivalent circuit of

Eq. (7.4) is given by two diodes connected in reverse-parallel, as shown in Fig. 7.3.

7.1.4 A Semiconductor-insulator Structure
in an Electrolyte Solution

¥nside a semiconductor facing an electrolyte, the charge carriers will redistribute accord-
ing to the rules described in Chap. 6. By adding an insulator (e.g., Si0, or SizNy), an elec-

D1

NF

«

D2
FIGURE 7.3 Two diodes connected in reverse-parallel.
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SOLID-ELECTROLYTE JUNCTIONS AND MEMBRANES 181

trolyte-insulator-_semiconductor (EIS) structure is generated, which is analogous to the
metal-oxide-semiconductor (MOS) capacitor, considered in detail in Chap. 8. The two
structures are shown for comparison in Fig. 7.4. Note that, in order to polarize the EIS
structure, a reference electrode—that is, a virtually nonpolarizable interface—must be in-
serted to close the circuit.

The presence of an insulator in contact with the electrolyte solution introduces a new
kind of charge distribution, which is caused by the formation of surface groups that trans-
form the EIS structure into a pH sensor. Let us consider this process in some detail.

Let us first consider an SiO, insulator exposed to an aqueous solution interacts with
H* ions in the following way:

+

[SiOH3] =L [SiOH] + [H*], (7.5a)
ky

and [SiOH] _—kz:= [SiO-] + [H*], (7.5b)
k>

The subscript s in [H*], means that the concentration of protons is near the surface of
the insulator, and [SiOH3], [SiOH], and [SiO] are the concentrations of the proton bind-
ing sites present on the oxide surface. Under equilibrium conditions, the kinetic reactions
(7.5a), (7.5b) result in the equilibrium constants

_ [sioH][H", y
*~ " [SiOHj] L)
[SiO7][H"],
d R P
an K [SiOH] (7.6b)
By multiplying together the two equilibrium constants, we obtain
k. = B0 IH)Z 27
*™-"  [SiOH3] .7)

. _Concentrations of binding sites can be transformed into fractions of sites 6., 6,, 6_
giving

[SiO] 0
= — 7.
[SiIOH3}] 6. /)
—_— v\ Y
Y AP,
S |0 S |1 Bl e
M e =
H—- Electrolyte
B :_— ~~ Reference
electrode
FIGURE 74

tor (EJ 4 (@) Metal-oxide-semiconductor (MOS) structure and (b) electrolyte-insulator-semiconduc-
S) structure, A reference electrode is present to close the circuit of the EIS. Note that the electrolyte

Sokusi
lution Plays the role of the conductor.
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182 JUNCTIONS AND MEMBRANES

where 6, 6., and 6, satisfy the constraint
6 +0,+ 6() =] (79)

Moreover, under equilibrium conditions, the concentration of protons at the surface of the
insulator can be related to the one in the bulk via the Boltzmann equation

[H'], = [H"], e?4s kT (7.10)

where (¢, — &) is the potential drop between electrolyte bulk and insulator surface. By
assuming ¢, = 0, Eq. (7.10) reduces to

[H'], = [H'], e 9%*7 (7.11)

L]

By substitution of Eqgs. (7.8) and (7.11) into (7.7), we obtain
0
KK = 2=[H'] et (7.12)

and, by taking logarithms of both sides and dividing by 2, we obtain

1 1 6 qdo

fiad =—In — + 1, - — 1

5 In (K.K) > In 0. In [H], T 17.13)
Note that

In [H*], = 2.303 log [H*], =-2.303 pH,, (7.14)

Then Eq. (7.13) can be written in pH terms as follows (we drop the subscript b from now
on):

1 I 6 9%

£ N T s 0 7.15

5 In (K.K) = In 5 2.303 pH T (7.15)

Equation (7.15) holds true for any pH value, and, for a given insulator, the ratio 6./6.

is a given function of pH. In other words, for a given insulator, there is a specific pH val-
ue for which

0_=6, (7.16)

This specific value is known as the point of zero charge of the material and is indicat-
ed as pHp,..

By setting ¢ = 0 for pH = pH,,. (since only differences in potential are ever physical-
ly meaningful), we obtain

1
5 In(K.K)=-2.303 pHy, (7.17)

Thus, we can finally write Eq. (7.17) as

l 0. gy
2.303(pH - )= = - — 7.18
or
kT | kT 0
¢ =-2303 — ApH+ — — 7.19)
0 p p 2 In 0. (
where ApH = pH - pH,,,, (7.20)
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SOLID-ELECTROLYTE JUNCTIONS AND MEMBRANES 183

At room temperature we have
kT

Equation (7.19) relates the potential ¢, and pH and is the basis for utilizing an EIS
structure as a pH sensor. The value of ¢, can be deduced by knowing the profile of the po-
tential in the electrolyte, and this will be considered in more detail in the next section. The
same procedure followed for SiO,, can then be utilized for other insulators, such as Si;N,.
Unfortunately, for Si;N, the reactions are slightly more complicated. On the other hand,
Si,N, is much more appropriate than SiO, for designing a silicon-based pH meter, so it is
worth considering it. At the surface of the Si;N, insulator, silanol sites, tertiary amine
sites, secondary amine sites, and primary amine sites are present. The picture can be ap-
proximated by assuming that only silanol sites and basic primary amine sites are present
on the surface of the insulator after oxidation.>* Thus the equilibrium constants are

_ [SiOH][H"],

+~ T [SiOH3] 228
_ [SiO][H"],

L (7.22)
_ [SINH,][H, 2228

N+ [SiNHZ]

Concentrations of binding sites can again be transformed into fractions of sites as fol-
lows:

6,
K.= 3"-[H+]s (7.23a)
0
K_=—[H"], (7.23b)
0o
v
Kyi= [H*], (7.23¢)
On+
with the normalization conditions
+0.+0,= Nsi (724
9+ - 0 Ns ( L )
Nnit
Oys + O = N, (7.25)
Op+ 0, + 0.+ Oy + Opp=1 (7.26)

where N, and N,;, are the numbers of silanol sites and primary amine sites per unit area,
respectively, and N, is the total number of available binding sites per unit area. The charge
density oy, of the surface sites on the insulator is given by*

0= qu( 6, + BN+ - 9—) (727)
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By combining Egs. (7.22) and (7.27), we get
[H'): - K.K ) N o [H], )Nm-!

(f"

= (7.28)
qN\‘ ([H']%+K0[H*]S+K+K

N,  \[H')+Ky: ) N

As for the previously considered SiO, insulator, [H'], can then be relate(j to the con-
centration of protons in the bulk, [H'],, via the equilibrium Boltzmann equation:

[H'], = [H],e 70T (7.29)

where ¢, is the potential of the electrolyte-insulator interface, referrgd to the bulk value of
the potential. The condition of charge neutrality for the EIS system 1s

og,toyt o, =0 (7.30)

where o, is the charge density diffuse in the electrolyte, oy is the charge density on the in-
sulator surface, and o, is the charge density inside the semiconductor.

As already anticipated for the SiO, insulator, the above equations represent the starting
point to relate the potential ¢, to the pH of the electrolyte solution. This will be further
considered in Sec. 7.2 and then again in Chap. 10, in dealing with ion-sensitive field-
effect transistors (ISFETs) and related biosensors.

7.1.5 Colloidal Particles

The sizes of the materials in contact with the electrolyte have not quantitatively entered
the picture so far. Basically, we can assume that we dealt with single, macroscopic (1.€., at
least in the millimeter range) electrodes. The picture becomes quite different if we consid-
er many micrometer-sized particles, each of them generating an electrified interface
around itself. Such particles are known as colloidal particles. They include inert objects,
for example, a suspension of metallic microspheres and living objects such as red blood
cells. Micrometer-sized particles belong to the category of “mesoscopic™ objects under-
going Brownian motion (see Chap. 5).

Let us consider a population of metallic spheres. As already noticed in Chap. 5, the
smaller they are (in the range of micrometers), the more they react to the thermal colli-
sions from the ions and water molecules of the electrolyte; they undergo a random walk
thrqugh the solution. Large (centimeter-sized) spheres, too, exchange momentum with the
particles of the solution, but their masses are huge compared with those of ions or mole-
cules, so that the velocities imparted (to the spheres) from such collisions are essentially
zero.

Once t‘hc m?crosphcrcs begin to move in a Brownian fashion in the solution, some of
thcm c‘ollldc‘wqth each other. Many aspects of colloidal L‘hemistry are clarified by a con-
sideration of this subject. Each metal sphere feels its environment through its charged in-
t‘crtucc; each sphere is enveloped in a double layer. All the concepts of the electrified inter-
tu_cg dcvclnplcd so far are of relevance to the colliding microspheres. For the sake of sim-
plicity, we w1_l| not take into account that we are now dealing with sphérical surfaces and not
planes. Considering dilute solutions and no contact-adsorbing ioﬁs one can visualize each
;nclul sphere surrounded by a G-C region of diffuse charge. N()t;:: however, that the G-C
r:j“u 'I:l::l 2‘:‘[};} t:‘\lj‘l)d‘:"f; ;\D‘hc‘rcs L:”‘m“"_",“:]“trg“ n‘ttthc same sign. Thus, there is Coulomb

p pheres come close. The repulsion energy depends on the distance r be-
tween the spheres and varies with distance in the same way as the (i:(‘ ()tcnti;xl This de-
pendence on distance is approximately given by ¢e V. where is the i P e )ft.hc Debye
length and it increases with the 10N concentratic ; g, SIS -

S (see Sec
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Double layers interact with double layers and the metal of one sphere also interacts
with the metal of the second sphere. There is what is called the Van der Waals attraction,
essentially a dispersion interaction, which depends on ¢, and the electron overlap repui-
sion, which varies as 7' (Ref. 1). These interactions between the bulk of the two colloidal
metal spheres shall be represented together by a term (—47 ¢ + Br'2), where 4 and B de-
pend essentially on the chemical composition of the phase which is dispersed in the solu-
tion.

The total interaction between the two metal spheres can then be considered composed
of two parts, (1) the surface, or double-layer, interaction determined by the Gouy-
Chapman potential dye ¥ and (2) the volume, or bulk, interaction (-4 + Br'?). The in-
teraction between double layers becomes repulsive as the particles approach. The bulk in-
teraction leads to an attraction unless the spheres get too close, when there is a sharp re-
pulsion (Fig. 7.5). The total interaction energy U,, depends on the interplay of the sur-
face (double-layer) and volume (bulk) effects and may be represented as

Utota = o ¥ + (—=Ar® + Br 1?) (7.31)

This approximate formula contains information concerning what happens when two
colloidal particles collide. Consider one type of energy-distance diagram (Fig. 7.5). It is
seen that, for the first type of behavior where the electrostatic repulsion predominates, the
net energy U, 1S always positive; this means that two metal spheres under this condition
cannot stick together stably. Note from Fig. 7.5 that, if the spheres did not wrap them-
selves in double layers, the interaction between the particles themselves, neglecting the
double-layer repulsion, would predominate and have a minimum in a negative potential
energy region corresponding, therefore, to a favoring of the aggregation of colloidal parti-
cles.

Thus, particles of colloidal dimensions survive aggregation into macroscopic phases
only because their boundaries develop electrified interfaces. The repulsion between dou-
ble layers is the key to the stability of colloids.

The structure of an electrified interface and therefore the potential drop across it de-

+(\ 0

~
~N/ -

Radial distance @ @ T Tmm—mammma
from surface

o

Potential energy

FIGURE 7.5 The energy of interaction between two colloidal parti-
cles as a function of their distance apart, in the case of conditions favor-
ing stability of the colloid. (From O. M. Bockris and A. K. N. Redd)."
Used by permission.)
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pends on the composition of the electrolyte. The diffuse region can be reduced in thick-
ness and the potential made to fall sharply by concentrating the solution yv1th the addition
of some electrolyte. Moreover, contact-adsorbing ions can be added to increase the IHP
contribution. All this means that one has, by variation of the solution cqmposmon, an in-
direct control over the double-layer contribution and therefore the total interaction energy
for two colloidal particles. In this way, one can control the stability of the col!oids.

Aggregation happens by lowering Gouy-Chapman potentials at the 7in Filstance. This
is obtained by adding more electrolyte to the solution. As a consequence, y increases (see
Sec. 7.2.1), and, since @ = ¢pe ¥, ¢ falls more sharply with distance. In other words, the
Gouy-Chapman region is compressed, and the total interaction curve becomes negative
and shows a minimum at 7., (Fig. 7.6). The colloid has lost its stability. This is known as
coagulation ot flocculation.! _

Flocculation can be brought about in another way. By contact adsorption of ions, most
of the potential drop across the interface can be made to occur between the metal and the
[HP. Thus, by the addition of contact-adsorbing ions, the value of ¢, can be reduced with-
out significantly changing the concentration of the bulk electrolyte. The effect of this will
be qualitatively similar to that shown in Fig. 7.6 and is shown in Fig. 7.7. The value of
Ul,ora 3gain comes into the negative potential energy region; i.., a stable configuration of
particles in contact may exist, and a flocculation thus again occurs.

The characteristic behavior of the colloidal state is that double-layer interactions are as
significant as bulk interactions. This condition can therefore be realized in all systems
where the surface-to-volume ratios are high, i.e., at microscopic dimensions.

A colloidal suspension consisting of discrete, separate particles immersed in a contin-
uous phase is known as a sol. A colloidal suspension can also consist of filamentous par-
ticles (i.e., macromolecules) dispersed in solution.

Instead of having one phase discontinuous and in the form of separate particles, it is
possible to have the phase as a continuous matrix with pores of very fine dimensions
through it. This is a porous mass, or membrane, also known as a gel. In such membranes,
interactions inside the pores become highly dependent on double-layer interactions.

Potential energy

FIGURE 7.6 The energy of interaction between two colloidal parti-
cles as a function of their distance apart, for conditions favoring coagu-

lation. (From O. M. Bockris and A. K. N_Reddy.' Used by permissign.)
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Potential energy

FIGURE 7.7 The effect of the contact adsorption of ions on the con-
dition of the stability of a colloid. (From O. M. Bockris and A. K. N.

Reddy.! Used by permission.)

Sols and gels are of great relevance in biological processes. A living cell is separated
from the outside by a membrane and inside it can be viewed as a collection of colloidal
particles held in suspension by interacting Gouy-Chapman layers. An example of this is
given by the electrochemical mechanism of the clotting of blood.

The reader should be aware of the fact that, in comparison to the initial example
of metallic microspheres, biological membranes are much more sophisticated objects.
With specific reference to interfaces, biological membranes allow us to introduce one
more way of charging a surface, i.e., by the adsorption (binding) of ions from solution
onto a previously uncharged surface. This is the case, for example, of the binding of
Ca?* onto the zwitterionic headgroups (.., dipole ions) of the surfaces of the lipid bi-
layer. As a final consideration on living cells, let us conclude that electrified interfaces
are essential for them, but charge transfer through them is even more important. This
statement will be expanded in the last section of this chapter, when we will consider the

flux of matter through membranes.

7.2 SOLUTION OF THE POISSON-
BOLTZMANN EQUATION UNDER VARIOUS
BOUNDARY CONDITIONS

It Sl‘lould be clear from the previous section that one of the key points for the character-
lzanor! of an electrode-solution junction is the calculation of the profile of the electrical
gotenttal inside the electrolyte. The classical way to obtain this is to solve the Poisson-
Olfzfnann equation. We will do it in the following by first (Sec. 7.2.1) obtaining an ex-
press!on for ¢(x) from x = 0 to x — . The reader should be already aware of the fact
Pri;’te In accordance with the arguments developed in the previous sect_ion, a more appro-
elthICture should consider solving the Poisson-Boltzmann equation from the outer
el oltz plane to infinity. Moreover, in most practical problems, it 15 of interest to cal-
ate the potential profile between two (or several, as already seen n the case of col-
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loidal particles) electrodes separated by a finite distance. This will be considered i Sec
7.2.2. haas

7.2.1 Electrical Potential Profile in an Electrolyte In the Presence
of an Electrode

Let us consider a lamina in the electrolyte parallel to the electrode and at a distance x from
it in the absence of any charge transfer (Fig. 7.8). As for the pn junction, the charge dens;.
ty p, can be expressed in two ways: (1) In terms of the Poisson equation, which, for the x

dimension in rectangular coordinates reads

d*(x)
Py = =608 3 (7.32)

where ¢(x) is the potential difference between the lamina and the bulk of the solution
(taken as ¢(x),_.. = 0) and (2), in terms of the Boltzmann distribution,

p= cziq =, clzge st (133)
] i

where ¢, and c? are the concentrations of the ith ionic species in the lamina and in the bulk
of the solution, respectively, z, is the valence of the species i, and g is the electronic
charge. The factor z;q@(x)/kT represents the ratio of the electrical and thermal energies of
an ion at the distance x from the electrode. From the two expressions for the charge densi-
ty p, in Egs. (7.32) and (7.33), we obtain the Poisson-Boltzmann equation (see also Sec.

8.7)

dZ
dx(f = 3 clageaett (7.34)
0Cr |

A simple transformation can now be used, namely

d*d _1.d(do): (7.35)
dx? 2 do\ dx
+ A
+ Solution
:+
Electrode — '
+ A . S D D I
.r 1 .
0 ! X

Lamina in solution

FIGURE 7.8 A lamina in the solution, parallel to a plane electrode.
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This identity can be used in the differential Eq. (7.34) to give
d (dd\2 2
EOR (N B — by a2 gPkT
dd’( I ) Py Z cz;qe (7.36)
do \2 2
= _ b —2;q W/kT,
or d( I ) ey Z cizge de¢ (7.37)
By integrating Eq. (7.37), we obtain
db\2 2kT
— = beziq kT 4 38
( I ) — Z cle constant (7.38)

The integration constant can be evaluated by assuming that, deep in the bulk of the so-
lution, i.e., at x — o0, not only is ¢x) = 0, but the field d¢/dx is also zero, i.e.,

d¢
Pl = — - o 0 (7.39)
Under these conditions,
2kT
Constant = — > b (7.40)
€&, T
and, therefore
dép\2 2kT
(f) ey 2, ci(e AT 1) 4l
Considering the simplest case of one z:z-valent electrolyte, then
lzi|=lz_| =2 (7.42)
and cb=chb=¢b (7.43)
Therefore Eq. (7.41) becomes
(ﬂ)z = & ch(eXkT — | + WP _ 1) (7.44)
dx EYE,
or ( 49 )2 = = cP(e2 92T — g-2q#2kT)2 (7.45)
dx £yE,
Since & — e™ =2 sinh(x) (7.46)
hence Eq. (7.45) becomes
dp\2 8T , . . (zq9¢
= — 7.47
() - e (3ir) a4

From Eq. (7.47), we can obtain the field d¢/dx in the solution by taking square roots
on both sides. To decide which root is to be taken, we recall that, at the positively charged
electrode, ¢ > 0, sinh (¢) > 0 and d¢p/dx < 0, while, at the negative(l& charged electrode,
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é < 0, sinh (¢) < 0, and d¢p/dx > 0. Hence, only the negative root of Eq. (7.47) corre-
sponds to the physical situation, i.e.,

dé 8kTch \12 . [z9¢
& {ee ) (e 04

ve the diffuse charge density in the electrolyte. To fix
cedure utilized for the MOS capacitor (see Chap. 8), let

us assume that the electrode was charged by connecting it to an external source of elec-
tricity and that a charge density o, was added to the electrode. Then, the diffuse charge in
the solution can be obtained as follows. We can choose a gaussian box of unit area, ex-
tended from x = 0 to x — o, where ¢ and d¢p/dx = 0. Now, the charge density o, = (-0,)

inside this box will be given by Gauss’ law

From Eq. (7.32) we can deri
ideas, and in analogy with the pro

d¢

0= Eosrzx_ 0 (749)
Thus, by using Eq. (7.48) we obtain
; zq¢o
o, =—(8&y&,c%kT)"? sinh ( AT ) (7.50)

Starting from Eq. (7.48), the potential drop in the diffusion layer can also be estimated.
To make the derivation simpler, let us approximate (a complete solution can be found in

Ref. 5)

(9P \ _ 249
smh( *T ) ~ kT (7.51)
b
Then, ¢ 8cbkT \12 zqd (7.52)
dx EoEr 2kT
do 2cP(zq)* \122
or —_—
& ( eoa,kT) ¢ (7.53)

The square root of the quantity in parentheses on the right-hand side of Eq. (7.53) is
the inverse of a length and it is customary to indicate it with the Greek letter . The in-
verse of y is known as the Debye length.

In terms of y, Eq. (7.53) becomes

de '

o =X (7.54)
and, by integration, we obtain

¢ = e (7.55)

where ¢, is the value of the potential at the electrode surface (x = 0).
The reader should note that the Poisson-Boltzmann equation considers ions as point
charges. As a consequence, they are allowed to concentrate on the surface of the elec-
ble values. As suggested by Fig. 7.2, a more realistic picture can

trode up to unreasona
be obtained by assuming that the outer Helmholtz plane, which crosses the centers of
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the first row of hydrated ions, identifies a plane of maximum approach for hydrated
ions. Thus, the diffuse charge density should be calculated by solving the Poisson-
Boltzmann equation from the OHP and not from the electrode surface. The layer delim-
ited by electrode and OHP is referred to as the Stern layer.

In closing this section, let us finally address the question of the numerical value of the
water relative dielectric permittivity &,. Its value is dependent on the electric field strength
of the environment. Bulk water, where the average electric field strength can be assumed
to be zero and no permanent dipole orientation is present, has a corresponding &, value
around 80. On the other hand, on a charged electrode, water dipoles would orient and at-
tain saturation orientation if the charge density on the electrode is large enough. This ori-
ented water is sometimes termed the primary hydration sheath of the electrode and its di-
electric permittivity can be assumed to have a numerical value around 6. Here, fully ori-
ented water dipoles and adsorbed ions form the IHP. Away from the electrode, but still
near it,- water will be partially oriented, most of its dipoles contributing to the hydration
sheath of ions. A mean value around 40 can be assumed for its dielectric permittivity. This
is the value of &, which can be assigned to the OHP.!

7.2.2 Two Charged Planar Surfaces in Water

As a last example, in the following we shall consider the ion distribution between two
similarly charged planar surfaces in water, where (apart from H* and OH" ions) the only
ions in the solution are those that have come off the two surfaces (that is, no added elec-
trolyte is present). Such systems occur when, for example, colloidal particles (see Sec.
7.1.5) or bilayers with ionizable groups interact in water. To find the ion distribution, we
solve again the Poisson-Boltzmann equation. To do so, we need two boundary conditions.
In Sec. 7.2.1, when considering one electrode facing a semi-infinite electrolyte solution,
we chose that both the potential ¢ and its space derivative dp/dx approached zero as x —
® [Eq. (7.39)]. In the present case, one boundary condition follows from the symmetry re-
quirement that the electric field must vanish at the midplane between the two surfaces
(see Fig. 7.9).

The second boundary condition follows from the requirement of overall electroneu-
trality, i.e., that the total charge of the ions (which came from the electrodes) in the gap
between the two electrodes must be opposite to the charge on the surfaces. If o is the sur-
face charge density on each surface, d is the distance between the surfaces and /is a thick-
ness which takes into account the finite size of the ions approaching the surfaces (Stern
layer, see the discussion at the end of the previous section and in Ref. 5), then the condi-

tion of electroneutrality implies that

(di2)-1 @ ¢
a,=-f0 pdx=gos,f0 (Ex;)dx (7.56)
d
or o= & 80( _2) =& SOEsH (757)
dx ||y

where E, ., is the value of the electric field on a plane inside the solution at a distance /
from thg surface s. Note that this value is independent of the gap width d.
Turning now to the calculation of the ionic distribution, we can write down the

Boltzmann distribution of the charge density p as

p = ppeHI¥kT (7.58)
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Stern layers

FIGURE 7.9 Stern layers of thickness / at each surface
dividing the planes of fixed charge density o; from the
boundary of the aqueous solution. (Adapted from
Israelachvili.® Used by permission.)

po being the charge density at the midplane, where d¢/dx = 0 by symmetry and we may
set also ¢ = 0 (since only differences in potential are ever physically meaplnngI)'
Differentiating Eq. (7.58) and utilising the Poisson-Boltzmann equation, we obtain

9 2P ] 9B _ 205 d (42 (1.59)
dx kT dx 2kT dx \ dx
N _ &8 dbidx (dd\2 g, (dp\? (7.60)
hence Px— Po J;O dp 2kao d(dx) = 2kT(dx)
£,.& [ dd \2
or Pr=pot ﬁ(g) (7.61)

which gives p at any point x in terms of p, at the midplane and (d¢/dx)* atx. be-

Starting from the results obtained so far, an expression for the pressure gxnstmg j
tween two charged surfaces in water can be derived. Moreover, similar equations Ca“te
obtained for two charged surfaces in the presence of added electrolytes. The interes
reader can find treatment of these topics in Ref. 5.
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73 MEMBRANE TRANSPORT

The characterization of §olute movement across a barrier separating two solutions is a
topic of great relevance in several scientific fields dealing with biomedical and biotech-
nological issues. The concept of “barrier” can be used to indicate such different objects as
an inert homogeneous material or the highly inhomogeneous membrane of a living neu-
ron. In the following we will begin with continuous transport by introducing the Nernst-
Planck equation and the so-called constant-field equation. Diffusive potentials and equiv-
alent electric circuits will be then considered. Finally, a short description of discontinuous
transport will be given.

7.3.1 The Nernst-Planck Equation

Let us consider the one-dimensional motion of a solute i crossing in the x direction a ho-
mogeneous membrane separating two homogeneous solutions in the same solvent and at
the same temperature. In order to describe the flux of this solute, we can start by writing
the current density J in any point x of the solution as (no time dependence)

dci(x )
dx

Jix) =-D,z;q + ;g Cx)E(x) (7.62)

where C(x) is the molecular concentration of the solute i at x, z; is its valence, ¢ is the
(positive) elementary charge, D, and fi, are the molecule diffusion and mobility coeffi-
cients, respectively, and E(x) is the electric field value at x. The two terms of the right side
of Eq. (7.62) are clearly the diffusion and drift current density terms already introduced
for electrons and holes in Chap. 3.

We can then transform Eq. (7.62) into a molar current density as follows:

dc(x)

Jm,i(x) = —Dizi ? dx + M‘l’zi L0/';Ci(x)E(x) (763)

where % is the Faraday constant (see App. A) and c,(x) is the molar concentration of the

solute 7 at x. _
We can now introduce the molar flux F; of the solute i, defined as the moles of solute

that cross the membrane (unit area) in the x direction per unit time

F(x)=-D; dc‘f) + pici(x)E(x) (7.64)

Let us now define the “generalized” mobility u; as

Hi (7.65)

B ==

-7

Then Eq. (7.64) can be written as, dropping (x) reference for simplicity,
F,= % s yer, FE (7.66)
cl dx
The Einstein relationship gives (for molar quantities)

D, R (7.67)
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where R, the gas constant, is defined as
R = Nayvk (7.68)

and N and k are the Avogadro and Boltzmann constants, respectively. By making use of
Eq. (7.67), we transform Eq. (7.66) to

d _
F.,=-u RTi +u,c;z; ¥E (7.69)
(4] I d‘_

which can be easily transformed into

d _
F.=-u;c,—[RT In ¢; + z,F(x)] (7.70)
do
where e =-F (7.71)

Equation (7.70) is a simplified version of the Nernst-Planck equation, first introduced by
Nernst (1888) and Planck (1890). The term inside the brackets can be recognized as a
simplified expression of the electrochemical potential energy Il. (More general expres-
sions of IT can be found in Refs. 6 and 7). Accordingly, we can write

Fu=-uc 22 7.72
ci — TU;C ax (7.12)
Moreover the gradient of an energy can be always related to a force f as follows:

_ dan 773

In conclusion, we arrive at the flux-force relationship

Fa= —u;c; f (7.74)

Ip most books dealing with membrane transport, the Nernst-Planck Eq. (7.70) is deduced
starting from Eq. (7.74). In concluding this section, two points can be stressed, namely:

1. Equation (7.62) is equivalent to E

qs. (3.46) and (3.47) derived for the current density
of holes and electrons.

2. The generalized mobility u; can be thought as a proportionality constant between the
mean velocity z; of particles i subject to

o a frictional drag and any force, acting on them,

b= uf (7.75a)
For example, for a body freely moving in the atmosphere, Eq. (7.75a) becomes

where m; is the body mass and g the gravitational acceleration.

7.3.2 Solutions of the Nernst-Planck Equation

The Nernst-Planck equation is

the starting point for sever i '
. : al ¢ BODE
by integration under appropri ssumptions on char

ate boundary conditions and assumptions on charge and
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electric field. When applied to a concentration c, of uncharged molecules (e.g., glucose),
Eq. (7.70) reduces to

d
dc;
or F,= _uiRTE (7.77)

Let us assume that Eq. (7.77) describes the flux of the molecule i in the x direction at
some point inside a homogeneous membrane of thickness Ax. Then, if the system under
study is in a steady state, F.; should have the same values at all points within the mem-
brane. By assuming u; also constant through the membrane, Eq. (7.77) can be easily inte-
grated across the thickness Ax of the membrane separating two semi-infinite solutions of
concentration ¢, and c,, respectively. Thus,

F, fo ™ g = RTu, [ E"”" de (7.78)

The quantity ¢, , represents the concentration of the solute “just inside” the membrane, on
the side in contact with concentration c,,. Similarly, ¢;, represents the concentration of
the solute “just inside” the membrane, on the side in contact with concentration B i

The meaning of the above definitions is that there is a discontinuity in matter when a
particle is crossing a solution/membrane boundary. Concentrations “just inside” are
linked® to concentrations “just outside” via partition coefficients B(c;).

The simplest hypothesis on the partition coefficients is to assume them independent of
the actual concentration, i.e.,

Ei b El' a

8 _ g = ba 7.79

ci,b B‘ Ci.a ( )
Under conditions given by Eq. (7.79), Eq. (7.78) yields

F.,=-RT s 7.80

ci— T ul’Bt’ Ax ( . a)
or, according to Eq. (7.67),

F=-D,p< 7.80b

ci T T iBi Ax ( . )

Equation (7.800) is easily recognized as the Fick first law of diffusion (see also Chaps.
3 and 5). By introducing the permeability coefficient P; defined as

DIBI'
Py= Ar (7.81)
Equation (7.804) can be finally written as
F,=-P;Ac; (7.82)

When the solute is charged (i.e., z; # 0) and there is an electrical potential difference
across the membrane, the situation is more complex, in consideration of the fact that Eq.

Scanned by CamScanner



196 JUNCTIONS AND MEMBRANES

(7.70) cannot be integrated, unless the dependence of the electric potential ¢ on x is
known.
Before making any choice on such a dependence, let us rewrite Eq. (7.70) as

— dc,-+c,-::,-$‘7ﬁ _
=" ’(dx RT dr) (7.83)
Then, by multiplying both sides by exp (z; #¢/RT) and rearranging, we obtain

F &% kT dx = —D,d(c,ei% #RT) (7.84)

Assuming a steady state and that D, is constant through the membrane, the integration of
Eq. (7.84) across the membrane thickness gives

Ax CibBp
F, FiFRT dy = ), J‘_ _ d(c;esi FO/RT) (7.85)
0

CiaPa

The right-hand side of Eq. (7.85) can be immediately integrated. On the other hand,
in order to accomplish the integration of the left-hand side, the dependence of ¢ on
x within the membrane must be known or assumed. A simple and most frequently
used assumption, first proposed by Goldman in 1943, is that ¢ is a linear function of x,
i.e. (with the overbar meaning the quantity “just inside” the membrane),

b=y + %—x (7.86)
where Ad = (Ax) — H0) (7.87a)
or equivalently,

Ad = Hb) - Ha) (7.87b)

Equation (7.86) is known as the constant field assumption. By virtue of this assumption,
Eq. (7.85) becomes

Ax - S s -
FC,- f ez,-.‘i‘qba/RTez,-.‘FAszfRTAx dx = —Di(Ei,b eZiFep/RT _ Ei,a e:,-:?cﬁa/RT) (788)
0

Multiplying both sides by exp(—z; % ¢,/RT), integrating and rearranging yields:

2 FAG/RT _ =

ci RT Ax e:,'y_IﬁIRT -1
Equation (7.89) is usually referred as the constant field flux equation and it refers to

intramembrane properties. However, by assuming again partition coefficients indepen-
dent of the concentrations [Eq. (7.79)], it can be shown (see Sec. 7.3.4) that

(7.89)

Adp=Ad (7.90)
Under these conditions, and making use of Eq. (7.81), we finally arrive at
_ i FAGRT _ .
_ PzF Ad)[ Ci b€ C..a] (7.91)
ci RT ez;‘g'-Atb/RT _ 1
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Equation (7.91) has been widely employed for the description of ion transport across bio-
logical membranes (a different approach will be shortly described in the next section).

Let us analyze some relevant features of Eq. (7.91). First of all, it should be appreciat-
ed that when ¢;, # ¢;;, the relation between F_; and A¢ is clearly nonlinear. In other
words, the membrane offers a different resistance to the flow of an ion depending on the
direction of the flow. This asymmetric behavior is an example of rectification. The only
exception to the rectifying behavior is given when c;,, = ¢; ,. The reader can easily verify
that under this condition the relation between F; and A is a straight line passing through
the origin. The resulting equation is

PzF Adc,
o il i
ci RT (7.92)

By multiplying Eq. (7.92) by the ion charge z; % and rearranging, we obtain a form of
Ohm’s law:

252
_P,-z,-df Ci

I, = ( T) Ad (7.93)

Going back to the general case [Eq. (7.91)] when c;, # c;;, the condition of zero flux
gives (see Sec. 6.2.1) the Nernst equilibrium potential:

Cib

Ap=_2In ( o ) (7.94)

Finally, letting the potential drop A¢ go to zero, the resulting flux approaches the Fick law
of diffusion (see Prob. 7.3),

Ac;
Fq=-k AC;:'DiB.‘E (7.95)

The reader should be aware of the fact that Eq. (7.91) is obviously an ipcomplete pic-
ture of any real situation in the sense that it describes the flux gf a‘single ion, not taking
into account the fact that other ion species (at least one of opposite sign) should be present

in the solution. o i ; -
The general problem is faced at an elementary level when it is restricted to univalent

anions and cations. Then, the flow of each cation c, is given by

FAPRT _
i A Coa (7.96a)
o+ RT o AG/RT _ |
and the flow of each anion c_ is given by
o o PFAS[ e e, (7.96b)
P RT e FAGRT _ |

The steady-state condition implies the zero current condition, 1.e.,

lz.@'(? F..-> F. )=0 (7.97)

C

where 3 F_, is the sum of the flows of all cations and where 3, F._is the sum of the flows

of all anions.
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Combining Egs. (7.96) and (7.97) and solving for A¢$, we obtain the Goldman.
Hodgkin-Katz (GHK) equation

Z Pyt Z Pé g

F Z Piuc,;+ Z P
c a

where the subscript a has been replaced by o (outside) and b by i (inside).
In most biological membranes, where the predominant permeant ions are Na*, K* and
CI, Eq. (7.98) reduces to

(7.98)

RT PraCnao T PxCk ot PoiCol
( NaCNa, KCK, ciCcl ) (7.99)

Ap=—1n
¢ F PnaCnai T Prex it PoiCae

Equation (7.99) is frequently used to estimate the potential drop across a biological mem-
brane.

Example 7.1 Let us give an estimate of the membrane potential under conditions typical of
an electrophysiology experiment (squid axon in seawater).

Answer Let us assume:
Py:PnaiPc = 1:0.03:0.1
¢k =10mM CNa,o = 460 mM cclo = 540 mM
¢k, = 400 mM CNa; = 30 mM ca =40 mM
Then Eq. (7.99) gives
Ap=-710mV (E7.1)

On the other hand, we can easily verify (see Prob. 7.4) that Cl is approximately at equilibrium.
Therefore, Eq. (7.99) can be approximated with

RT PrnaCnao T PxCk o
A¢=—F;’:ln(NN' =

= _ E7.2
PraCnai + Prek ) Tl my (Eid

Before closing this section, let us finally consider a very simple case, where a homo-
geneous membrane separates two solutions a and b of a single z:z salt. In this very special
case the flux potential drop relation can be deduced by directly integrating the Nernst-
Planck equation. According to this equation, we can write

dlnc dé \]
F..=—c,u,|RT =+, F| — 7.100)
—C U [ ( i E 37;( I )- (
dlnc do\]
Fo.=—cu|RT =) -z, F| —— 7.101)
one w2 (
Since bulk electroneutrality of each solution must be preserved, it follows that
c.=c_=c (7.102)
and F..=F_=F, (7.103)

Equating Eqs. (7.100) and (7.101), making use of Egs. (7.102) and (7.103), and rear-
ranging, we obtain
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d_d):A( u,—u_\(RT\/ d -
e == )( — )(I nc| (7.104)

Assuming again constant partition coefficients, integration of Eq. (7.104) across the
thickness of the membrane gives

A$=A¢=~( = )(RT)ln(ci) (7.105)

u.tu \z# Cp

Substituting Eq. (7.104) into Eq. (7.100) and combining terms yields

c

2RTu.u_\ dc
—(—)— (7.106)

dx

U, +u_

By taking into account Eq. (7.103), we can finally write

F.=-D.[% 7.107
e o

where D., the diffusion coefficient of the salt, is

_ 2RTu.u

7.108
u, +u_ ( )

£ 3

This simple case allows us to discuss a relevant principle which is fundamental to the
understanding of the origin of diffusion potentials in more complex systems. The princi-
ple is that, in the absence of an externally applied current, electroneutrality can be pre-
served only by the equivalent flow of anions and cations across a membrane. In the simple
system just considered, this zero current condition (which does not imply equilibrium
conditions) implies the constraint

F..=F, (7.109)

and, therefore
[=2,FF.,+z FF._=0 (7.110)

The reader should note that, if u, # u_, then Eq. (7.110) can be satisfied only if an
electrical potential difference is generated with a magnitude proportional to the difference
in mobilities and with an orientation appropriate to slow down_ the movement of the ion
with the greater mobility and to speed up the movement of the ion with the lower mobili-
ty.

On the other hand, if

U, =u_ (7.111)
then Ap=0 (7.112)
In the limiting condition in which one of the mobilities is zero, €.8.,
u,=0 (7.113)
then, according to Eq. (7.105), we obtain
so=—g () (1.114)
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where A¢ is clearly the Nernst equilibrium potential. A similar result, with opposite ori-

entation, would be obtained with #_= 0. .
Equation (7.114) means that, if an ion cannot cross the membrane, then neither ion is

permitted to cross the membrane, otherwise electroneutrality would be violated. Thus, if

U, =0 (7.115q)
or u =0 (7.115b)
then F.=F_=0 (7.116a)
and D.=0 (7.116b)

In this limiting condition there is no ion flux and the system is in a state pf 'equilibxrium.
We wish to underline that this equilibrium condition is never globally satisfied by living
biological systems, which behave under out-of-equilibrium conditions.

7.3.3 Electrical Circuit Analogs

Let us rearrange the Nernst-Planck equation [Eq. (7.70)] of a single ion i in the form

RT\/ d do
= 4.C:Z — [ — . — 117
) CIu ) I
The corresponding (molar) current density is then
RT \/dInc; do
=_—y.c.z2%F2 i
e = SN I
and, rearranging, we obtain
Ji  (RT\(dg d¢
wz}F%, —‘(z,-f?)( dx )_( dx ) (7.119)

Assuming steady state (i.e., J,; constant), Eq. (7.119) can be formally integrated over
the thickness of the membrane Ax, yielding
J‘A" dx RT . ¢,

= In
wz3F%;, zF ¢y

~A¢ (7.120)

Now we can define the integral resistance of the membrane to the ion i as

Ax  dx

= — 121
K o wz:F%, (LI
and the voltage source of ion i as the Nernst potential
RT C;
B, = L1 7.122
! Z,-g: ln ( c,"" ) ( )

By making use of Egs. (7.121) and (7.122), we write Eq. (7.120) as
J.R=E —~Ad (7.123)
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The circuital representation of Eq. (7.123) is given in
Fig. 7.10. o b |

Clearly, the equilibrium condition, when J; = 0, is
given by

Ap=E,= 2o 1n (e
¢= i F (

) (7.124)

ii

The flow of two ions which, according to the Nernst-
Planck equation, move independently of each other, can
be represented as a two-branch parallel circuit (Fig. Ad
7.11). Its current is given by

I=g\(E, - Ad) + go(E; - Ad) (7.125)

1 .
where &= % (7.126a) FEi QB
1

is the conductance of ion 1 and

1
&= (7.126b)

o

FIGURE 7.10 Equivalent circuit
representation of the flow of a sin-
gle ion.

is the conductance of ion 2; E, and E, are the two Nernst

potentials.

Ad

AN
U~

FIGURE 7.11 Equivalent circuit representation of the parallel flow of two ions.
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[

o Ad

l

FIGURE 7.12 AsFig. 7.11, but now including the charging capability of the membrane.

If a charging process is also present on the membrane, a capacitor has to be inserted in
parallel to the resistive branches (Fig. 7.12). The current density is now

d
I= Cm—t(mﬁ) +g1(E, — Ad)t go(E, — Ad) (7.127)

where C,, is the membrane capacitance per unit area.® These schemes will be further con-
sidered in Chap. 11 where the convention (A¢ — E,) is chosen.

In closing this section, we wish to underline that electrical circuit rules, such as those
routinely used in electrical engineering, deal with flux of electrons and do not recognize
different ionic species. On the contrary, artificial and biological membranes make these
distinctions. This consideration should be kept in mind when using the very valuable
equivalent-circuit approach, to avoid misleading results.®

7.3.4 Modeling Transport through Structured Membranes

Fixed charges can be present on biological membranes (see Chap. 4). Moreover, partic}es
crossing the membrane can interact with specific sites along their path, for example, 1n-
side a narrow channel (see Chap. 4). These situations, which have not been taken into ac-
count so far, will be considered in this section.

Donnan Equilibrium. Let us first consider the effect of fixed charges present on d
membrane. In order to do so, let us first reconsider in greater detail the movement of an
ion across a membrane. We can always imagine this motion as a three-step process: the
first step is the crossing of the membrane’s first border (i.e., the outer solution-membran€
interface). Let us call this border the outside (o) border. The second step is the movement
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through the thickness of _the membrane. The last step is the crossing of the inside (i) bor-
der (i.e., the membrane—inner solution interface). Consistent with this description, the po-
tential drop across the membrane can be split into three parts, i.e.,

Ap=Ad,; +Ad+Adr, (7.128)

where A@,, is the potential drop at the outside border, KE is the potential drop through
the interior of the membrane and A¢y; is the potential drop at the inside border.
In contrast to the movement through the membrane thickness, the two border crossings

can reasonably be assumed to be equilibrium phenomena.® Therefore we can indicate
them as two Nernst equilibrium potentials, namely

RT C,
Ad)o’a— ﬁ In (%:) (7.129)
Age = L (& (7.130)
and 7= - F n(c,-) .

In accordance to Eq. (7.79), if the ratio at the borders is independent of the concentra-
tions, we can then write

1
B

n||°n

<

(7.131a)

oy (7.1315)

o |9

Therefore, under conditions expressed by Eqgs. (7.131),
A= Ad (7.132)

We remind the reader that Eq. (7.132) was assumed without justification in the previous
section [see Eq. (7.90)].

The [situati‘(l)n(beco)r]nes slightly more complex if we assume the presence of a concen-
tration of a fixed molecular species in the membrane structure. As we already discussed in
Chap. 4, this is a very reasonable assumption for blologlcz_ll membygnes. In lt'h::j p:esenc:;_
of a fixed negative charge concentration, the electroneutrghty condition, applied at any
the membrane borders to a monovalent salt of concentration ¢, reads

cmc=c (7.133)
and Com=Comtl2IM (7.134)

where ¢, and c_ represent the cation and anion concentration outside th? mcér:)l}r?hrf;lzhe_

subscript m identifies jon concentrations in the membrane, and z 1s the X; j::com red %O

ative chemical components fixed to the membrane, with concentration M. s oo 111)11 osed

Previous use of the electroneutrality condition, Eq. (7.134) 1s a new COnSHATL,

by the presence of the fixed charged component of concentration M. A
By assuming again an equilibrium condition at the solution-mem ’

can write

Com =£Z'_ln(_c—_) (7.135)
A= 3 ln( ’y F e
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which implies

=M= — (7.136)

C. C_m

By using Egs. (7.133) and (7.134), we transform Eq. (7.136) into

.
cB=— +|z|M (7.137)
B 3 2|

or B —zZIMB-c=0 (7.138)

which gives

lz2|M + (2" M? + 4¢?)'2
= 2c

The equilibrium system just considered is referred to as the Donnan equilibrium. It de-
picts a situation where the partition coefficient 8 is a function of the salt concentration c.
Therefore, indicating with 8; and 3, the partition coefficients at the two sides of the mem-
brane, it is

(7.139)

Bi* B, (7.140)

Under these conditions, Eq. (7.128) becomes
=t 1gp $ AT+ ) 7.141
¢_“ F nBo ¢ F nBi ( . )

and the first and third terms on the right-hand side of Eq. (7.141) do not cancel each other.
In the limiting case of |z|M much greater than ¢, Eq. (7.141) reduces to

RT RT RT ¢,
A¢=§lnﬁi—§lnﬁozglnf (7142)

1

In this instance, A¢ is the sum of two equilibrium potentials that arise solely at the inter-
faces of the membrane through which no net flux occurs. This is the origin of the electri-
cal potential differences generated in glass pH electrodes.

Obviously, the considerations made so far can be applied to any system made of two

equil.ibrium compartments separated by a membrane, one of which contains charged
species that cannot cross the membrane.

Discontinuous Flow. Biological (and also artificial) membranes often display satura-
tion, transeffects, and competitive behavior that cannot be described by Nernst-
Planck-type equations, where P, the permeability coefficient, is a constant and is not in-
fluenced by the concentration of the diffusing species or by the presence of other perme-
ant 1ons.

In other words, the Nernst-Planck approach is not appropriate for describing very im-
portant entities such as ion channels. For these entities a quite different approach, based
on the absolute reaction rate theory (proposed by Eyring in 1935), must be used. This ap-
proach will be illustrated with a simple example in the following. The reader can find fur-
ther details in Refs. 6 and 8.

The fundamental assumption of this approach is that the movement of a particle inside
a membrane is discontinuous, and the membrane can be viewed as a series of potential en-
ergy barriers, depicted as a series of peaks and valleys, that a pgticle ust cross in order
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opes from the outer () to the inner (i) solution. The key actor in the absolute rat th

ry is the rate constant K; which has the dimension of frequency [s~!] and ovi,e ch,_

movement of a particle from a minimum in energy (i.e., the “valley” i) to another mini

mum in energy (i.e., the “valley” j) over a maximum (i.e., the “peak” j) r mini-
Without further ‘Justlfications (which are provided in Ref. 6), let us 'assume that K, i

given by the following Boltzmann (molar) distribution: ’ Al &y 18

kT
Ky= et (7.143)

where £ is the Boltzmapn constant, T the absolute temperature, 4 the Planck constant
AG;; a molar energy mdu_:ating the height of the peak from the valley i, and R the gas con:
stant. The rea@er can easily verify that K;; has the dimension of frequency and that its nu-
merical value increases with the absolute temperature T. Equation (7.143) originated from
considerations of the average frequency v of the vibrations (i.e., the movement) of a mol-
ecule at temperature 7. This frequency v can be estimated by equating

hv =kT (7.144)
kT
or v=" (7.145)

At room temperature v is in the order of 1012571,

The rate coefficient K, is obtained by weighting the frequency v by a Boltzmann distri-
bution. ! The rate K; can then be related to a mean free path I in such a way that the mean
velocity of a particle moving or rather “hopping” (the situation is similar to the one de-
scribing the electrode-solution interface; see Sec. 7.1 .3) from valley i to valley j is given by

v =Kyl (7.146)
Consequently, the flux F, of a particle is given by
F.=Klc (7.147)

Let us apply this approach to a simple two-barrier reprgsenta_tion of a membrane as de-
picted in Fig. 7.13. Let us further assume that we are de_ahng with an uncharged molecu_le
of concentrations ¢, (outside compartment) and c; (inside comp_a.rtment), so that no drift
component has to be taken into account. Then, using the x_mtatlon. of Fig. 7.13, the flux
from the outer compartment into the membrane (concentration C,) 18

F c.om = Kom col - Kmocml (7 148)

Similarly, we can write the flux of exit from the membrane into solution i as
Fopi=KniCml—Kimcil (7.149)

When the diffusion of the molecules reaches a steady state, then we have
Fc,om = Fc.mi = Fc (7]50)

Also, if the barriers have the same amplitude, then
K,=Kmn (7.151)
om

152
and Kpo=Kni (1.152)
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Cm
c c
¢ ' | AG,
AGy
S ~ e N ~ — N ~ —

[ l l

FIGURE 7.13 A symmetrical double energy barrier model for dif-
fusion across a membrane.

Therefore, solving Eqs. (7.148) and (7.149), with constraints given by Egs. (7.150) to
(7.152), we obtain

K,
B = B —~ai) (7.153)

The reader can note that Eq. (7.153) has the form of a diffusion equation, so that we
may write

!
P=—2" (7.154)

where P is the permeability coefficient of the molecule.
Let us indicate with Ax the thickness of the membrane. Then, from Fig. 7.13, we can
write

Ax=2] (7.155)
Therefore, since from Eq. (7.81)
DB
p=—L 156
e (7.156)

we can also write, taking into account Eq. (7.154),
DB=K,, P (7.157)
According to Eq. (7.143), the rate constant K, can be written as

kT

K,, = — e AGRT (7_158)

Moreover (see Fig. 7.13), we can split AG as

AG =AG, + AG, (7.159)
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and, therefore we can write

T, ‘
K,, = Te,,. Gg/RT 5-AG,/RT (7.160)

12kT |
and DB = 5 ¢ AGB/RT -AG,/RT (7.161)

with the following identifications
B =e it (7.162)
kT

D === e 80kt (7.163)

Equation (7.163) could be further compared to the Einstein-Smolucowsky relation

_&1

D
2t

(7.164)

The reader should appreciate that, unlike the approaches that involve integration of the
Nernst-Planck equation, the rate theory allows, at least in principle, the parameters 8 and
D to be expressed in terms of the physical and chemical structural details of the diffusion
pathway.

The approach just introduced can be extended to (more realistic) multibarrier systems
and also to charged species moving through channels containing binding sites.®®

PROBLEMS

7.1 Discuss the frequency dependence of the double-layer equivalent impedance (Eq. 7.1).

7.2 Find out the expression for the minimum in the potential energy between two colloidal parti-
cles (see Sec. 7.1.5)

7.3 Deduce the Fick diffusion law from the constant field flux equation (Eq. 7.89).

7.4 By using the numerical values given in Example 7.1, find the numerical values of the Nernst
equilibrium potential for Na*, K™ and CI".

7.5 Find the expression for the membrane potential under steady-state conditions by making use
of the equivalent circuit model (Eq. 7.127).
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