
## PROCEDURA DI INDIVIDUAZIONE DEL K critico ( $K_{crit}$ ) SECONDO AFGROW

Lo stato di sforzo all'apice della cricca è caratterizzato in AFGROW mediante un indice specifico (Stress state INDEX), compreso tra i seguenti valori

**INDEX** = 2 
$$\rightarrow$$
 STATO DI SFORZO PIANO ( $\sigma_z = 0$ )

**INDEX** = 6 
$$\rightarrow$$
 STATO DI DEFORMAZIONE PIANA ( $\varepsilon_z = 0$ )



L'indice INDEX è calcolato ad ogni avanzamento di cricca con la relazione

$$INDEX = 6.7037 - \frac{1.4972}{B} \cdot \left(\frac{K_I}{\sigma_{sn}}\right)^2 \qquad \begin{cases} \text{se } INDEX > 6 \rightarrow INDEX = 6 \\ \text{se } INDEX < 2 \rightarrow INDEX = 2 \end{cases}$$

dove B è lo spessore dell'elemento.

Il valore critico di  $K_I$  da utlizzare nella verifica della condizione di propagazione instabile della cricca ( $K_I = K_{crit}$ ) è calcolato con la relazione

$$K_{crit} = K_{Ic} + \frac{(6 - INDEX)}{4} \cdot (K_c - K_{Ic})$$

La cricca si propaga quindi in maniera instabile quando si raggiungono all'apice della cricca le condizioni per cui  $K_{Ic}=K_{crit}$ 

La dimensione della zona plastica  $r_p$  può essere calcolata come  $r_p = \frac{1}{\frac{INDEX}{2} \cdot \pi} \cdot \left(\frac{K_I}{\sigma_{sn}}\right)^2$