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Outline

Bio-electricity: From the fried frog to The Walking Dead
The action potential: From Hodgkin & Huxley to the
Cyborg Monkey

Organic Electronics: a brief overview

e

ne Organic Charge Modulated FET (OCMFET)
ne Micro OCMFET Array (MOA): merging organic

ectronics and electrophysiology
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Origin of bioelectricity

Luigi Galvani
(1737-17¢€8)
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De Viribus Electricitatis In Motu Musculari Comentarius Cum Joannis Aldini Dissertatione Et Notis ; Accesserunt
Epistolae ad animalis electricitatis theoriam pertinentes - 1792



Origin of bioelectricity

Early 1800: the
voltaic pile era

Aldini G (1803) An account of the late improvements in galvanism, with a series of curious and interesting experiments performed before the
commissioners of the French National Institute, and repeated lately in the anatomical theaters of London, by John Aldini
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Intracellular electrophysiology

= P il il Patch clamp: -
A a single cell P
approach

/77‘77 outside

A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and Its application to Conduction and Excitation in Nerve”, .
Physiol., pp. 500-544, 1952.
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Extracellular electrophysiology

* Micro Electrodes Array
e Simple electrical model
e Both in-vivo and in-vitro applications
e Bi-directional interfaces
 Field Effect devices
e Both in-vivo and in-vitro applications
e Bi-directional interfaces
e Capacitive electrical coupling
e High density devices
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Micro Electodes Array - MEA
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Field effect devices: the MOSFET
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Field effect devices: the ISFET

Reference electrode

2
Solution sample W VD S

=uC, — (VGS_VTH) DS >

0
\ electron VTH — VFB - B + 2¢F
channel C

oX

p-silicon substrate

E B V., = D B s . Oy
qg q C,

0“‘-..“
VFBISFET — VFBMOSFET + E ref + ¢ij + Z e _h:foeo ‘,:'_ ¢M



OFET-based devices for electrophysiological applications

Field effect devices: the ISFET

'90s: first example of a neuronal cell cultured onto the gate oxide of an ISFET

) "\\ = _n_
channel drain

- 1 -
source

p-Si

Fromherz, Peter; Offenhausser, A. V. T. W. J. A Neuron-Silicon Junction: A Retzius Cell of the Leech on an Insulated-Gate Field-Effect
Transistor. Science (80-. ). 252, (1991).
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MEAs and FEDs Applications: Brain Machine
Interfaces - BMIs

for multichannel b
ion system
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e Direct interface with the
Central Nervous System
(CNS)

e VVery complex discipline

e material science, software
engineering, electronic
engineering, robotics...
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M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control of a prosthetic arm for self-feeding.,” Nature, vol.
453, no. 7198, pp. 1098-101, Jun. 2008.
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MEAs and FEDs Applications: in vitro Pharmacology
testing

e Good correlation between in vivo
and in vitro approaches

o Useful for preliminary drug testing

e Faster and cheaper than in vivo
approach

e High reproducibility

e Ethical issue: reduced number of
test animals

. 2 \ ‘( e ’;&*"!
In Vitro In Vivo
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MEAs and FEDs: why not?

Very nice devices indeed...but:

Micro Electrode Arrays

e reference electrode needed

e |imit on the number of recording sites
e high costs of fabrication

Field Effect Devices

e gate oxide directly exposed to the culture medium (not
good at all)

e high costs of fabrication

e rigid and not transparent devices

o reference electrode needed (not easy to handle in CMOS
technology)
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Organic electronics: a brief overview

chcap dynamic signs wearable electronics

RTID tags ficxible solar cells

Organic electronics may bring interesting novelty to a large number of
applications, especially to the sensing and biosensing field thanks to:

e suitable for large area, low cost, fabrication technigues

e intrinsic biocompatibility of plastic materials

e interesting mechanical and optical properties (flexibility, transparency...)
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Organic electronics: Organic Thin Film Transistor

Organic Semiconductor Drain

Source \ /

Gate

Dielectric
layer

/ Substrate

e All the materials are deposited as thin films
e OTFTs work in accumulation (not in inversion nor in depletion mode
e Ohmic contact between source/drain and the organic semiconductor
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The Organic Charge Modulated FET
OCMFET
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OCMEFET: transduction principle
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OCMFET: applications

ILL CLIMB UP THIS
STRAND OF DNA TO SEE
WHERE LIFE TAKES ME

The OCMFET has been already employed for:
pH sensing

DNA hybridization sensing

strain sensing

temperature sensing

pressure sensing

cellular metabolic activity sensing

cellular electrical activity sensing

CHRIS mADPDEN
w.chrismadden.co.uk

Whatever causes a charge variation onto the
sensing area is likely to be sensed!
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OCMFET: materials and methods

Al O, (TiO,) Parylene C
Y Y3 2

Drain

Control Gate Sensing Area

Source

v’

e Thermal evaporation (metals)

e Chemical vapor deposition (Parylene C)

e | ow temperature ozonation (oxide growth)
e Drop casting (organic semiconductor)

e Plasma oxygen (Par C etching)




OFET-based devices for electrophysiological applications

3 DEALAB D~ 5AB L

: - . ;‘ . .“. 4-‘- e | 4 03 -
- r ) ; L 4 ! l r
PR "j 34 AP
' €y -~y . ¢ .
o . . s b
P Ve A & X oo PR y



OFET-based devices for electrophysiological applications

MOA: structure

Passive
Microelectrodes
Additional
channels

Delimiting ring
Sensing area

» Up to 16 OCMFET onto the same substrate

» Interdigitated source and drain contacts

» Sensing areas: 30X30 um - 60X60 um

» Passive microelectrodes integration

» Predisposition to pH/temperature/strain (...) measurements




Organic transistor devices for in vitro electrophysiological applications

MOA: Readout electronics

» 16 identical channels for electrical activity
» Bandwidth: 100 Hz - 4,3 kHz

» Fully compatible with Multi Channel Systems
ground plates

» Portability: USB power supply
» Independent source biasing

» 2 additional channels dedicated to slow signals
detection (pH, temperature, cell mechanical
activity...)

» Electrodes for electrical stimulation

I/V converter Amplified IV order HPF
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Preliminary validation: rat cardiac myocytes

» Rat cardiomyocytes primary cultures

» Measurements performed @ 37 °C

» Ves=Vps=-1V

» All the experiments have been carried out
iInside a Faraday cage

» Activity of the same culture measured
with different methods (Multi Channel
Systems MEA1060 Amplifier)

» No need of a reference electrode

OCMFET Recording Microelectrode Recording
40
5
< | ) Same
S, o 2
g \ ™ frequency...
-5 |
‘ | 60
70 72 74 76 /8 80 82 84 58 6C 62 64 66 €8 70
Time [s] Time [s]

A. Spanu et al. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci. Rep. §, 8807 (2015) doi:10.1038/srep08807.
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Chemical modulation of cardiomyocytes activity

» ‘D

Basal activity @ 37° C

Spike frequency: 0.3 HzI

20 22 24 25 28 30 32 34 3B 238 4D

Time [s]

o Norepinephrine (100 puM)
= * A neurotransmitter that acts
> i ' q as a cardio-stimulant

) | Spike frequency: 1.6 Hz|

170 172 174 175 176 150 132 154 186 188 190
Time [g]

A. Spanu et al. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci. Rep. §, 8807 (2015) doi:10.1038/srep08807.
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Chemical modulation of cardiomyocytes activity

Basal Norepinephrine 100 yM Verapamil 100 yM

| l -
0 100 200 300 £
Time [s] ¥ 150
2 100-
Statistics on 5 working o 5.
OCMFETs on the same 2
0-
substrate
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A. Spanu et al. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci. Rep. §, 8807 (2015) doi:10.1038/srep08807.
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Multisite recordings

fr—

Passive microelectrodes

—

OCMFET sensing areas

0092 0093 0094 10,095
Seconds

Propagation velocity = 0.4 m/s
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Striatal neurons: preliminary recordings

Striatal primary neurons from post-
natal (P2) rat maintained 21 days in
vitro (21 DIV). Basal activity
recordings

e 644 G4l G442 6443 64ds 5445 6446
Time [s]

55 60 65
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Striatal neurons: preliminary recordings

Striatal primary neurons from post-
natal (P2) rat maintained 21 days in
vitro (21 DIV). Basal activity

recordings
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Hippocampal neurons

» Hippocampal primary neurons from post-natal (P2) rat maintained 21 days in

vitro (21 DIV)
» Cell viability monitored by means of DIC microscopy, immunofluorescence,

and recordings with the embedded passive microelectrodes

30 um

Rat hippocampal neurons cultured onto a Fluorescence image of rat hippocampal
MOA and fixed after a recording section neurons cultured onto a MOA device
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Hippocampal neurons

Microelectrode Recording - Frequency = 0.2 Hz
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Hippocampal neurons - chemical modulation

: | b | o Basal activity @ 37° C
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Hippocampal neurons - chemical modulation

BIC + 4AP CNQX
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Complete experiment: acceleration of the firing rate (drug cocktail) followed
by the complete activity cessation (addition of CNQX)
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Metabolic activity recording

Monitoring pH during in vitro and in vivo electrophysiological applications is very important
since living cells are sensitive to pH changes of the surrounding medium. Furthermore, local
pH variation are associated to cells metabolic activity.
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Martinoia, S. et al. Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations. Biosens. Bioelectron.,
1043-1050 (2001).



Metabolic activity recordings: pH sensing

OFET-based devices for electrophysiological applications
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Metabolic activity recordings: preliminary validation

Fibroblast culture (no electrical activity)
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The OCMFET has been able to discriminate between two different
metabolic state:

e |ow metabolic state (cells metabolism slowed-down): slow
acidification rate

e High metabolic state (cell metabolism accelerated): fast
acidification rate
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What's next?

Multimodal low-cost

devices
: » pH sensing
‘High density devicel I". vIvo » temperature sensing
i 7 applications » force sensing

» whatevercausesachargev
ariation sensing!




High Density devices for in vitro electrophysiology
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From in vitro to in vivo testing

e OCMFET on sub-micron substrates for conformal
electrocorticography and sub-cortical (acute or chronic)
implants for BMIs or pharmacology trials

In collaboration with the Department of Biomedical Sciences @ UNICA



But also...

e OCMFET devices for the simultaneous acquisition of
electrical and metabolic cellular signals for in vitro
electrophysiology

o Ultraflexible electronics tor both the acquisition ad the
stimulation of neural activity /n vivo

e Multimodal devices (temperature and pressure) for
electronic skin applications

o All printed sensors for biomedical applications



