
Talking about…

• Multi-core processors/chips

• CMP

• MPSoCs

Why parallel architectures

• Concurrency in applications

• Limits to frequency:
– The memory wall

– The ILP wall

– the power wall

• Multicore can reduce power

Example

• Core A

• Execution time = 10 sec

• P=10 W

• E=100 J

• 2 Core A

• Execution time = 5 sec

• P=2*10W = 20W

• E=100 J

• 2 Core A

• Execution time = 10 sec

• P=2*5W = 10W (no saving)

• E=100 J

A

A A

A A

Example

• Core B

• Execution time = 15 sec

• P=5 W

• E=100 J

• 2 Core B

• Execution time = 7.5 sec

• P=2*5W = 10W

• E=75 J

B

B B

Why (multiple) slower cores are power-efficient

• Pswitch = Activity * Frequency * V2

 rule of thumb ∝ F2

• Less pipeline stages are needed (lower number of flip flops)

• Synthesizing using a higher frequency constraints leads to
more power hungry netlists

• In a multi-core cores can be specialized

Ahmdal’s law

• Amdahl's Law states that potential program speedup is defined by the fraction of code (P)
that can be parallelized:

speedup = 1/1 - P

• Introducing the number of processors performing the parallel fraction of work, the
relationship can be modeled by:

speedup = 1/ (S+ P/N)

where

P = parallel fraction,

N = number of processors and

S = serial fraction.

Limitation and costs

• Complexity

• Portability

• Resource requirement

• Scalability

MPSoCs, a stack view

Interconnect and memory subsystem

Core A Core B Core C Core D

I/O

HAL

OS Communication

Application

APIs APIs

APIs

APIs APIs

Serial computation

 Traditionally software has been written for serial computation:

-
-

-

run on a single computer
instructions are run one after another

only one instruction executed at a time

Parallel Computing

 Simultaneous
problem

use of multiple compute sources to solve a single

Concepts and Terminology

 Flynn’s Taxonomy (1966)

S I S D

Single Instruction, Single Data

S I M D

Single Instruction, Multiple Data

M I S D M I M D

Multiple Instruction, Single Data Multiple Instruction, Multiple Data

SISD







Serial computer

Deterministic execution

Examples: older generation main frames, work stations, PCs

SIMD











A type of parallel computer

All processing units execute the same instruction at any given clock cycle

Each processing unit can operate on a different data element

Two varieties: Processor Arrays and Vector Pipelines

Most modern computers, particularly those with graphics processor units

(GPUs) employ SIMD instructions and execution units.

MISD





A single data stream is fed into multiple processing units.

Each processing unit operates on the data independently via independent

instruction streams.

 Few actual examples : Carnegie-Mellon C.mmp computer (1971).

MIMD









Currently, most common type of parallel computer

Every processor may be executing a different instruction stream Every

processor may be working with a different data stream Execution can

be synchronous or asynchronous, deterministic or non-

deterministic
Examples: most current supercomputers, networked parallel computer 

clusters and "grids", multi-processor

Note: many MIMD

architectures also

include SIMD execution

sub-components

SMP computers, multi-core PCs.



Parallel Computer Architectures

 Shared memory:

all processors can access the

same memory

 Uniform memory access (UMA):

- identical processors

- equal access and access

times to memory

Non-uniform memory access (NUMA)

 Not all processors have equal access to all memories

 Memory access across link is slower

 Advantages:
- user-friendly programming perspective to memory

- fast and uniform data sharing due to the proximity of memory

Disadvantages:

- lack of scalability between memory and CPUs.

- Programmer responsible to ensure "correct" access of global

- Expense

to CPUs



Distributed memory

 Distributed memory systems require a communication network to

connect inter-processor memory.

Advantages:

- Memory is scalable with number of processors.

- No memory interference or overhead for trying to keep cache coherency.

- Cost effective

Disadvantages:

- programmer responsible for data communication between processors.

- difficult to map existing data structures to this memory organization.





Hybrid distributed-shared memory

 Generally used for the currently largest
computers

and fastest

 Has a mixture of previously mentioned advantages
disadvantages

and

Parallel programming models











Shared memory

Threads

Message Passing

Data Parallel

Hybrid

All of these can be implemented on any architecture.

Shared memory

 tasks share a common address space, which they read and write
asynchronously.

 Various mechanisms such as locks / semaphores may be used
control access to the shared memory.

to

 Advantage: no need to explicitly communicate of data
tasks -> simplified programming

Disadvantages:

• Need to take care when managing memory, avoid

synchronization conflicts

• Harder to control data locality

between



Threads

 A thread can be considered as a
subroutine in the main program

Threads communicate with each

other through the global memory

commonly associated with shared

memory architectures and

operating systems









Posix Threads

OpenMP

or pthreads

Message Passing

 A set of tasks that use their

own local memory during

computation.

Data exchange through

sending and receiving

messages.

Data transfer usually requires

cooperative operations to be

performed by each process.

For example, a send operation
must have a matching receive operation.









MPI (released in 1994)

MPI-2 (released in 1996)

Data Parallel

 The data parallel model demonstrates the following characteristics:

• Most of the parallel work

performs operations on a data

set, organized into a common

structure, such as an array

A set of tasks works collectively

on the same data structure,

with each task working on a

different partition

Tasks perform the same operation

on their partition

•

•

 On shared memory architectures, all tasks may have access to the

data structure through global memory. On distributed memory

architectures the data structure is split up and resides as "chunks"

in the local memory of each task.

Other Models

 Hybrid
- combines various models, e.g. MPI/OpenMP

Single Program Multiple Data (SPMD)

- A single program is executed by all tasks simultaneously


 Multiple Program Multiple Data (MPMD)

- An MPMD application has multiple executables. Each

execute the same or different program as other tasks.

task can

Designing Parallel Programs

 Examine problem:

-
-

-

-

Can the problem be parallelized?

Are there data dependencies?

where is most of the work done?

identify bottlenecks (e.g. I/O)

 Partitioning

- How should the data be decomposed?

Various partitionings

How should the algorithm be decomposed

Communications

 Types of communication:

- point-to-point

- collective

Synchronization types

 Barrier

• Each task performs its work until it reaches the barrier. It then

stops, or "blocks".

• When the last task reaches the barrier, all tasks are

synchronized.

Lock / semaphore

• The first task to acquire the lock "sets" it. This task can then

safely (serially) access the protected data or code.

• Other tasks can attempt to acquire the lock but must wait until

the task that owns the lock releases it.

• Can be blocking or non-blocking



Load balancing





Keep all tasks busy all of the time. Minimize idle time.

The slowest task will determine the overall performance.

Granularity

 In parallel computing, granularity is a qualitative

measure of the ratio of computation to

communication.

Fine-grain Parallelism: 

-
-

-

Low computation to communication ratio
Facilitates load balancing

Implies high communication overhead and less

opportunity for performance enhancement

Coarse-grain Parallelism:

- High computation to communication ratio

- Implies more opportunity for performance

increase
- Harder to load balance efficiently



