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SummarySummary

• Systems

•SISO control schemes

• Robustness of SISO control schemes

• MIMO systems

• Observers for model-based FDI

• Networked control  

• Multi agent systems

• Distributed control
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SystemsSystems

A system can be defined as:

• a set of things working together as parts of a mechanism or an 
interconnecting network; a complex whole.

• a set of principles or procedures according to which something 
is done; an organized scheme or method.

• …............ 

• A system is a group of interacting or interrelated entities that 
form a unified whole.



System control basics

SystemsSystems

E3

E1

E4

E2
System

Environment

Boundary

A system is composed by a number of entities  separated from the 
environment by a boundary
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SystemsSystems

E1

E3 E4

E2

It has a structure 
defined by the 
relationships among 
the entities 

A system is composed by a number of entities  separated from the 
environment by a boundary
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SystemsSystems

A system is composed by a number of entities  separated from the 
environment by a boundary

u1

u2

d1

d2

y2

y1

y3

E1

E3 E4

E2

It reacts to the 
environment inputs 
(u, d) and acts on it 
(y) to exploit its 
purpose

It has a structure 
defined by the 
relationships among 
the entities 

d3
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SystemsSystems

A system is composed by a number of entities  separated from the 
environment by a boundary

u1

u2

d1

d2

y2

y1

y3

E1

E3 E4

E2

The inputs could be 
malicious or not 
manipulable, i.e., 
properly named 
disturbances d

The inputs could be 
certified or 
manipulable, i.e., 
properly named 
inputs u

d3

d4
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SystemsSystems

The concept of system is very general and include:

• Natural systems 

• Human made systems

• Social systems

• Cultural systems

• Economic systems

• Physical systems

Any entity of a systems can be a system itself: Sub-system
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SystemsSystems

In order to exploit its purpose in spite of malicious inputs from 
the environment, or even internal modifications, the system 
should have some properties:

• Robustness

Property of a system to stay healthy in perturbed conditions, 
i.e., the structural ability of a system to resist to changes in 
parameters/structure and to external perturbations maintaining 
its steady-state performance

• Resilience

Th capacity of a system to recover its behaviour and 
performance from changes and external stresses. It is an 
extension of the property definition for mechanical bodies.  
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SystemsSystems

The behaviour of systems can be represented by models  in the 
time domain

Differential equations
d y (t)

d t
=F ( y (t) , u( t) , d (t) ,t )

H (∂ y ( x , t)
∂ t

,
∂ y (x , t)
∂ x )=F ( y (x , t) ,u (x , t) , d (x , t) ,t )

Difference equations
Δ y(t )=F ( y (t) ,u (t) , d (t) , t )
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SystemsSystems

The behaviour of systems can be represented by models in the 
frequency domain (only linear systems)

Differential equations

Difference equations

Y (z )=F (z )⋅U (z )z-transform

Laplace-transform Y (s)=F (s)⋅U (s )

Fourier-transform Y ( jω)=F ( jω)⋅U ( jω)

Transfer function
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SystemsSystems

The behaviour of systems can be represented by finite-state 
models 

Petri Nets

Automata E2E1

c1

c2

c3

P1 P3

P2

T1T1
T2

T3
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SystemsSystems

The behaviour of systems can be represented by flow charts 

A1

A2

C

A3

Yes

No
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SystemsSystems

Open-loop systems has very poor robustness and resilience 
properties

E1

d

u E2 y
w

The subsystem E1 generates the variable w taking into account the 

input u only and, by E2, the output y depends on both w and d
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SystemsSystems

Closed-loop  systems has to be implemented to have good 
robustness and resilience properties

E1

d

u E2 y
w

The subsystem E1 generates the variable w taking into account the 

input u  and the output y, such that w  compensate for or limit, at 
least, the influence of d on E2 
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SISO control schemes

Single-loop output feedback

The control action depends on the mismatching between the 
expected behaviour (set-point) and the actual one as measured. 

Disturbances can appear anywhere outside the controller

A
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SISO control schemes

Single-loop output feedback
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Feedback cascade control

The control action depends on a couple of “nested” control loops.

A
actuator

P1
process

C1
controller

T1
trasducer

+
+

+r(t) u(t) m(t) d(t) y(t)

_

F2
filter

+
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+

T2
trasducer

P2
process

C2
controller

+
_

F1
filter

+

n1(t)
+

Controller

SISO control schemes
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Feedback cascade control
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Feed-Forward control

The control action is implemented by means of two components: one 
predictive (feedforward) and one corrective (feedback).

A
actuator

P
Process

C1
controller
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SISO control schemes
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Feed-Forward control
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Split-range control

Two controllers alternatively act two actuators affecting the same 
process.

A1
actuator

P3
processC1

controller

T
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SISO control schemes



System control basics
















0
1

0
1

3222

3222

3111

3111

e
TFPPAC

PPAC

e
TFPPAC

PPAC

Wr
















0
1

0
1

3222

31

3111

31

1

e
TFPPAC

PP

e
TFPPAC

PP

Wd



















0
1

0
1

3222

3222

3111

3111

e
TFPPAC

PPAFC

e
TFPPAC

PPAFC

Wn

SISO control schemes

Split-range control



System control basics

Override control

Two controllers can act on the same actuator with some priority

P
processC1

controller

T
trasducer

+

+
+r(t) e(t) y(t)
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_

F
filter
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Controller

+
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+
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controller
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SISO control schemes

>
selector

u(t) y(t)

u2(t)

u1(t)
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SISO control schemes

Override control

W r=

C 2 A P

1+C2 A P T F
u2>u1
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P
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u2<u1

W n=

−F C2 A P
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−F C1 A P
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u2<u1
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Anti-Wind-up controller

The model of the actuator saturation is embedded into the controller to 
exit the saturation as soon as the error changes its sign

SISO control schemes

kP

+r(t) e(t) u(t)
_

Lp

LP Filter - I

e’(t)
Am

saturation model

+

+

y(t)
D

+

_

PI anti wind-up

PI anti wind-up +D
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Anti-Wind-up controller

The model of the actuator saturation is embedded into the controller to 
exit the saturation as soon as the error changes its sign

SISO control schemes

kP

e(t) u(t)

Lp

LP Filter - I

e’(t)
Am

saturation model

+

+

U (s)=k p

1

1−
1

1+τ s

E (s)=k p

1+τ s
τ s

E (s)If saturation is not engaged
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Anti-Wind-up controller

The model of the actuator saturation is embedded into the controller to 
exit the saturation as soon as the error changes its sign

SISO control schemes

kP

e(t) u(t)

Lp

LP Filter - I

e’(t)
Am

saturation model

+

+

u ' (t)=e ' (t )+U M sign(u (t))If saturation is engaged

u'(t)
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Anti-Wind-up controller

The model of the actuator saturation is embedded into the controller to 
exit the saturation as soon as the error changes its sign

SISO control schemes
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Smith predictor

The plant model without the delay is embedded into the controller to 
estimate the “real-time” output and a feedback loop is included to 
compensate for model mismatching 

Ingresso Uscita

Processo
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K _ D

1
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I n t e g r a t o r eG r a d i n o

d u / d t

D e r i v a t o r e

PID

Predittore di Smith

Errore di modello

SISO control schemes
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Smith predictor

The step response of the controlled plant without Smith predictor
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SISO control schemes
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Smith predictor

The step response of the controlled plant with Smith predictor
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SISO control schemes
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Adaptive control

The parametric model of the plant is used and its parameters are 
idenfied to design the proper controller

SISO control schemes

The controller parameters are adjiusted such that the behaviour of 
the plant follows that of the reference model
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Adaptive control

The parametric model of the plant is used and its parameters are 
idenfied to design the proper controller

SISO control schemes

The controller parameters are adjusted taking into account the 
actual/current parameters of the plant model
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Gain scheduling control

The controller is chosen among a set of controllers designed on the 
basis of linear models around different working points of a nonlinear 
plant

SISO control schemes

P
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Robustness of SISO control schemes

G

H

yr +
_

e

z

Robustness to variations of the system parameters.

The plant G can be affected by aging and wear such that its 
dynamics change with time.

Changes of the plant dynamics can be induced by external 
actions.

The control system should be able to limit the effect of 
changes in the subsystems dynamics on the output y
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Robustness of SISO control schemes
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should be protected and 
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Robustness of SISO control schemes

Robustness to disturbance:  the output should be not sensitive to 
external uncontrolled inputs
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Having G1 with a high modulus 
allows for attenuating the effect od 
disturbances acting on the direct path

Disturbances on the feedback can 
be hardly attenuated
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Robustness of SISO control schemes

Robustness to disturbance:  the output should be not sensitive to 
external uncontrolled inputs

G1 (upstream) should “know” the structure of 
the disturbance for its complete rejection

G1

H

y=0r +
_

e=0

z

+

+ G2

d1

w

w=-d1

G1
y=0e=0

+

+ G2

d1

w
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MIMO control systems are characterise by having a number of 
manipulated inputs and a number of measured variables (outputs)

MIMO control schemes

u: input
d: disturbance
y: output
x: state

u1

u2

d1

d2

y2

y1

y3

x3

x1

x4

x2 d4

d3
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MIMO control schemes

ẋ (t)=A x (t)+Bu (t)+E d ( t)
y (t)=C x (t)+Du (t)+F d (t)

x∈Rn u∈Rq y∈R p

d∈Rm

Linear time-invariant MIMO systems can be represented in the state-
space form by constant matrices

u1

u2

d1

d2

y2

y1

y3

x3

x1

x4

x2 d4

d3



System control basics

MIMO control schemes

ẋ (t)=A x (t)+Bu (t)+E d ( t)
y (t)=C x (t)+Du (t)+F d (t)

x∈Rn u∈Rq y∈R p

d∈Rm

A   represents the connections among the systems components

B   represents how the inputs act on the system

E   represents how the disturbances act on the system

C  represents how the measurements depend on the system's 
internal energy

D represents the direct/instantaneous influence of the inputs 
to the measurements

F represents the effect of the interferences on the 
measurements

Linear time-invariant MIMO systems can be represented in the state-
space form by constant matrices
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MIMO control schemes

s X (s)−x (0)=A X (s)+BU (s)+E D(s )
Y (t )=C X (s )+D U (s )+F D(s )

Y (s)=C ( sI−A )
−1

x (0)+[C ( sI−A)
−1

B+D ]U (s)
+[C ( sI−A)

−1
E+F ]D(s )

ẋ (t)=A x (t)+Bu (t)+E d ( t)
y (t)=C x (t)+Du (t)+F d (t)

x∈Rn u∈Rq y∈R p

d∈Rm

Laplace transform

Linear time-invariant MIMO systems can be represented in the state-
space form by constant matrices
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MIMO control schemes

Y f (s )=G(s)U (s)+H (s)D(s)

G(s)=[
G(s)11 … G(s)1q

⋮ ❑ ⋮
G(s) p1 … G (s )pq

]
Y f i
(t)=∑

j=1

q

G ij (s)U j(s )+∑
h=1

m

H ij (s)Dh(s)

H (s)=[
H (s)11 … H (s )1m

⋮ ❑ ⋮
H (s) p1 … H (s) pm

]

Linear time-invariant MIMO systems can be represented in the Input-
Output form by means of the Transfer Matrix whose elements are 
Tranfer Functions
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Multivariabile control

The control actions on the plant are implemented by single-loop 
schemes somehow coordinated and interactions are considered similar 
to disturbances 

MIMO control schemes

G(s)=[
G(s)11 … G(s)1q

⋮ ❑ ⋮
G(s) p1 … G (s )pq

]
Y f i
(t)=∑

j=1

q

L−1
{G ij (s)U j(s)}+∑

h=1

m

L−1
{H ij (s)Dh(s)}

H (s)=[
H (s)11 … H (s )1m

⋮ ❑ ⋮
H (s) p1 … H (s) pm

]
Y f (s )=G(s)U (s)+H (s)D(s)
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Multivariabile control

The control actions on the plant are implemented by single-loop 
schemes somehow coordinated and interactions are considered similar 
to disturbances 

MIMO control schemes

C1

G1k

G11

T1

H1k

y1r1

uk

u1

dk

F1

n1



System control basics

Multivariabile control

The control actions on the plant are implemented by single-loop 
schemes somehow coordinated and interactions are considered similar 
to disturbances 

MIMO control schemes
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LQR control

The control actions on the plant are implemented by a state feedback 
scheme with the feedback gains (direct disturbances on the output are 
classified as noise) 

MIMO control schemes

ẋ (t )=A x (t)+Bu (t)+E d (t )
y (t)=C x (t)+Du (t)+F n(t )

ẋ (t )=(A+BK) x (t )+E d (t)
y (t)=(C+DK ) x (t )+F n(t)

u(t )=K x (t)

The control is chosen such that a performance index is minimized

J (u)=∫
t=0

∞

[ xT
(t)Q x (t)+uT

(t)Ru (t)] dt
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LQG control

The state feedback control actions on the plant are implemented using 
the state extimates from an optimal observer that is less sensitive from 
disturbance and noise  

MIMO control schemes

ẋ (t )=A x (t)+Bu (t)+E d (t )
y (t)=C x (t)+Du (t)+F n(t )
˙̂x (t )=A x̂ (t)+B u (t)+L [ ŷ (t)− y (t)]
ŷ (t)=C x̂ (t)+Du (t)

u(t )=K x̂ (t)

The gain matrices K and L are chosen such that a performance indexes are 
independently minimized

J contr=∫
t=0

∞

[xT (t)Q x (t )+uT (t )R u(t )]dt

J obs=∫
t=0

∞

[ xT
(t)Q̃d x( t)+ yT

(t ) R̃n y( t)]dt

Kalman filter
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Observers for model-based FDI

The observer

It is a copy of the process model which has an additional input that 
takes into account the difference between the estimated and the actual 
output.  

ẋ=F (x ;u ; t )
y=H (x ;u ; t )

˙̂x=F ( x̂ ;u ; t )
ŷ=H ( x̂ ;u ; t )

Model

If the error is not zero, possibly a fault is present. (parity check)

u(t)

x0(t)

y(t)

e(t)

ŷ (t)

Plant

+

_
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Observers for model-based FDI

The observer

It is a copy of the process model which has an additional input that 
takes into account the difference between the estimated and the actual 
output.  

ẋ=F (x ;u ; t )
y=H (x ;u ; t )

˙̂x=F ( x̂ ;u ; t )+G ( ŷ− y ;)
ŷ=H ( x̂ ;u ; t )

System dynamics

State observer Output injection

The output injection is designed to drive the estimation error to zero.
If it is not, possibly a fault is present.
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Observers for model-based FDI

The observer

A stack of observers can be used to detect faults or different operating 
conditions   

The output injection will be zero only for the curent operating or 
faulty condition.
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Observers for model-based FDI

The Unknown Input Observer

It is designed as an observer but exploits a structural feature of the 
plant such that the output error is zero if and only if the state estimation 
error is zero.   
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Observers for model-based FDI

Combining UIO and data analysis

The output injection of a UIO contains informations on the fault. By 
analysing the time serie of the output injection signal some 
characteristics of the fault can be derived.   

FFTG ( ŷ− y ;)
f

t
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Observers for model-based FDI

Combining UIO and data analysis

The application to rotor broken bar diagnosis.   

System model

UIO 
Output 
injections
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Observers for model-based FDI

Combining UIO and data analysis

The application to rotor broken bar diagnosis.   
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Observers for model-based FDI

Combining UIO and data analysis

The output injection of a UIO contains informations on the fault. By 
analysing the time serie of the output injection signal some 
characteristics of the fault can be derived.   

Pattern 
recognition

G ( ŷ− y ;)

t

Cluster ith
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Observers for model-based FDI

Combining UIO and data analysis

The application to the diagnosis of a steam separator drum.   

Output injection

residuals
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Observers for model-based FDI

Combining UIO and data analysis

The application to the diagnosis of a steam separator drum.   

Method 1

Each fault, either matching 
or on the sensor, has its 
own shape/signature in the 
residuals' domain. 
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Observers for model-based FDI

Combining UIO and data analysis

The application to the diagnosis of a steam separator drum.   

Method 2

Each fault, either matching 
or on the sensor, has its 
own shape/signature in the 
residuals' domain. 
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Networked control

The connection between the control and the plant is implemented by 
means of a network (public via VPN or Fieldbus)  

A
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T
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Networked control

Communication is digitally implemented and delays are usually 
induced by networks. Even packet drops can occur unless a 
deterministic network is implemented.  

The connection between the control and the plant is implemented by 
means of a network (public via VPN or Fieldbus).  
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Networked control

Generally, stability problems arise in the presence of delays 
either due to the process itselt or because of the 
communication network.

Uncertainty in the delay amount makes the use of delay 
compensation approaches less, or even not at all, effective.

Packets dropout can be considered as an extreme infinite 
delay when designing the control law.

Networks are the potential origin of additional disturbances to 
the system.
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Networked control

Packet losses or delays larger than designed can be faced at the 
actuator side by:

• Hold the previous value of the manipulated variable

• Set the manipulated variable at the nominal value

• Use prediction techniques based on a plant model

Transmitting only the variations of the variables can decrease the 
loss of packets because of network congestion 

Disturbances on the communication network are not taken into 
account in the above design approaches
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Networked control

Networked predictive control

A number of future control actions, designed by means of an observer, 
are sent to the actuator that can use them in the case of missing/delayed 
command from the controller.

• A microprocessor is needed on the actuator

• Time stamp of the variable is needed

• Sensor should send an array with all data not transmitted yet

• Comparison between the data in the registers and the 
received/computed values should be effectively implemented 
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Networked control

Networked predictive control

A number of future control actions, designed by means of an observer, 
are sent to the actuator that can use them in the case of missing/delayed 
command from the controller.
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Networked control

Networked predictive control

A number of future control actions, designed by means of an observer, 
are sent to the actuator that can use them in the case of missing/delayed 
command from the controller.
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Networked control

Networked predictive control

The observer

The control law

The control stack at 
the actuator over the 
orizon M
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Networked control

Networked predictive control

The use of the predicted control 

Example of application in ideal case without data loss

Example of application of the prediction in case of data loss
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Networked control

Networked predictive control

For the predicted control design some bound for the uncertain 
delays are needed
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Networked control

Networked predictive control

Example of application in ideal case without data loss
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Networked predictive control

Example of application in ideal case without data loss
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Networked control

Networked predictive control

Example of application in ideal case without data loss
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Multi-agent systems

Agent

A system which is able to make an activity taking into account its 
own dynamics and evolution rules as well as its possible 
connections with other agents

Continuous time dynamical systems

  
  

qpn RRR
tt

tt





uyx
uxhy

uxfx

,,

,,

∂ y
∂ t
=α(ϑ)

∂
2 y

∂ x2
; y (0, t)=u1(t); y (L ,t )=u2(t)

Lumped parameters

Distributed 
parameters
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Multi-agent systems

Discrete time dynamical systems

x k+1= f ( xk ;uk ;k ) x∈Rn ;u∈Rq ; y∈Rp

yk=h( xk ;uk ;k ) k=0,1 ,2 ,…

Agent

A system which is able to make an activity taking into account its 
own dynamics and evolution rules as well as its possible 
connections with other agents
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Multi-agent systems

Agent

A system which is able to make an activity taking into account its 
own dynamics and evolution rules as well as its possible 
connections with other agents

Discrete event dynamical systems

1 2

cond 1

cond 2

co
nd

 3
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

the vertex set

the edge set

the adjacency matrix

1

2

3

N-1

N

the Laplacian matrix

N

NxN

NxN
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

the vertex set

the edge set

1

2

3

5

4

ν={1,2,3 ,4 ,5}

ε={(1,2) ,(2,1) , (2,3) , (2,5) ,
(3,1) , (3,4 ) ,(4,3) ,(5,2) }
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

the adjacency matrix

1

2

3

5

4

Α=[
0 1 0 0 0
1 0 1 0 1
1 0 0 1 0
0 0 1 0 0
0 1 0 0 0

]
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

the Degree-out matrix

1

2

3

5

4

Dout=[
1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

]
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

the Laplacian matrix

1

2

3

5

4

L=Dout−Α=[
1 −1 0 0 0
−1 3 −1 0 −1
−1 0 2 −1 0
0 0 −1 1 0
0 −1 0 0 1

]
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

the in-neighbours sets

1

2

3

5

4

N input1
={2, 3}

N input 2
={1,5}

N input 3
={2, 4}

N input 4
={3}

N input5
={2}
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Multi-agent systems

Multi Agents System

A complex system composed by a number of interconnected agents that 
exchange information and/or materials

Smart grids

UAV Coordination

Sensing wide areas

Social networks
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Multi-agent systems

Multi Agents System

The behaviour of a Multi agent system is not the simple combination of the 
behaviour of each system and emerging dynamics can appear

Flocking

Coordinated teams
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Multi-agent systems

Multi Agents System

The behaviour of a Multi agent system is not the simple combination of the 
behaviour of each system and emerging dynamics can appear

Crowd

Not always the behaviour of a multi agent system 
is predictable by the knoledge of its components
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Multi-agent systems

Multi Agents System

The behaviour of a Multi agent system could be heavily dependent on external 
inputs

Smart grids

UAV Coordination

Sensing wide areas

Social networks
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Multi-agent systems

Multi Agents System

Multi Agent Systems can appear when implementing jerarchical controls
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Multi-agent systems

Multi Agents System

Multi Agent Systems have complex interacting dynamics

ẋ i= f i ( x i ; x j ;u i ; t ) x∈ℝn ;u∈ℝq ; y∈ℝ p

y i=h ( x i ;u i ; t ) i=1,2 , , N x j∈N i

The properties of a Multi Agent System mainly depend on the 
Laplacian matrix that represents how the agents are connected 
one each other

L = D - A
L: laplacian matrix
D: connection degree matrix
A: adiancency matrix
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Multi-agent systems

Multi Agents System

The properties of a Multi Agent System mainly depend on the Laplacian 
matrix that represents how the agents are connected one each other

L=Dout−A=[
2 −1 −1 0
0 1 −1 0
−1 0 2 −1
0 0 0 0

]

Dout=[
2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 0

]
A=[

0 1 1 0
0 0 1 0
1 0 0 1
0 0 0 0

]

1
2

4
3
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Multi-agent systems

Multi Agents System

The control of a Multi Agent System is mainly based on the knowledge of the  
state of the agent itself and of  its neighbors

ui=g i (x i ; x j ; t ) x i∈ℝ
n ;u i∈ℝ

q ; y i∈ℝ
p

x j∈N i

1
2

4
3

L=Dout−A=[
2 −1 −1 0
0 1 −1 0
−1 0 2 −1
0 0 0 0

]
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Multi-agent systems

Multi Agents System

The control of a Multi Agent System should be designed in order to be able to 
not suffer from external undesired inputs

1
2

4
3

Robustess: the ability of the system to react to perturbations, internal 
failures, and environmental events by compensating the disturbance and/or 
limiting their effect on the state and the output

Resilience: the ability of the system to react to perturbations, internal 
failures, and environmental events by absorbing  the disturbance and/or 
reorganizing to maintain its functions 



System control basics

Distributed control

When considering the control problem for multi-agent systems 
we have to design the structure of the control system:

• Centralized control

• De-centralized control

• Distributed control 
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Distributed control

Centralised control

All measurements are collected by a central agent that defines the control law 
for all of the connected agents taking into account the overall system condition

4

3

1
2

Controller

u4

u3

u1

u2

y4

y3

y4

y1 y2
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Distributed control

Centralised control

All measurements are collected by a central agent that defines the control law 
for all of the connected agents taking into account the overall system condition

4

1

2

Controlleru1

u2

y4

y3

y4

y1 y2

3

u4

u3

Optimization can be obtained since the controller can consider all the
information that are available

 
J (û)= min

u∈U
∫
t=t 0

t

L ( y ;u)dt
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Distributed control

Centralised control

All measurements are collected by a central agent that defines the control law 
for all of the connected agents taking into account the overall system condition

4

3

1
2

Controller

y4

y3

y4

y1 y2

Control is completely lost in 
the case of controller fault 
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Distributed control

De-Centralised control

Each agent has its own control based on its own mesurement; no information 
is shared

4
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C1 C2
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Distributed control

De-Centralised control

Each agent has its own control based on its own mesurement; no information 
is shared

4

3

1
2

y3

y4

y1 y2

Physical 
interactions 

among agents 
are considered 

as 
disturbances 

to compensate 
for

C1 C2

C3

C4

u1

u2

u3

u4
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Distributed control

De-Centralised control

Each agent has its own control based on its own mesurement; no information 
is shared

4

3

1
2

y3

y4

y1 y2

The fault of one 
local controller 
does not fully 
propagate to 
the all agents 
and its effect 

can be 
mitigated by 
neighbour 
controllers

C1 C2

C3

C4

u1

u2

u3

u4
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Distributed control

Distributed control

Each agent has its own control based on its own mesurement and some data 
from its neighbours; same information are shared

4

3

1
2

y3

y4

y1
y2
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u3

u4

The 
communication 

graph can 
differs from the 

graph 
representing the 

physical 
connections 

between agents



System control basics

Distributed control

Distributed control

Each agent has its own control based on its own mesurement and some data 
from its neighbours; same information are shared
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1
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u2

u3

u4

The fault in one 
agent can be 
compensated 

by the 
coordinated 

actions of the 
agent and its 
neighbours
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Distributed control

Distributed control

Each agent has its own control based on its own mesurement and some data 
from its neighbours; same information are shared

4

3

1
2

y3

y4

y1
y2

C1
C2

C3

C4

u1

u2

u3

The fault in one 
controller can 

be mitigated by 
the coordinated 
actions of the  

neighbour 
controllers
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Distributed control

Each agent has its own control based on its own mesurement and some data 
from its neighbours; same information are shared

4

3

1
2

y3

y4

y1
y2

C1
C2

C3

C4

u1

u2

u3

u4

The 
communication 

graph can 
differs from the 

graph 
representing the 

physical 
connections 

between agents

Optimization be can obtained by combining the optimization of a
set of locally defined indexes, taking into account neighbours

 
J (û)=∑

i=1

N
min

u i∈U i

∫
t=t 0

t

Li( y i ;u i ; x j)dt
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Distributed control

Distributed control via ConsensusConsensus

Consensus is achieved when the agents “agree” in the sense that their states 
tend to the same value or profile. The states of each agent and its neighbours 
are needed for the distributed control design

4

3

1
2

x3

x4

x1
x2

C1
C2

C3

C4

u1

u2

u3

u4

ui=g i (x i ; x j ) ;
j∈N i
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Distributed control

Distributed control via ConsensusConsensus

Consensus is achieved when the agents “agree” in the sense that their states 
tend to the same value or profile. 

ui=g i (x i ; x j ) ;
j∈N i

Consensus can be achieved both because of the physical connections 
and by a proper control design

The states of each agent and its neighbours 
are needed for the distributed control 
design

∣x i−x j∣→0 ; ∀ i , j (i≠i )
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be achieved to the average value of the initial states of each 
agent (simple integrator).

x i→
1
N
∑
i=1

N

x i(0)

ẋ i=−∑
i∈N

(x i−x j )

∀ i∈.



System control basics

Distributed control

Distributed control via ConsensusConsensus

Consensus can be achieved to the median value of the initial states of each 
agent (simple integrator).

x i→m ;

m∈{[ xk (0) , xk+1(0)] k=
N
2

, for N even

xk (0) k=
N+1

2
, for N odd }

ẋ i=−α
2 sign (x i−m )−λ

2∑
i∈N

sign ( xi−x j)

∀i∈.

x i0
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be achieved to the median value of the initial states of each 
agent (simple integrator).

Consensus to median value is more robust with respect to the presence 
of outlayers or uncooperative agents
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be achieved to the median value of the initial states of each 
agent (simple integrator).

Consensus to median value is more robust with respect to the presence 
of outlayers or uncooperative agents

Agent value Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 Attack 6

1 4 8 4 4 4 4 4

2 0 0 0 0 0 0 0

3 3 3 3 3 3 3 3

4 2 2 2 2 2 2 2

5 -1 -1 -4 -1 -1 -1 -1

6 1 1 1 4 1 1 1

7 1 1 1 1 1 1 1

8 --- --- --- --- 5 2 -3

mean 1,43 2,00 1,00 1,86 1,88 1,50 0,88

median 1,00 1,00 1,00 2,00 1,50 1,50 1,00
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be robustified with respect to matching faults and uncertainties.
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be robustified with respect to matching faults and uncertainties.

robustifying term
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be robustified with respect to matching faults and uncertainties.

Simple average 
linear consensus
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be robustified with respect to matching faults and uncertainties.

Robust average 
linear consensus
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be used also to follow a leader.

Leader
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Distributed control

Distributed control via ConsensusConsensus

Consensus can be used also to achieve and keep a formation with respect to a 
leader.

Leader
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