

UNIVERSITÀ DEGLI STUDI DI CAGLIARI

Corso di Matematica Generale

A cura di Beatrice Venturi

Funzioni e loro proprietà

Un applicazione dall'insieme dei numeri reali

$$X \subseteq R$$

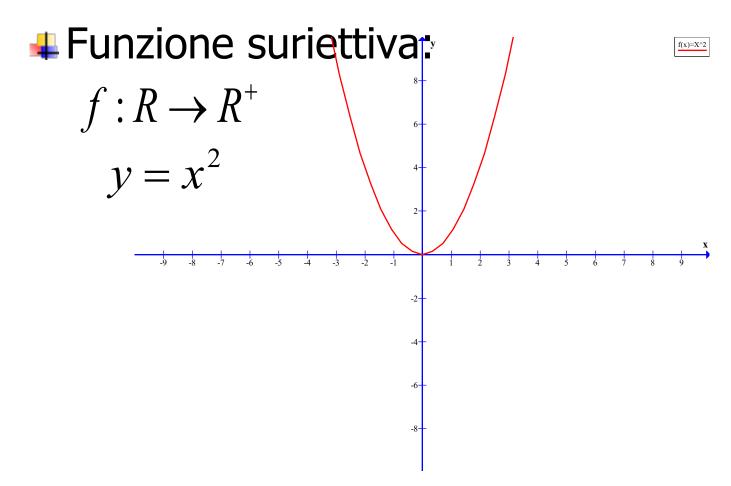
$$f: X \longrightarrow X$$
• ESEMPIO 1

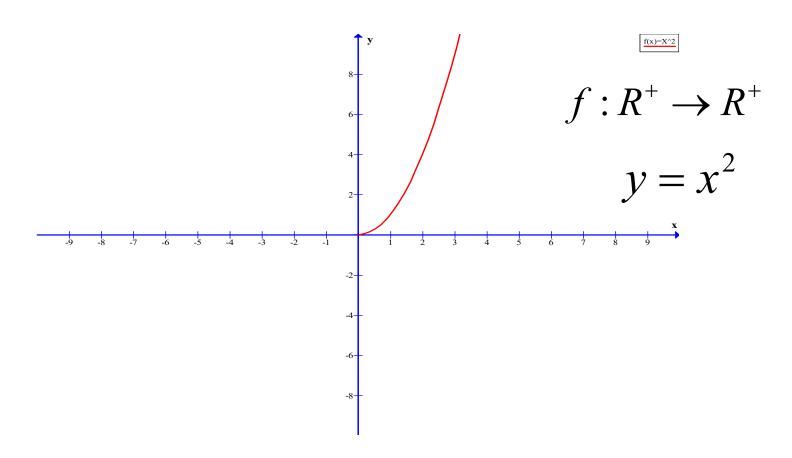
$$y = x^3$$

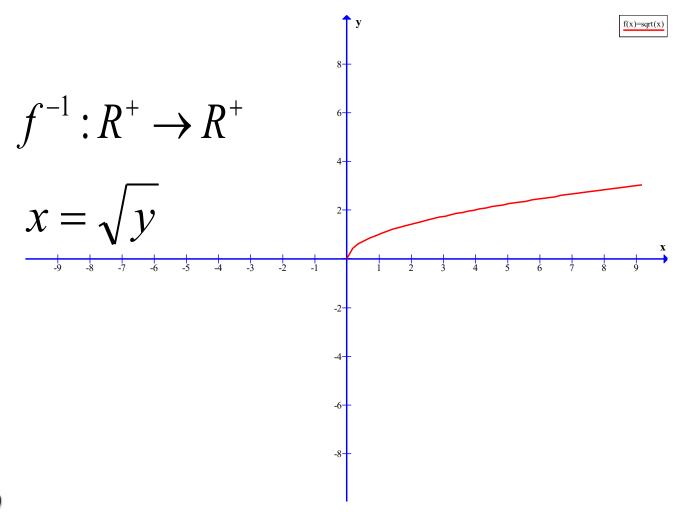
Funzioni potenza dispari -2-

6-10.-20

4







Segno di una funzione

 \blacksquare Sia data $f: X \to R$

f si dice **positiva** in X se per ogni $x \in X$ si ha f(x) > 0

f si dice **negativa** in X se per ogni $x \in X$ si ha f(x) < 0

Zeri di una funzione

 \blacksquare Sia data, $f: X \to R$

un punto $x \in X$ si dice **zero** della funzione f se e solo se

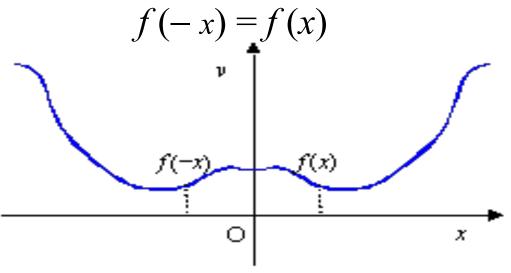
$$f(x)=0$$

Funzioni pari

$$f: X \to R$$

X simmetrico rispetto all'asse delle y f si dice pari se

per ogni $x \in X$ si ha



Funzione dispari

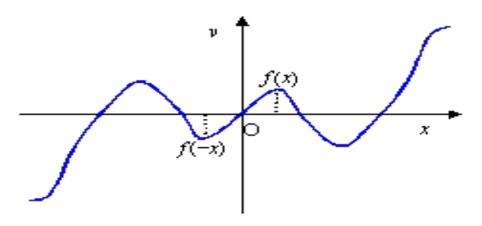
$$f: X \to R$$

X simmetrico rispetto all'origine

f si dice dispari se

per ogni $x \in X$ si ha

$$f(-x) = -f(x)$$



ESTREMO SUPERIORE ED INFERIORE di un INSIEME A

♣ Sia

$$A \subset R \qquad A \neq \emptyset$$

$$A = \{a\} \quad a \in R$$

a∈*R* è sia **estremo inferiore** che **superiore** per *A*

ESTREMO SUPERIORE ED INFERIORE di un INSIEME A

♣ Se A contiene due o più elementi sia I il più piccolo intervallo contenente A : a) A si dice che è limitato inferiormente se esiste

 $\inf I = \inf A$

b) A si dice che è limitato superiormentese esiste

 $\sup I = \sup A$

MINIMO E MASSIMO di un INSIEME A

ESEMPI

$$(a,b) = A, A \subset R$$
 $a = \inf A$
 $b = \sup A$
 $[a,b] = A$
 $a = \min A$
 $b = \max A$

Funzione limitata superiormente

$$f: X \to R$$

f si dice **limitata superiormente** se esiste un numero reale htale che per ogni $x \in X$ si abbia

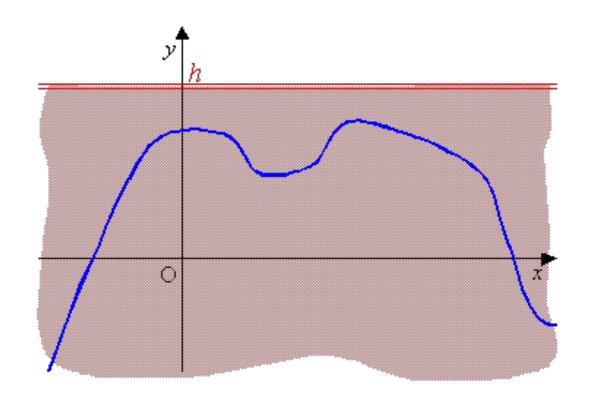
$$f(x) < h$$

ovvero
se $f(X)$ è un

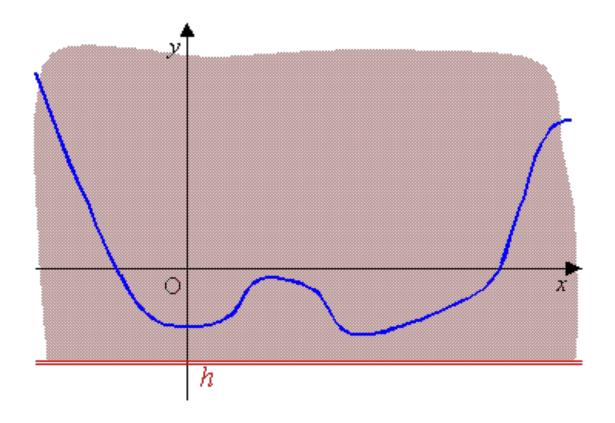
insieme limitato superiormente

6-10,-20

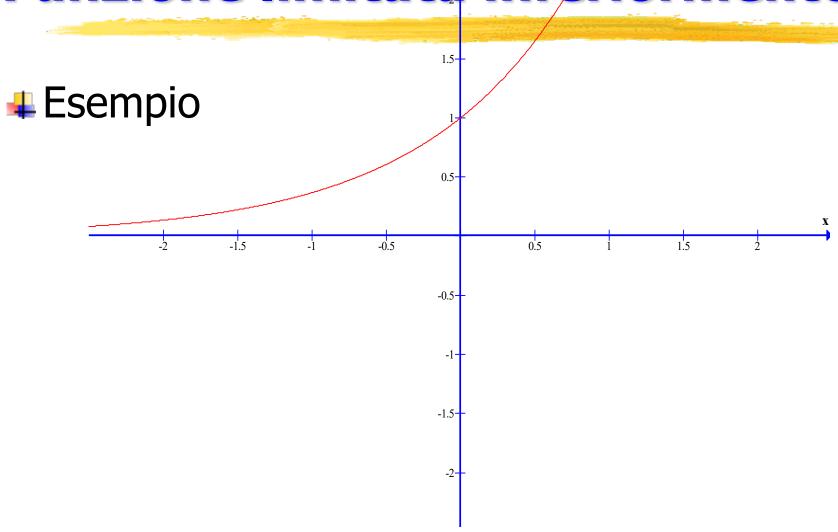
Funzione limitata superiormente



Funzione limitata inferiormente



Funzione limitata inferiormente



Funzione limitata

$$f: X \rightarrow R$$

f si dice **limitata** se esiste

un numero reale h
tale che per ogni $x \in X$ si abbia

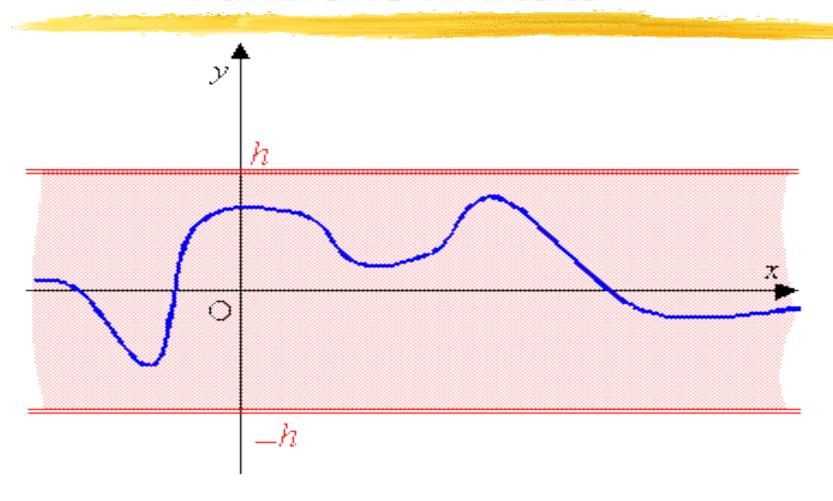
-h< $f(x) < h$

ovvero

se $f(X)$ è un

insieme limitato

Funzione limitata



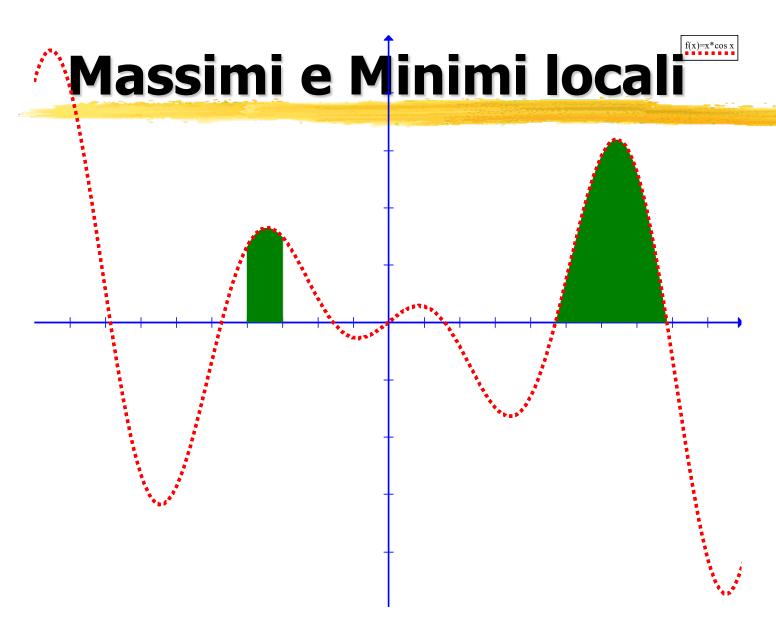
Minimo locale o relativo

$$f: X \to \mathbb{R}, \quad X \subseteq \mathbb{R}, \quad x_0 \in X$$

= se esiste un intorno $I(x_0)$ di x_0 tale che per ogni $x \in I(x_0) \subset X$ si ha

$$f(x) > f(x_0)$$

 $+ f(x_0)$ è un minimo locale o relativo e x_0 è un punto di minimo locale o relativo



Minimo globale o assoluto

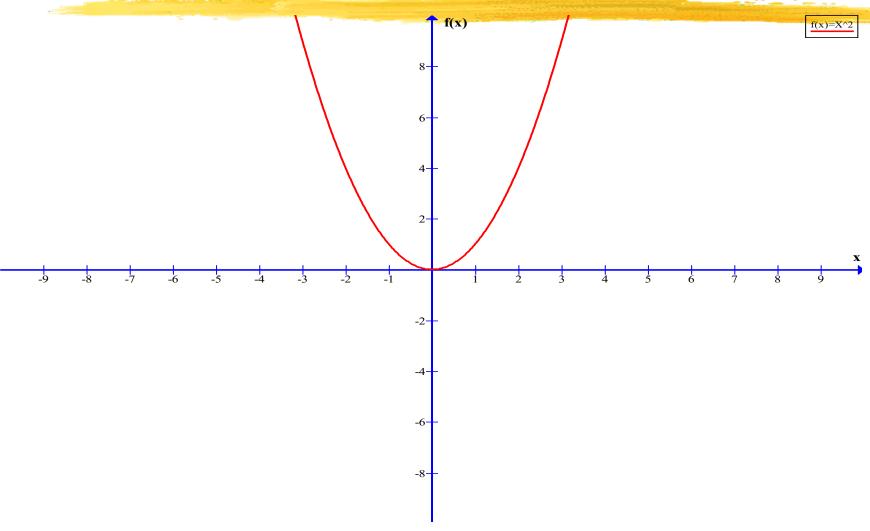
$$f: X \to \mathbb{R}, \quad X \subseteq \mathbb{R}, \quad x_0 \in X$$

 \blacksquare se esiste un intorno $I(x_0)$ di x_0 tale che per ogni $x \in X$ si ha

$$f(x) > f(x_0)$$

 $f(x) > f(x_0)$ $f(x_0)$ è un **minimo globale** o **assoluto** e x_0 è un **punto di minimo globale** o assoluto

Minimo globale o assoluto



6-10.-20

24

Massimo locale o relativo

$$f: X \to \mathbb{R}, \quad X \subseteq \mathbb{R}, \quad x_0 \in X$$

 \blacksquare se esiste un intorno $I(x_0)$ di x_0 tale che per ogni $x \in I(x_0) \subset X$ si ha $f(x_0) \in I(x_0)$ è un **massimo locale** o **relativo**

 $f(x_0)$ è un massimo locale o relativo e x_0 è un punto di massimo locale o relativo

Massimo locale o relativo

$$f: X \to \mathbb{R}, \quad X \subseteq \mathbb{R}, \quad x_0 \in X$$

 \bot se esiste un intorno $I(x_0)$ di x_0 tale che per ogni $x \in I(x_0) \subset X$ si ha $f(x) > f(x_0)$ è un **massimo locale** o **relativo**

 $f(x_0)$ è un massimo locale o relativo e x_0 è un punto di massimo locale o relativo

Massimo globale o assoluto

$$f: X \to \mathbb{R}, \quad X \subseteq \mathbb{R}, \quad x_0 \in X$$

se esiste un **intorno** $I(x_0)$ di x_0 tale che per ogni $x \in X$ si ha $f(x) < f(x_0)$ è un **massimo globale** e x_0 è un **punto di massimo globale**