
Talking about… 

• Multi-core processors/chips 

• CMP 

• MPSoCs 

 



Why parallel architectures 

• Concurrency in applications 

 

• Limits to frequency: 
– The memory wall 

– The ILP wall  

– the power wall 

 

• Multicore can reduce power 

 

 

 

 

 

 

 



Example 

• Core A 

• Execution time = 10 sec 

• P=10 W 

• E=100 J 

 

• 2 Core A 

• Execution time = 5 sec 

• P=2*10W = 20W 

• E=100 J 

 

• 2 Core A 

• Execution time = 10 sec 

• P=2*5W = 10W (no saving) 

• E=100 J 

 

A 

A A 

A A 



Example 

• Core B 

• Execution time = 15 sec 

• P=5 W 

• E=100 J 

 

• 2 Core B 

• Execution time = 7.5 sec 

• P=2*5W = 10W 

• E=75 J 

B 

B B 



Why (multiple) slower cores are power-efficient 

• Pswitch = Activity * Frequency * V2 

 rule of thumb ∝ F2 

 

• Less pipeline stages are needed (lower number of flip flops) 

 

• Synthesizing using a higher frequency constraints leads to 
more power hungry netlists 

 

• In a multi-core cores can be specialized 



Ahmdal’s law 

• Amdahl's Law states that potential program speedup is defined by the fraction of code (P) 
that can be parallelized: 

speedup = 1/1 - P  

• Introducing the number of processors performing the parallel fraction of work, the 
relationship can be modeled by: 

speedup = 1/ (S+ P/N)  

where  

P = parallel fraction,  

N = number of processors and  

S = serial fraction. 

 



Limitation and costs 

• Complexity 

 

• Portability 

 

• Resource requirement 

 

• Scalability 

 



MPSoCs, a stack view 

Interconnect and memory subsystem 

Core A Core B Core C Core D 

I/O 

HAL 

OS Communication 

Application 

APIs APIs 

APIs 

APIs APIs 



Serial computation 

 Traditionally software has been written for serial computation: 

- 
- 

- 

run on a single computer 
instructions are run one after another 

only one instruction executed at a time 



Parallel Computing 

 Simultaneous 
problem 

use of multiple compute sources to solve a single 



Concepts and Terminology 

 Flynn’s Taxonomy (1966) 

 

S I S D 

Single Instruction, Single Data 

 

S I M D 

Single Instruction, Multiple Data 

 

M I S D                                               M I M D 

Multiple Instruction, Single Data           Multiple Instruction, Multiple Data 



SISD 

 

 

 

Serial computer 

Deterministic execution 

Examples: older generation main frames, work stations, PCs 



SIMD 

 

 

 

 

 

A type of parallel computer 

All processing units execute the same instruction at any given clock cycle 

Each processing unit can operate on a different data element 

Two varieties: Processor Arrays and Vector Pipelines 

Most modern computers, particularly those with graphics processor units 

(GPUs) employ SIMD instructions and execution units. 



MISD 

 

 

A single data stream is fed into multiple processing units. 

Each processing unit operates on the data independently via independent 

instruction streams. 

 Few actual examples : Carnegie-Mellon C.mmp computer (1971). 



MIMD 

 

 

 

 

Currently, most common type of parallel computer 

Every processor may be executing a different instruction stream Every  

processor may be working with a different data stream Execution can  

be synchronous or asynchronous, deterministic or non- 

deterministic 
Examples: most current supercomputers, networked parallel computer  

clusters and "grids", multi-processor 

Note: many MIMD 

architectures also 

include SIMD execution 

sub-components 

SMP computers, multi-core PCs. 

 



Parallel Computer Architectures 

 Shared memory: 

all processors can access the 

same memory 

 Uniform memory access (UMA): 

- identical processors 

- equal access and access 

times to memory 



Non-uniform memory access (NUMA) 

 Not all processors have equal access to all memories 

 Memory access across link is slower 

 Advantages: 
- user-friendly programming perspective to memory 

- fast and uniform data sharing due to the proximity of memory 

Disadvantages: 

- lack of scalability between memory and CPUs. 

- Programmer responsible to ensure "correct" access of global 

- Expense 

to CPUs 

 



Distributed memory 

 Distributed memory systems require a communication network to 

connect inter-processor memory. 

Advantages: 

- Memory is scalable with number of processors. 

- No memory interference or overhead for trying to keep cache coherency. 

- Cost effective 

Disadvantages: 

- programmer responsible for data communication between processors. 

- difficult to map existing data structures to this memory organization. 

 

 



Hybrid distributed-shared memory 

 Generally used for the currently largest 
computers 

and fastest 

 Has a mixture of previously mentioned advantages 
disadvantages 

and 



Parallel programming models 

 

 

 

 

 

Shared memory 

Threads 

Message Passing 

Data Parallel 

Hybrid 

All of these can be implemented on any architecture. 



Shared memory 

 tasks share a common address space, which they read and write 
asynchronously. 

 Various mechanisms such as locks / semaphores may be used 
control access to the shared memory. 

to 

 Advantage: no need to explicitly communicate of data 
tasks -> simplified programming 

Disadvantages: 

•   Need to take care when managing memory, avoid 

synchronization conflicts 

•   Harder to control data locality 

between 

 



Threads 

 A thread can be considered as a 
subroutine in the main program 

Threads communicate with each 

other through the global memory 

commonly associated with shared 

memory architectures and 

operating systems 

 

 

 

 

Posix Threads 

OpenMP 

or pthreads 



Message Passing 

 A set of tasks that use their 

own local memory during 

computation. 

Data exchange through 

sending and receiving 

messages. 

Data transfer usually requires 

cooperative operations to be 

performed by each process. 

For example, a send operation 
must have a matching receive operation. 

 

 

 

 

MPI (released in 1994) 

MPI-2 (released in 1996) 



Data Parallel 

 The data parallel model demonstrates the following characteristics: 

• Most of the parallel work 

performs operations on a data 

set, organized into a common 

structure, such as an array 

A set of tasks works collectively 

on the same data structure, 

with each task working on a 

different partition 

Tasks perform the same operation 

on their partition 

• 

• 

 On shared memory architectures, all tasks may have access to the 

data structure through global memory. On distributed memory 

architectures the data structure is split up and resides as "chunks" 

in the local memory of each task. 



Other Models 

 Hybrid 
- combines various models, e.g. MPI/OpenMP  

Single Program Multiple Data (SPMD) 

- A single program is executed by all tasks simultaneously 
 

 Multiple Program Multiple Data (MPMD) 

- An MPMD application has multiple executables. Each 

execute the same or different program as other tasks. 

task can 



Designing Parallel Programs 

 Examine problem: 

- 
- 

- 

- 

Can the problem be parallelized? 

Are there data dependencies? 

where is most of the work done? 

identify bottlenecks (e.g. I/O) 

 Partitioning 

- How should the data be decomposed? 



Various partitionings 



How should the algorithm be decomposed 



Communications 

 Types of communication: 

- point-to-point 

- collective 



Synchronization types 

 Barrier 

• Each task performs its work until it reaches the barrier. It then 

stops, or "blocks". 

• When the last task reaches the barrier, all tasks are 

synchronized. 

Lock / semaphore 

•   The first task to acquire the lock "sets" it. This task can then 

safely (serially) access the protected data or code. 

• Other tasks can attempt to acquire the lock but must wait until 

the task that owns the lock releases it. 

•   Can be blocking or non-blocking 

 



Load balancing 

 

 

Keep all tasks busy all of the time. Minimize idle time. 

The slowest task will determine the overall performance. 



Granularity 

 In parallel computing, granularity is a qualitative 

measure of the ratio of computation to 

communication. 

Fine-grain Parallelism:  

- 
- 

- 

Low computation to communication ratio 
Facilitates load balancing 

Implies high communication overhead and less 

opportunity for performance enhancement 

Coarse-grain Parallelism: 

- High computation to communication ratio 

- Implies more opportunity for performance 

increase 
- Harder to load balance efficiently 

 


