# Dispositivi e sensori a semiconduttore organico

Annalisa Bonfiglio University of Cagliari, Italy annalisa@diee.unica.it

## 1: Semiconduttori organici

# 2: Organic Thin Film Transistors (OTFT)

# 3: Sensori basati sugli OTFT

## **Outline prima parte**

Proprieta' degli orbitali del Carbonio

Molecole coniugate

Semiconduttori organici: orbitali molecolari e bandgap

Portatori di carica e trasporto nei semiconduttori organici

Influenza della morfologia sul comportamento elettrico dei film sottili organici





### Hybridization of orbitals in Carbon



## Hybridization of orbitals in Carbon



### Carbon-Carbon bonding



fig. 1.2: la sovrapposizione orbitalica nel doppio legame carbonio-carbonio [3].

Molecular Orbital= linear combination of atomic orbitals (LCAO)

## Carbon-Carbon bonding





#### **Coniugated molecules**



**MEH-PPV** 

LPPPT

ΡΤΥ



fig. 1.6: struttura molecolare di: A) trans-poliacetilene (PA); B) poli-para-fenilene (PPP); C) poli-fenile-vinilene (PPV); D) poli-pirrolo (PPy); E) poli-tiofene (PT); F) poli-furano (PF) [4].

#### Band Gap



#### Band Gap



fig.1.10: funzioni d'onda dell'elettrone  $\pi$  nella buca di potenziale profonda infinito [6].

L = coniugation length = length of the shortest molecular segment with a perfect alternation of single and double bonds; N= number of atoms (each with 2 electrons); d = atomic distance

$$E_n = \frac{n^2 h^2}{8mL^2} \xrightarrow{E(HOMO) = \frac{\left(\frac{N}{2}\right)^2 h^2}{8m(Nd)^2}} E_G = E(LUMO) - E(HOMO) = \frac{(N+1)^2 h^2}{8m(Nd)^2} \approx \frac{h^2}{8md^2 N}$$
$$E(LUMO) = \frac{\left(\frac{N}{2} + 1\right)^2 h^2}{8m(Nd)^2} \qquad \text{The highest N, the lowest the gap}$$





#### **Doping and charge transport**



In inorganic semiconductor, doping is substitutional and causes an increase in free charge carrier concentration. These carriers move in a periodic potential with no interaction with the crystal (*band model*). In organic, doping is not substitutional: supplementary charge physically interact with molecules causing a perturbation in the coniugated chain. This perturbation (charge + deformation induced by the charge) is called **polaron** 

#### **Doping and charge transport**

In analogy with inorganic semiconductors, the polaron can be roughly described as a charge free of moving along the chain strongly interacting with the semiconductor lattice

## m eff (polaron) >> m eff (free charge carrier)

mobility (polaron) << mobility (free charge carrier)</p>



#### Intermolecular transport: hopping



hopping = tunneling between crossing chains

To move, the charge carrier needs energy that can be provided by phonons (increasing with temperature)

$$\mu_D = \frac{e \cdot d^2}{2\tau_J \cdot k_B \cdot T} \qquad \longrightarrow \quad \sigma(T) = \sigma \sigma(T) \cdot \exp[-(T\sigma/T) 1/(1+d)]$$

#### Intermolecular transport: hopping



But, in organic materials there is a great variety of behaviour from material to material. A unifying theory has not yet been developed.

#### Intergrain transport: Pentacene (C<sub>22</sub> H<sub>14</sub>)

- 5 benzene rings
- Non soluble. Deposited by evaporation
- Molecules stand perpendicular to the substrate.
- •Molecules form separated domains (grains)



### Intergrain transport: Pentacene (C<sub>22</sub> H<sub>14</sub>)



#### **Conduction:**

- hopping
- thermically activated
- limited by traps at grain boundaries  $\mu$   $\mu_{bulk}$



#### Correlation btw grain dimensions and mobility

### Influence of surface morphology





### Influence of surface morphology



#### Pentacene on Mica



#### Pentacene on SiO<sub>2</sub>

### Influence of surface morphology



#### Pentacene on SiO<sub>2</sub>



#### Pentacene on Mylar

## **Outline seconda parte**

Organic Thin Film Transistors (OTFTs) Contatti metallo-semiconduttore organico Comportamento elettrico degli OTFT Modello elettrico del dispositivo Tecnologia



#### **Charge injection from metal contacts**



## **Thin Film Transistor**

TFT model was first developed for poorly conductive semiconductors like amorphous Si







Fig. 2e

### **Equations and extraction of parameters**



lon-

0,0  $V_{\gamma}(V)$  Linear region:  $I_D = \mu C_{ox} \frac{Z}{L} (V_G - V_T) V_D$ Saturation region:  $I_D = \frac{1}{2} \mu C_{ox} \frac{Z}{L} (V_G - V_T)^2$ 

 $\frac{\partial I_D}{\partial V_G}\Big|_{sat} = \mu C_{ox} \frac{Z}{L} (V_G - V_T)$ -50,0 -100,0

Important parameters:  $\frac{I_{on}}{r}, \mu, V_T$ 

loff

50.0

-2,5µ

-2,0µ

€ -1,5µ-

-1,0µ

-500,0n

0.0

100.0

Typical values:  

$$\mu \sim 10^{-2}$$
:  $10^{-1}$   
lon/loff ~ $10^4$  : $10^5$   
V<sub>T</sub> ~ -10:+10 V



### **Materials and fabrication techniques**



### **Fabrication techniques - Spin Coating**





### Fabrication technique – Soft Lithography



### Fabrication technique – Soft Lithography

#### Inks instead of resist for patterning metals







## **Printing & Roll to Roll**



## **Possible applications for OTFTs**



## **Outline terza parte**

Sensori per variabili meccaniche Sensori per variabili chimiche: ISOFET Prospettive applicative

### **OFET** based mechanical sensors



### **Different OS can be employed**



Pentacene Not soluble



Tri-isopropylsilylethynyl (TIPS) Pentacene *Soluble* 

poly(3-hexylthiophene) (P3HT) Soluble

## Pressure sensors: set up







### Pressure sensors: set up











### **Pressure Sensors: pentacene**



### **Pressure Sensors: P3HT**

![](_page_44_Figure_1.jpeg)

### **Pressure Sensors: dynamic characterization**

![](_page_45_Figure_1.jpeg)

### Some Examples: Matrixes of sensors

![](_page_46_Picture_1.jpeg)

## Up to 16 elements in 4cm<sup>2</sup> Area For pressure distribution analyses

Common Ground (Source) Rows → Common Gate Columns → Common Drain

Every single element can be indipendently investigated

![](_page_46_Figure_5.jpeg)

### Some Examples: Matrixes of sensors

![](_page_47_Figure_1.jpeg)

## Some Examples: Matrixes of sensors

![](_page_48_Figure_1.jpeg)

### **Some Examples: Breathing monitoring**

Sensor applied to a chest bandage for <u>breathing</u> monitoring

![](_page_49_Figure_2.jpeg)

![](_page_49_Figure_3.jpeg)

![](_page_49_Figure_4.jpeg)

![](_page_49_Figure_5.jpeg)

![](_page_49_Picture_6.jpeg)

### **Some Examples: Posture detection**

Sensor applied to a shoe sole for posture detection and monitoring

![](_page_50_Picture_2.jpeg)

![](_page_50_Figure_3.jpeg)

As can be noticed, output current varies as soon as pressure changes across the active surfaces

### **Some Examples: Posture detection**

![](_page_51_Picture_1.jpeg)

Prototype of the main board and measurement set up

### **Some Examples: Posture detection**

![](_page_52_Picture_1.jpeg)

![](_page_52_Figure_2.jpeg)

### Chemical sensors: Device structure

- The sensor structure is based on a fully flexible organic field-effect transistor (OFET)
- The device is assembled on a flexible film (Mylar®), which acts as gate insulator

![](_page_53_Figure_3.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

## Fabricated device

![](_page_56_Picture_1.jpeg)

![](_page_56_Picture_2.jpeg)

![](_page_57_Picture_0.jpeg)

A custom flow cell hosting two chambers with inlet and outlet channels, was developed to handle solutions involved in the assay

![](_page_57_Picture_2.jpeg)

## Ion-sensitive device: functionalization

- These asitivity is a three is a differentiation of the second term of term
- The anaisitive comparignees bilized to the company to the company of the company

![](_page_58_Figure_3.jpeg)

## Ion-sensitive device: functionalization

**Amino protonation curve -** *Graphical representation* 

![](_page_59_Figure_2.jpeg)

## Ion-sensitive device: functionalization

Amino protonation curve – Electrochemical Impedence Spectroscopy (EIS) measurements

![](_page_60_Figure_2.jpeg)

- The device has the typical behavior of an organic *p-type* field effect transistor, working in accumul;
- Va=20V -10.0µ The ion-s uring the Va=-60V -8,0µ Va=-80V induced by variation Va=-100V -6.0µ the chan lution -4,0µ -2,0µ The testi cing the 0,0 .100 Is of the solution ( -20 -80 -60 0 -40 Vd(V) custom-Government เป็นรูปเอากา

 The testing was performed by placing solutions at different pH values on the sensor, while keeping a solution at pH 7 on the reference

![](_page_62_Figure_2.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_1.jpeg)

 Maximum *drain current* measured on both the sensor and the reference with varying pH (currents values normalized with reference to the current at pH 6)

![](_page_65_Figure_1.jpeg)

 Variation of the effective threshold voltage of the sensor with varying pH of the solution

![](_page_66_Figure_1.jpeg)

Trend of the maximum sensor drain current with varying the pH towards more acid solutions

### **Conclusions: OFETs based sensors perspectives**

- Electronic skin
- Biomedicine
  - Physiological parameter monitoring
- Smart textiles
- Wearable electronics

![](_page_67_Picture_6.jpeg)

![](_page_67_Picture_7.jpeg)

![](_page_67_Figure_8.jpeg)