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Preface

This book has one purpose: to help you understand vectors and tensors so that
you can use them to solve problems. If you’re like most students, you first
encountered vectors when you took a course dealing with mechanics in high
school or college. At that level, you almost certainly learned that vectors are
mathematical representations of quantities that have both magnitude and direc-
tion, such as velocity and force. You may also have learned how to add vectors
graphically and by using their components in the x-, y- and z-directions.

That’s a fine place to start, but it turns out that such treatments only scratch
the surface of the power of vectors. You can harness that power and make it
work for you if you’re willing to delve a bit deeper – to see vectors not just
as objects with magnitude and direction, but rather as objects that behave in
very predictable ways when viewed from different reference frames. That’s
because vectors are a subset of a larger class of objects called “tensors,” which
most students encounter much later in their academic careers, and which have
been called “the facts of the Universe.” It is no exaggeration to say that our
understanding of the fundamental structure of the universe was changed for-
ever when Albert Einstein succeeded in expressing his theory of gravity in
terms of tensors.

I believe, and I hope you’ll agree, that tensors are far easier to understand
if you first establish a stronger foundation in vectors, one that can help you
cross the bridge between the “magnitude and direction” level and the “facts of
the Universe” level. That’s why the first three chapters of this book deal with
vectors, the fourth chapter discusses coordinate transformations, and the last
two chapters discuss higher-order tensors and some of their applications.

One reason you may find this book helpful is that if you spend a few hours
looking through the published literature and on-line resources for vectors and
tensors in physics and engineering, you’re likely to come across statements
such as these:

vii



viii Preface

“A vector is a mathematical representation of a physical entity characterized
by magnitude and direction.”

“A vector is an ordered sequence of values.”
“A vector is a mathematical object that transforms between coordinate

systems in certain ways.”
“A vector is a tensor of rank one.”
“A vector is an operator that turns a one-form into a scalar.”
You should understand that every one of these definitions is correct, but

whether it’s useful to you depends on the problem you’re trying to solve.
And being able to see the relationship between statements like these should
prove very helpful when you begin an in-depth study of subjects that use
advanced vector and tensor concepts. Those subjects include Mechanics,
Electromagnetism, General Relativity, and others.

As with most projects, a good first step is to make sure you understand the
terminology that will be used to attack the problem. For that reason, Chapter 1
provides the basic definitions you’ll need to begin understanding vectors and
tensors. And if you’re ready for more-advanced definitions, you can find those
at the beginning of Chapter 5.

You may be wondering how this book differs from other texts that deal with
vectors and/or tensors. Perhaps the most important difference is that approx-
imately equal weight is given to vector and tensor concepts, with one entire
chapter (Chapter 3) devoted to selected vector applications and another chapter
(Chapter 6) dedicated to example tensor applications.

You’ll also find the presentation to be very different from that of other books.
The explanations in this book are written in an informal style in which math-
ematical rigor is maintained only insofar as it doesn’t obscure the underlying
physics. If you feel you already have a good understanding of vectors and
may need only a quick review, you should be able to skim through Chapters 1
through 3 very quickly. But if you’re a bit unclear on some aspects of vectors
and how to apply them to problems, you may find these early chapters quite
helpful. And if you’ve already seen tensors but are unsure of exactly what they
are or how to apply them, then Chapters 4 through 6 may provide some insight.

As a student’s guide, this book comes with two additional resources
designed to help you understand and apply vectors and tensors: an interactive
website and a series of audio podcasts. On the website, you’ll find the com-
plete solution to every problem presented in the text in interactive format –
that means you’ll be able to view the entire solution at once, or ask for a series
of helpful hints that will guide you to the final answer. So when you see a state-
ment in the text saying that you can learn more about something by looking
at the end-of-chapter problems, remember that the full solution to every one
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of those problems is available to you. And if you’re the kind of learner who
benefits from hearing spoken words rather than just reading text, the audio
podcasts are for you. These MP3 files walk you through each chapter of the
book, pointing out important details and providing further explanations of key
concepts.

Is this book right for you? It is if you’re a science or engineering student
and have encountered vectors or tensors in one of your classes, but you’re
not confident in your ability to apply them. In that case, you should read the
book, listen to the accompanying podcasts, and work through the examples
and problems before taking additional classes or a standardized exam in which
vectors or tensors may appear. Or perhaps you’re a graduate student struggling
to make the transition from undergraduate courses and textbooks to the more-
advanced material you’re seeing in graduate school – this book may help you
make that step.

And if you’re neither an undergraduate nor a graduate student, but a curi-
ous young person or a lifelong learner who wants to know more about vectors,
tensors, or their applications in Mechanics, Electromagnetics, and General Rel-
ativity, welcome aboard. I commend your initiative, and I hope this book helps
you in your journey.
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1

Vectors

1.1 Definitions (basic)

There are many ways to define a vector. For starters, here’s the most basic:

A vector is the mathematical representation of a physical entity that may be
characterized by size (or “magnitude”) and direction.

In keeping with this definition, speed (how fast an object is going) is not rep-
resented by a vector, but velocity (how fast and in which direction an object is
going) does qualify as a vector quantity. Another example of a vector quantity
is force, which describes how strongly and in what direction something is being
pushed or pulled. But temperature, which has magnitude but no direction, is not
a vector quantity.

The word “vector” comes from the Latin vehere meaning “to carry;” it was
first used by eighteenth-century astronomers investigating the mechanism by
which a planet is “carried” around the Sun.1 In text, the vector nature of an
object is often indicated by placing a small arrow over the variable representing
the object (such as �F), or by using a bold font (such as F), or by underlining
(such as F or F∼). When you begin hand-writing equations involving vectors,

it’s very important that you get into the habit of denoting vectors using one of
these techniques (or another one of your choosing). The important thing is not
how you denote vectors, it’s that you don’t simply write them the same way
you write non-vector quantities.

A vector is most commonly depicted graphically as a directed line seg-
ment or an arrow, as shown in Figure 1.1(a). And as you’ll see later in this
section, a vector may also be represented by an ordered set of N numbers,

1 The Oxford English Dictionary. 2nd ed. 1989.

1



2 Vectors

(b)(a)

Figure 1.1 Graphical depiction of a vector (a) and a vector field (b).

where N is the number of dimensions in the space in which the vector
resides.

Of course, the true value of a vector comes from knowing what it represents.
The vector in Figure 1.1(a), for example, may represent the velocity of the wind
at some location, the acceleration of a rocket, the force on a football, or any of
the thousands of vector quantities that you encounter in the world every day.
Whatever else you may learn about vectors, you can be sure that every one of
them has two things: size and direction. The magnitude of a vector is usually
indicated by the length of the arrow, and it tells you the amount of the quantity
represented by the vector. The scale is up to you (or whoever’s drawing the
vector), but once the scale has been established, all other vectors should be
drawn to the same scale. Once you know that scale, you can determine the
magnitude of any vector just by finding its length. The direction of the vector
is usually given by indicating the angle between the arrow and one or more
specified directions (usually the “coordinate axes”), and it tells you which way
the vector is pointing.

So if vectors are characterized by their magnitude and direction, does that
mean that two equally long vectors pointing in the same direction could in fact
be considered to be the same vector? In other words, if you were to move the
vector shown in Figure 1.1(a) to a different location without varying its length
or its pointing direction, would it still be the same vector? In some applications,
the answer is “yes,” and those vectors are called free vectors. You can move
a free vector anywhere you’d like as long as you don’t change its length or
direction, and it remains the same vector. But in many physics and engineering
problems, you’ll be dealing with vectors that apply at a given location; such
vectors are called “bound” or “anchored” vectors, and you’re not allowed to
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relocate bound vectors as you can free vectors.2 You may see the term “sliding”
vectors used for vectors that are free to move along their length but are not free
to change length or direction; such vectors are useful for problems involving
torque and angular motion.

You can understand the usefulness of bound vectors if you think about an
application such as representing the velocity of the wind at various points in
the atmosphere. To do that, you could choose to draw a bound vector at each
point of interest, and each of those vectors would show the speed and direction
of the wind at that location (most people draw the vector with its tail – the end
without the arrow – at the point to which the vector is bound). A collection of
such vectors is called a vector field; an example is shown in Figure 1.1(b).

If you think about the ways in which you might represent a bound vector,
you may realize that the vector can be defined simply by specifying the start
and end points of the arrow. So in a three-dimensional Cartesian coordinate
system, you only need to know the values of x , y, and z for each end of the
vector, as shown in Figure 1.2(a) (you can read about vector representation in
non-Cartesian coordinate systems later in this chapter).

Now consider the special case in which the vector is anchored to the origin
of the coordinate system (that is, the end without the arrowhead is at the point
of intersection of the coordinate axes, as shown in Figure 1.2(b).3 Such vectors
may be completely specified simply by listing the three numbers that represent
the x-, y-, and z-coordinates of the vector’s end point. Hence a vector anchored
to the origin and stretching five units along the x-axis may be represented as

(a) (b)

(0, 0, 0)

x

y

z (xend – xstart,
yend – ystart,
zend – zstart)

(xend, yend, zend)

(xstart, ystart, zstart)
x

y

z

Figure 1.2 A vector in 3-D Cartesian coordinates.

2 Mathematicians don’t have much use for bound vectors, since the mathematical definition of a
vector deals with how it transforms rather than where it’s located.

3 The vector shown in Figure 1.2 (a) can be shifted to this location by subtracting xstart , ystart ,
and zstart from the values at each end.
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(5,0,0). In this representation, the values that represent the vector are called the
“components” of the vector, and the number of components it takes to define
a vector is equal to the number of dimensions in the space in which the vector
exists. So in a two-dimensional space a vector may be represented by a pair
of numbers, and in four-dimensional spacetime vectors may appear as lists of
four numbers. This explains why a horizontal list of numbers is called a “row
vector” and a vertical list of numbers is called a “column vector” in computer
science. The number of values in such vectors tells you how many dimensions
there are in the space in which the vector resides.

To understand how vectors are different from other entities, it may help to
consider the nature of some things that are clearly not vectors. Think about the
temperature in the room in which you’re sitting – at each point in the room,
the temperature has a value, which you can represent by a single number. That
value may well be different from the value at other locations, but at any given
point the temperature can be represented by a single number, the magnitude.
Such magnitude-only quantities have been called “scalars” ever since W.R.
Hamilton referred to them as “all values contained on the one scale of progres-
sion of numbers from negative to positive infinity.”4 Thus

A scalar is the mathematical representation of a physical entity that may be
characterized by magnitude only.

Other examples of scalar quantities include mass, charge, energy, and speed
(defined as the magnitude of the velocity vector). It is worth noting that the
change in temperature over a region of space does have both magnitude and
direction and may therefore be represented by a vector, so it’s possible to pro-
duce vectors from groups of scalars. You can read about just such a vector
(called the “gradient” of a scalar field) in Chapter 2.

Since scalars can be represented by magnitude only (single numbers)
and vectors by magnitude and direction (three numbers in three-dimensional
space), you might suspect that there are other entities involving magnitude and
directions that are more complex than vectors (that is, requiring more numbers
than the number of spatial dimensions). Indeed there are, and such entities are
called “tensors.”5 You can read about tensors in the last three chapters of this
book, but for now this simple definition will suffice:

4 W.R. Hamilton, Phil. Mag. XXIX, 26.
5 As you can learn in the later portions of this book, scalars and vectors also belong to the class

of objects called tensors but have lower rank, so in this section the word “tensors” refers to
higher-rank tensors.
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A tensor is the mathematical representation of a physical entity that may be
characterized by magnitude and multiple directions.

An example of a tensor is the inertia that relates the angular velocity of a
rotating object to its angular momentum. Since the angular velocity vector
has a direction and the angular momentum vector has a (potentially different)
direction, the inertia tensor involves multiple directions.

And just as a scalar may be represented by a single number and a vector may
be represented by a sequence of three numbers in 3-dimensional space, a tensor
may be represented by an array of 3R numbers in 3-dimensional space. In this
expression, “R” represents the rank of the tensor. So in 3-dimensional space, a
second-rank tensor is represented by 32 = 9 numbers. In N-dimensional space,
scalars still require only one number, vectors require N numbers, and tensors
require NR numbers.

Recognizing scalars, vectors, and tensors is easy once you realize that a
scalar can be represented by a single number, a vector by an ordered set of
numbers, and a tensor by an array of numbers. So in three-dimensional space,
they look like this:

Scalar Vector Tensor (Rank 2)

(x) (x1, x2, x3) or

⎛
⎝x1

x2

x3

⎞
⎠

⎛
⎝ x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠

Note that scalars require no subscripts, vectors require a single subscript,
and tensors require two or more subscripts – the tensor shown here is a tensor
of rank 2, but you may also encounter higher-rank tensors, as discussed in
Chapter 5. A tensor of rank 3 may be represented by a three-dimensional array
of values.

With these basic definitions in hand, you’re ready to begin considering the
ways in which vectors can be put to use. Among the most useful of all vectors
are the Cartesian unit vectors, which you can read about in the next section.

1.2 Cartesian unit vectors

If you hope to use vectors to solve problems, it’s essential that you learn how to
handle situations involving more than one vector. The first step in that process
is to understand the meaning of special vectors called “unit vectors” that often
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1 2 y

1

2

z

1

2
x

i
jk

Figure 1.3 Unit vectors in 3-D Cartesian coordinates.

serve as markers for various directions of interest (unit vectors may also be
called “versors”).

The first unit vectors you’re likely to encounter are the unit vectors x̂ , ŷ, ẑ
(also called ı̂ , ĵ , k̂) that point in the direction of the x-, y-, and z-axes of the
three-dimensional Cartesian coordinate system, as shown in Figure 1.3. These
vectors are called unit vectors because their length (or magnitude) is always
exactly equal to unity, which is another name for “one.” One what? One of
whatever units you’re using for that axis.

You should note that the Cartesian unit vectors ı̂ , ĵ , k̂ can be drawn at any
location, not just at the origin of the coordinate system. This is illustrated in
Figure 1.4. As long as you draw a vector of unit length pointing in the same
direction as the direction of the (increasing) x-axis, you’ve drawn the ı̂ unit
vector. So the Cartesian unit vectors show you the directions of the x , y, and z
axes, not the location of the origin.

As you’ll see in Chapter 2, unit vectors can be extremely helpful when doing
certain operations such as specifying the portion of a given vector pointing in
a certain direction. That’s because unit vectors don’t have their own magnitude
to throw into the mix (actually, they do have their own magnitude, but it is
always one).

So when you see an expression such as “5ı̂ ,” you should think “5 units along
the positive x-direction.” Likewise, −3ĵ refers to 3 units along the negative
y-direction, and k̂ indicates one unit along the positive z-direction.

Of course, there are other coordinate systems in addition to the three perpen-
dicular axes of the Cartesian system, and unit vectors exist in those coordinate
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x

y

z

i j

k

Figure 1.4 Cartesian unit vectors at an arbitrary point.

systems as well; you can see some examples in Section 1.5. One advantage
of the Cartesian unit vectors is that they point in the same direction no matter
where you go; the x-, y-, and z-axes run in straight lines all the way out to
infinity, and the Cartesian unit vectors are parallel to the directions of those
lines everywhere.

To put unit vectors such as ı̂ , ĵ , k̂ to work, you need to understand the
concept of vector components. The next section shows you how to represent
vectors using unit vectors and vector components.

1.3 Vector components

The unit vectors described in the previous section are especially useful when
they become part of the “components” of a vector. And what are the compo-
nents of a vector? Simply stated, they are the pieces that can be used to make
up the vector.

To understand vector components, think about the vector �A shown in
Figure 1.5. This is a bound vector, anchored at the origin and extending to
the point (x = 0, y = 3, z = 3) in a three-dimensional Cartesian coordinate
system. So if you consider the coordinate axes as representing the corner of a
room, this vector is embedded in the back wall (the yz plane).

Imagine you’re trying to get from the beginning of vector �A to the end – the
direct route would be simply to move in the direction of the vector. But if you
were constrained to move only in the directions of the axes, you could get from
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(a) (b)

A

x

y

z
(0, 3, 3)

A

x

y

z
(0, 3, 3)

z-component (Az k)

y-component (Ay j)

Figure 1.5 Vector �A and its components.

the origin to your destination by taking three (unit) steps along the y-axis, then
turning 90◦ to your left, and then taking three more (unit) steps in the direction
of the z-axis.

What does this little journey have to do with the components of a vector?
Simply this: the lengths of the components of vector �A are the distances you
traveled in the directions of the axes. Specifically, in this case the magnitude of
the y-component of vector �A (written as Ay) is just the distance you traveled
in the direction of the y-axis (3 units), and the magnitude of the z-component
of vector �A (written as Az) is the distance you traveled in the direction of the
z-axis (also 3 units). Since you didn’t move at all in the direction of the x-axis,
the magnitude of the x-component of vector �A (written as Ax ) is zero.

A very handy and compact way of writing a vector as a combination of
vector components is this:

�A = Ax ı̂ + Ay ĵ + Azk̂, (1.1)

where the magnitudes of the vector components (Ax , Ay , and Az) tell you how
many unit steps to take in each direction (ı̂ ,ĵ , and k̂) to get from the beginning
to the end of vector �A.6

When you read about vectors and vector components, you’re likely to run
across statements such as “The components of a vector are the projections of
the vector onto the coordinate axes.” As you can see in Chapter 4, exactly
how those projections are made can have a significant influence on the nature
of the components you get. But in Cartesian coordinate systems (and other

6 Some authors refer to the magnitudes Ax , Ay , and Az as the “components of �A,” while others

consider the components to be Ax ı̂ , Ay ĵ , and Azk̂. Just remember that Ax , Ay , and Az are

scalars, but Ax ı̂ , Ay ĵ , and Azk̂ are vectors.
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Light rays
perpendicular
to x-axis

Shadow cast
by vector A 
on y-axis

Light rays
perpendicular
to y-axis

(b)(a)

Shadow cast
by vector A
on x-axis

xθ

y

x

y

A

A

Figure 1.6 Vector components as projections onto x- and y-axes.

“orthogonal” systems in which the axes are perpendicular to one another), the
concept of projection onto the coordinate axes is unambiguous and may be
very helpful in picturing the components of a vector.

To understand how this works, take a look at vector �A and the light sources
and shadows in Figure 1.6. As you can see in Figure 1.6(a), the direction of the
light that produces the shadow on the x-axis is parallel to the y-axis (actually
antiparallel since it’s moving in the negative y-direction), which in this case is
the same as saying that the direction of the light is perpendicular to the x-axis.

Likewise, in Figure 1.6(b), the direction of the light that produces the
shadow on the y-axis is antiparallel to the x-axis, which is of course perpendic-
ular to the y-axis. This may seem like a trivial point, but when you encounter
non-orthogonal coordinate systems, you’ll find that the direction parallel to
one axis is not necessarily perpendicular to another axis, which gives rise to
an entirely different type of vector component. This simple fact has profound
implications for the behavior of vectors and tensors for observers in different
reference frames, as you’ll see in Chapters 4, 5, and 6.

No such issues arise in the two-dimensional Cartesian coordinate system
shown in Figure 1.6, and in this case the magnitudes of the components of
vector �A are easy to determine. If the angle between vector �A and the positive
x-axis is θ , as shown in Figure 1.6a, it’s clear that the length of �A can be seen
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as the hypotenuse of a right triangle. The sides of that triangle along the x- and
y-axes are the components Ax and Ay . Hence by simple trigonometry you can
write:

Ax = | �A| cos(θ),

Ay = | �A| sin(θ),
(1.2)

where the vertical bars on each side of �A signify the magnitude (length)
of vector �A. Notice that so long as you measure the angle θ from the
positive x-axis in the direction toward the positive y-axis (that is, counter-
clockwise in this case), these equations will give the correct sign for the x- and
y-components no matter which quadrant the vector occupies.

For example, if vector �A is a vector with a length of 7 meters pointing in a
direction 210◦ counter-clockwise from the +x-axis, the x- and y-components
are given by Eq. 1.2 as

Ax = | �A| cos(θ) = 7m cos 210◦ = −6.1 m,

Ay = | �A| sin(θ) = 7m sin 210◦ = −3.5 m.
(1.3)

As expected for a vector pointing down and to the left from the origin, both
components are negative.

It’s equally straightforward to find the length and direction of a vector if
you’re given the vector’s Cartesian components. Since the vector forms the
hypotenuse of a right triangle with sides Ax and Ay , the Pythagorean theorem
tells you that the length of �A must be

| �A| =
√

A2
x + A2

y, (1.4)

and from trigonometry

θ = arctan

(
Ay

Ax

)
, (1.5)

where θ is measured counter-clockwise from the positive x-axis in a right-
handed coordinate system. If you try this with the components of vector �A
from Eq. 1.3 and end up with a direction of 30◦ rather than 210◦, remember
that unless you have a four-quadrant arctan function on your calculator, you
must add 180◦ to the angle whenever the denominator of the expression (Ax in
this case) is negative.

Once you have a working understanding of unit vectors and vector compo-
nents, you’re ready to do basic vector operations. The entirety of Chapter 2 is
devoted to such operations, but two of them are needed for the remainder of this
chapter. For that reason, you can read about vector addition and multiplication
by a scalar in the next section.
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1.4 Vector addition and multiplication by a scalar

If you’ve read the previous section on vector components, you’ve already seen
two vector operations in action. Those two operations are the addition of vec-
tors and multiplication of a vector by a scalar. Both of these operations are
used in the expansion of a vector in terms of vector components as in Eq. 1.1
from Section 1.3:

�A = Ax ı̂ + Ay ĵ + Azk̂.

In each of these terms, the unit vector (ı̂ , ĵ , or k̂) is being multiplied by a
scalar (Ax , Ay , or Az), and you already know the effect of that: it produces
a new vector, in the same direction as the unit vector, but longer than unity
by the value of the component (or shorter if the magnitude of the component
is between zero and one). So multiplying a vector by any positive scalar does
not change the direction of the vector, but only scales the length of the vector.
Hence, 5 �A is a vector in exactly the same direction as �A, but with length five
times that of �A, as shown in Figure 1.7(a). Likewise, multiplying �A by (1/2)
produces a vector that points in the same direction as �A but is only half as long.
So the vector component Ax ı̂ is a vector in the ı̂ direction, but with length Ax

units (since ı̂ has a length of one unit).
There is a caveat that goes with the “changes length, not direction” rule

when multiplying a vector by a scalar: if the scalar is negative, then the
vector is reversed in direction in addition to being scaled in length. Thus
multiplying vector �B by −2 produces the new vector −2 �B, and that vector
is twice as long as �B and points in the opposite direction to �B, as shown in
Figure 1.7(b).

The other operation going on in Eq. 1.1 is vector addition, and you already
have an idea of what that means if you recall Figure 1.5 and the process of
getting from the beginning of vector �A to the end. In that process, the quantity

5A

(½)A

(a) (b)

–2B

B

A

Figure 1.7 Multiplication of a vector by a scalar.
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Ay ĵ represented not only the number of steps you took, but also the direction
in which you took them. Likewise, the quantity Azk̂ represented the number
of steps you took in a different direction. The fact that these two quanti-
ties include directional information means that you cannot simply add them
together algebraically; you must add them “as vectors.”

To accomplish vector addition graphically, you simply imagine moving one
vector (without changing its length or direction) so that its tail is at the head
of the other vector. The sum is then determined by making a new vector that
begins at the start of the first vector and terminates at the end of the second
vector. You can do this graphically, as in Figure 1.5(b), where the tail of vector
Azk̂ is placed at the head of vector Ay ĵ , and the sum is the vector from the
beginning of Ay ĵ to the end of Azk̂.

This graphical “head-to-tail” approach to vector addition works for any vec-
tors (and any number of vectors), not just two vectors that are perpendicular to
one another (as Ay ĵ and Azk̂ were). An example of this is shown in Figure 1.8.
To graphically add the two vectors �A and �B in Figure 1.8(a), you simply imag-
ine moving one of the two vectors so that its tail is at the position of the other
vector’s head (it doesn’t matter which vector you choose to move; the result
will be the same). This is illustrated in Figure 1.8(b), in which vector �B has
been displaced so that its tail is at the head of vector �A. The sum of these two
vectors (called the “resultant” vector �C = �A + �B) is the vector that extends
from the beginning of �A to the end of �B.

Knowing how to add vectors graphically means you can always determine
the sum of two or more vectors simply using a ruler and a protractor; just draw
the vectors head-to-tail (being careful to maintain each vector’s length and

(a) (b)

B (displaced)

x

y

B

A
x

y

A

C

A + B

B

Figure 1.8 Graphical addition of vectors.
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angle), sketch the resultant from the beginning of the first to the end of the last,
and then measure the length (using the ruler) and angle (using the protractor)
of the resultant. This approach can be both tedious and inaccurate, so here’s
an alternative approach that uses the components of each vector: if vector �C
is the sum of two vectors �A and �B, then the magnitude of the x-component of
vector �C (which is just Cx ) is the sum of the magnitudes of the x-components
of vectors �A and �B (that is, Ax + Bx ), and the magnitude of the y-component
of vector �C (called Cy) is the sum of the magnitudes of the y-components of
vectors �A and �B (that is, Ay + By). Thus

Cx = Ax + Bx ,

Cy = Ay + By .
(1.6)

The rationale for this is shown in Figure 1.9.
Once you have the components Cx and Cy of the resultant vector �C , you can

find the magnitude and direction of �C using

| �C| =
√

C2
x + C2

y (1.7)

and

θ = arctan

(
Cy

Cx

)
(1.8)

To see how this works in practice, imagine that vector �A in Figure 1.9 is given
by �A = 6ı̂ + ĵ and vector �B is given by �B = −2ı̂ + 8ĵ . To add these two
vectors algebraically, you simply use Eqs. 1.6:

(a) (b)

C = A + B

B

x

y

x

y

Ay j

Cy j = Ayj + ByjBy j

A

Axi

Bxi
is negative

A

B
C

Cxi = Axi + Bxi

Figure 1.9 Component addition of vectors.
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Cx = Ax + Bx = 6+ (−2) = 4,

Cy = Ay + By = 1+ 8 = 9,

so �C = 4ı̂ + 9ĵ . If you wish to know the magnitude of �C , you can just plug
the components into Eq. 1.7 to get

| �C | =
√

C2
x + C2

y =
√

42 + 92

= √16+ 81 = 9.85.

And the angle that �C makes with the positive x-axis is given by Eq. 1.8:

θ = arctan

(
Cy

Cx

)

= arctan

(
9

4

)
= 66.0◦.

With the basic operations of vector addition and multiplication of a vector
by a scalar in hand, you’re ready to begin thinking about the more advanced
uses of vectors. But you’re also ready to attack a variety of problems involving
vectors, and you can find a set of such problems at the end of this chapter.7

1.5 Non-Cartesian unit vectors

The three straight, mutually perpendicular axes of the Cartesian coordinate sys-
tem are immensely useful for a variety of problems in physics and engineering.
Some problems, however, are much easier to solve in other coordinate systems,
often because the axes of those systems more closely align with the directions
over which one or more of the parameters relevant to the problem remain con-
stant or vary in a predictable manner. The unit vectors of such non-Cartesian
coordinate systems are the subject of this section, and transformations between
coordinate systems are discussed in Chapter 4.

As described earlier, it takes exactly N numbers to unambiguously represent
any location in a space of N dimensions, which means you have to specify
three numbers (such as x , y, and z) to designate a location in our Universe
of three spatial dimensions. However, on the two-dimensional surface of the
Earth (ignoring height variation for the moment) it takes only two numbers
(latitude and longitude, for example) to designate a specific point. And one of
the few benefits to living on a long, infinitely thin island is that you can set

7 Remember that full solutions are available on the book’s website.
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up a rendezvous using only a single number to describe the location (“I’ll be
waiting for you at 3.75 kilometers”).

Of course, numbers define locations only after you’ve defined the coordi-
nate system that you’re using. For example, do you mean 3.75 kilometers from
the east end of the island or from the west end? In every space of 1, 2, 3, or
more dimensions, you can devise an infinite number of coordinate systems to
specify locations in that space. In each of those coordinate systems, at each
location there’s one direction in which one of the coordinates is increasing
the fastest, and if you lay a vector with length of one unit in that direction,
you’ve defined a coordinate unit vector for that system. So in the Cartesian
coordinate system, the ı̂ unit vector shows you the direction in which the
x-coordinate increases, the ĵ unit vector shows you the direction in which the
y-coordinate increases, and the k̂ unit vector shows you the direction in which
the z-coordinate increases. Other coordinate systems have their own coordinate
unit vectors, as well.

Consider the two-dimensional coordinate systems shown in Figure 1.10. In
a two-dimensional space, you know that it takes two numbers to specify any
location, and those numbers could be x and y, defined along two straight axes
that intersect at a right angle. The x value tells you how far you are to the right
of the y-axis (or to the left if the x value is negative), and the y value tells
you how far you are above the x-axis (or below if the y value is negative).
But you could equally well specify any location in this two-dimensional space
by noting how far and in what direction you’ve moved from the origin. In the
standard version of these “polar” coordinates, the distance from the origin is

x

y
r

x

y y

x

(a) (b)

θ

θ

j

r

i

Figure 1.10 2-D rectangular (a) and polar (b) coordinates.
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called r and the direction is specified by giving the angle θ measured counter-
clockwise from the positive x-axis.

It’s easy enough to figure out one set of coordinates if you know the others;
for example, if you know the values of x and y, you can find r and θ using

r =
√

x2 + y2

θ = arctan
( y

x

)
.

(1.9)

Likewise, if you have the values of r and θ , you can find x and y using

x = r cos(θ)

y = r sin(θ).
(1.10)

For the point shown in Figure 1.10, if the values of x and y are 4 cm and 9 cm,
then r has a value of approximately 9.85 cm and θ has a value of 66.0◦. Clearly,
whether you write (x, y) = (4 cm, 9 cm) or (r, θ) = (9.85 cm, 66.0◦), you’re
referring to the same location; it’s not the point that’s changed, it’s only the
point’s coordinates that are different.

And if you choose to use the polar coordinate system to represent the point,
do unit vectors exist that serve the same function as ı̂ and ĵ in Cartesian coor-
dinates? They certainly do, and with a little logic you can figure out which
direction they must point. After all, you know that the unit vector ı̂ shows you
the direction of increasing x and the unit vector ĵ shows you the direction of
increasing y, but now you’re using r and θ instead of x and y. So it seems
reasonable that the unit vector r̂ at any location should point in the direction of
increasing r , and the unit vector θ̂ should point in the direction of increasing θ .
For the point shown in Figure 1.10, that means that r̂ should point up and to the
right, in the direction of increasing r if θ is held constant. At that same point,
θ̂ should point up and to the left, in the direction of increasing θ if r is held
constant. These polar unit vectors are shown for one point in Figure 1.10(b).

An important consequence of this definition is that the directions of r̂ and θ̂
will be different at different locations. They’ll always be perpendicular to one
another, but they will not point in the same directions as they do for the point
in Figure 1.10. The dependence of the polar unit vectors on position can be
seen in the following relations:

r̂ = cos(θ)ı̂ + sin(θ)ĵ

θ̂ = − sin(θ)ı̂ + cos(θ)ĵ .
(1.11)

So if θ = 0 (which means your location is on the +x-axis), then r̂ = ı̂ and
θ̂ = ĵ . But if θ = 90◦ (so your location is on the +y-axis), then r̂ = ĵ and
θ̂ = −ı̂ .
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Does this dependence on position mean that these unit vectors are not “real”
vectors? That depends on your definition of a real vector. If you define a vector
as a quantity with magnitude and direction, the polar unit vectors do meet
your definition. But they do not meet the definition of free vectors described in
Section 1.1, since they may not be moved without changing their direction.

This means that if you express a vector in polar coordinates and then
take the derivative of that vector, you’ll have to account for the change in
the unit vectors, as well. That’s one of the advantages offered by Cartesian
coordinates – the unit vectors do not change no matter where you go in the
space.

As you might expect, the situation is slightly more complicated for three-
dimensional coordinate systems. Whether you choose to use Cartesian or
non-Cartesian coordinates, you’re going to need three variables to represent all
the possible locations in a three-dimensional space, and each of the coordinates
is going to come with its own unit vector. The two most common three-
dimensional non-Cartesian coordinate systems are cylindrical and spherical
coordinates, which you can see in Figures 1.11 and 1.12.

In cylindrical coordinates a point P is specified by r, φ, z, where r (some-
times called ρ) is the perpendicular distance from the z-axis, φ is the angle
measured from the x-axis to the projection of r onto the xy plane, and z is the
same as the z in Cartesian coordinates. Here’s how you find r , φ, and z if you
know x , y, and z:

Cylinder of
constant r

P(r,φ,z)

Plane of constant z

Plane of constant φ

z

x

y
φ

r

r

z

φ

Figure 1.11 Cylindrical coordinates.
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Plane of
constant φ

Sphere of
constant r

Cone of
constant θ

θ

φ
y

x

z
P(r,θ,φ)

r

θ

φ

ρ

Figure 1.12 Spherical coordinates.

r =
√

x2 + y2

φ = arctan
( y

x

)
z = z.

(1.12)

And if you have the values of r , φ, and z, you can find x , y, and z using

x = r cos(φ)

y = r sin(φ)

z = z.

(1.13)

A vector at the point P is specified in cylindrical coordinates in terms of
three mutually perpendicular components with unit vectors perpendicular to
the cylinder of radius r , perpendicular to the plane through the z-axis at angle
φ, and perpendicular to the xy plane at distance z. As in the Cartesian case,
each cylindrical coordinate unit vector points in the direction in which that
parameter is increasing, so r̂ points in the direction of increasing r , φ̂ points
in the direction of increasing φ, and ẑ points in the direction of increasing z.
The unit vectors (r̂ , φ̂, ẑ) form a right-handed set, so if you point the fingers
of your right hand along r̂ and push it into φ̂ with your right palm, your right
thumb will show you the direction of ẑ.
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The following equations relate the Cartesian to the cylindrical unit vectors:

r̂ = cos(φ)ı̂ + sin(φ)ĵ

φ̂ = − sin(φ)ı̂ + cos(φ)ĵ

ẑ = ẑ.

(1.14)

In spherical coordinates a point P is specified by r, θ, φ where r represents
the distance from the origin, θ is the angle measured from the z-axis toward
the xy plane, and φ is the angle measured from the x-axis (or xz plane) to the
constant-φ plane containing point P. With the z-axis up, θ is sometimes called
the zenith angle and φ the azimuth angle. You can determine the spherical
coordinates r , θ , and φ, from x , y, and z using the following equations:

r =
√

x2 + y2 + z2

θ = arccos

(
z√

x2 + y2 + z2

)

φ = arctan
( y

x

)
.

(1.15)

And you can find x , y, and z from r , θ , and φ using:

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ).

(1.16)

In spherical coordinates, a vector at the point P is specified in terms of three
mutually perpendicular components with unit vectors perpendicular to the
sphere of radius r , perpendicular to the plane through the z-axis at angle φ,
and perpendicular to the cone of angle θ . The unit vectors (r̂ , θ̂ , φ̂) form a
right-handed set, and are related to the Cartesian unit vectors as follows:

r̂ = sin(θ) cos(φ)ı̂ + sin(θ) sin(φ)ĵ + cos(θ)k̂

θ̂ = cos(θ) cos(φ)ı̂ + cos(θ) sin(φ)ĵ − sin(θ)k̂

φ̂ = − sin(φ)ı̂ + cos(φ)ĵ .

(1.17)

You may be asking yourself “Do I really need all these different unit vec-
tors?” Well, need may be a bit strong, but your life will certainly be easier
if you’re trying to describe motion along a line of constant longitude on a
spherical planet (the θ̂ direction) or the direction of a magnetic field around a



20 Vectors

current-carrying wire (the φ̂ direction). You’ll find some examples of that in
the problems at the end of this chapter.

1.6 Basis vectors

If you think about the unit vectors ı̂ , ĵ , and k̂ and vector components such as
Ax ı̂ , Ay ĵ , and Azk̂, you may realize that any vector in our three-dimensional
Cartesian coordinate system can be made up of three components, each one
telling you how many steps to take in the direction of one of the coordi-
nate axes. Since those steps may be large or small, in the positive or negative
direction, you can reach any point in the space containing these vectors. Little
wonder, then, that ı̂ , ĵ , and k̂ are one example of “basis vectors” in this space;
combined with appropriate magnitudes, they form the basis of any vector in
the space.

And you don’t need to use only these particular vectors to make up any
vector in this space – you can easily imagine using three vectors that are twice
as long as the unit vectors ı̂ , ĵ , and k̂, as shown in Figure 1.13(a). Although
the vector components would change if you switched to these longer basis
vectors, you’d have no trouble using them to make up any vector within the
space. Specifically, if the unit vectors were twice as long, the values of Ax , Ay ,
and Az would have to be only half as big to reach a given point in space.

You might even think of using three non-orthogonal, non-unit vectors such
as the vectors �e1, �e2, and �e3 in Figure 1.13(b) as your basis vectors. Of course,
if you were to select three coplanar vectors (that is, vectors lying in the same
plane), you’d quickly find that scaling and combining those vectors allows you

(a)

1

21

2

1

e3

x

y

z
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2k

x
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2j

(b)

e2
e1

Figure 1.13 Alternative basis vectors.
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to reach any point within that plane, but all points outside the plane would be
unreachable. But as long as one of the three vectors is not coplanar with the
other two, then appropriate scaling and combining will get you to any point
in the space, and the vectors �e1, �e2, and �e3 form a perfectly usable basis set
(mathematicans say that they “span” the vector space).

You can ensure that three vectors are not coplanar by requiring them to be
“linearly independent,” which means that no two of the vectors may be scaled
and combined to give the third, and no two are collinear (that is, lying along
the same line or parallel to one another). This is often stated as the requirement
that the only way to scale and combine the three vectors and get zero as the
result is to scale each of the vectors by zero. In other words, for three linearly
independent vectors �e1, �e2, and �e3, the equation

A�e1 + B�e2 + C�e3 = 0 (1.18)

can only be true if A = B = C = 0.
So as long as you pick three linearly independent vectors, you have a viable

set of basis vectors. And if you choose three non-coplanar vectors �e1, �e2, and
�e3 of non-unit length, it’s quite simple to form unit vectors from these vec-
tors. Since dividing a vector by a positive scalar changes its length but not its
direction, you simply divide each vector by its magnitude:

ê1 = �e1

|�e1|
ê2 = �e2

|�e2|
ê3 = �e3

|�e3| .

(1.19)

The concepts described in this section may be used to construct an infinite
number of bases, but the most common are the “orthonormal” bases such as
ı̂ , ĵ , and k̂. These bases are called “ortho” because they’re orthogonal (per-
pendicular to one another) and “normal” because they are normalized to a
magnitude of one. Orthonormal bases will get you through the majority of
problems you’re likely to face.

One last fact about basis vectors in various coordinate systems will serve you
very well if you study physics and engineering beyond the basic level, espe-
cially if your studies include the tensors discussed in Chapters 4 through 6.
That fact is this: basis vectors that point along the axes of one coordi-
nate system may be described in another coordinate system using partial
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derivatives.8 Specifically, imagine that you’re converting from spherical to
rectangular coordinates. The basis vector along the original spherical (r ) axis
can be written in the Cartesian (x , y, and z) system as

�er = ∂x

∂r
ı̂ + ∂y

∂r
ĵ + ∂z

∂r
k̂

= sin θ cosφ ı̂ + sin θ sinφ ĵ + cos θ k̂.

Likewise, the �eθ and �eφ basis vectors can be written as

�eθ = ∂x

∂θ
ı̂ + ∂y

∂θ
ĵ + ∂z

∂θ
k̂

= r cos θ cosφ ı̂ + r cos θ sinφ ĵ − r sin θ k̂,

�eφ = ∂x

∂φ
ı̂ + ∂y

∂φ
ĵ + ∂z

∂φ
k̂

= −r sin θ sinφ ı̂ + r sin θ cosφ ĵ .

Notice that these basis vectors are not all unit vectors (because their magni-
tudes are not all equal to one), nor do they all have the same dimensions (�er

is dimensionless, but �eθ and �eφ have dimensions of length). Neither of these
characteristics disqualifies these as basis vectors, and you can always turn them
into unit vectors by dividing by their magnitudes (take a look at the problems
at the end of this chapter and their on-line solutions if you want to see how this
works).

In general, if the coordinates of the original system are called x1, x2, and x3

(these were r , θ , and φ in the example just discussed), and the coordinates of
the new system are called x ′1, x ′2, and x ′3 (these were x , y, and z in the example),
then the basis vectors along the original coordinate axes can be written in the
new system as

�e1 = ∂x ′1
∂x1
�e ′1 +

∂x ′2
∂x1
�e ′2 +

∂x ′3
∂x1
�e ′3,

�e2 = ∂x ′1
∂x2
�e ′1 +

∂x ′2
∂x2
�e ′2 +

∂x ′3
∂x2
�e ′3,

�e3 = ∂x ′1
∂x3
�e ′1 +

∂x ′2
∂x3
�e ′2 +

∂x ′3
∂x3
�e ′3.

(1.20)

In other words, the partial derivatives
∂x ′1
∂x1
�e ′1,

∂x ′2
∂x1
�e ′2, and

∂x ′3
∂x1
�e ′3 are the compo-

nents of the first original (unprimed) basis vector expressed in the new (primed)

8 If you’re not familiar with partial derivatives or need a refresher, you’ll find one in the next
chapter.
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coordinate system. For this reason, you’ll find that some authors define basis
vectors in terms of partial derivatives.

These relationships will prove to be extremely valuable in the study of
coordinate-system transformation and tensor analysis, so file them away if your
studies include those topics.

1.7 Chapter 1 problems

1.1 (a) If | �B| = 18 m and �B points along the negative x-axis, what are Bx

and By?
(b) If Cx = −3 m/s and Cy = 5 m/s, find the magnitude of �C and the

angle that �C makes with the positive x-axis.
1.2 Vector �A has magnitude of 11 m/s2 and makes an angle of 65 degrees

with the positive x-axis, and vector �B has Cartesian components Bx = 4
m/s2 and By = −3 m/s2. If vector �C = �A + �B,
(a) Find the x- and y-components of �C ;
(b) What are the magnitude and direction of �C?

1.3 Imagine that the y-axis points north and the x-axis points east.
(a) If you travel a distance r = 22 km in a straight line from the origin in a

direction 35 degrees south of west, what is your position in Cartesian
(x, y) coordinates?

(b) If you travel 6 miles due south from the origin and then turn west and
travel 2 miles, how far from the origin and in what direction is your
final position?

1.4 What are the x- and y-components of the polar unit vectors r̂ and θ̂ when
(a) θ = 180 degrees?
(b) θ = 45 degrees?
(c) θ = 215 degrees?

1.5 Cylindrical coordinates
(a) If r = 2 meters, φ = 35 degrees, and z = 1 meter, what are x , y, and

z?
(b) If (x, y, z) = (3, 2, 4) meters, what are (r, φ, z)?

1.6 (a) In cylindrical coordinates, show that r̂ points along the x-axis
if φ = 0.

(b) In what direction is φ̂ if φ = 90 degrees?
1.7 (a) In spherical coordinates, find x , y, and z if r = 25 meters, θ = 35

degrees, and φ= 110 degrees.
(b) Find (r, θ, φ) if (x, y, z) = (8, 10, 15) meters.
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1.8 (a) For spherical coordinates, show that θ̂ points along the negative
z-axis if θ = 90 degrees.

(b) If φ also equals 90 degrees, in what direction are r̂ and φ̂?
1.9 As you can read in Chapter 3, the magnetic field around a long, straight

wire carrying a steady current I is given in spherical coordinates by the
expression �B = μ0 I

2πR φ̂, where μ0 is a constant and R is the perpendicular
distance from the wire to the observation point. Find an expression for �B
in Cartesian coordinates.

1.10 If �e1 = 5ı̂ − 3ĵ + 2k̂, �e2 = ĵ − 3k̂, and �e3 = 2ı̂ + ĵ − 4k̂, what are the
unit vectors ê1, ê2, and ê3?
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Vector operations

If you were tracking the main ideas of Chapter 1, you should realize that
vectors are representations of physical quantities – they’re mathematical tools
that help you visualize and describe a physical situation. In this chapter, you
can read about a variety of ways to use those tools to solve problems. You’ve
already seen how to add vectors and how to multiply vectors by a scalar (and
why such operations are useful); this chapter contains many other “vector oper-
ations” through which you can combine and manipulate vectors. Some of these
operations are simple and some are more complex, but each will prove useful
in solving problems in physics and engineering. The first section of this chapter
explains the simplest form of vector multiplication: the scalar product.

2.1 Scalar product

Why is it worth your time to understand the form of vector multiplication
called the scalar or “dot” product? For one thing, forming the dot product
between two vectors is very useful when you’re trying to find the projection
of one vector onto another. And why might you want to do that? Well, you
may be interested in knowing how much work is done by a force acting on an
object. The first instinct of many students is to think of work as “force times
distance” (which is a reasonable starting point). But if you’ve ever taken a
course that went a bit deeper than the introductory level, you may remember
that the definition of work as force times distance applies only to the special
case in which the force points in exactly the same direction as the displacement
of the object. In the more general case in which the force acts at some angle to
the direction of the displacement, you have to find the component of the force
along the displacement. That’s one example of exactly what the dot product
can do for you, and you’ll find more in the problems at the end of this chapter.
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How do you go about computing the dot product between two vectors? Well,
if you know the Cartesian components of each vector (call the vectors �A and
�B), you can use

�A ◦ �B = Ax Bx + Ay By + Az Bz . (2.1)

Or if you know the angle θ between the vectors,

�A ◦ �B = | �A|| �B| cos θ, (2.2)

where | �A| and | �B| represent the magnitude (length) of the vectors �A and �B.1

Note that the dot product between two vectors gives a scalar result (just a single
value, no direction).

To grasp the physical significance of the dot product, consider vectors �A
and �B which differ in direction by angle θ , as shown in Figure 2.1a. For these
vectors, the projection of �A onto the direction of �B is | �A| cos(θ), as shown in
Figure 2.1b. Multiplying this projection by the length of �B gives | �A|| �B| cos(θ).
Thus the dot product �A ◦ �B represents the projection of �A onto the direction of
�B multiplied by the length of �B. The scalar result of this operation is exactly
the same as the result of finding the projection of �B onto the direction of �A
and then multiplying that value by the length of �A. Hence the order of the
two vectors in the dot product is irrelevant; �A ◦ �B gives the same result as
�B ◦ �A.

The scalar product can be particularly useful when one of the vectors in
the product is a unit vector. That’s because the length of a unit vector is by
definition equal to one, so a scalar product such as �A ◦ k̂ finds the projection of
vector �A onto the direction of k̂ (the z-direction) multiplied by the magnitude of
k̂ (which is one). Thus to find the component of any vector in a given direction,
you can simply form the dot product between that vector and the unit vector in

B
θ The projection of A onto B:  |A| cosθ

times the length of B:                   x|B|
gives the dot product A  B: |A|B|cosθ

A

A
B

(b)(a)

θ

Figure 2.1 Two vectors and their scalar product.

1 The equivalence between Equations 2.1 and 2.2 is demonstrated in the problems at the end of
this chapter.
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the desired direction. It’s quite likely you’ll come across problems in physics
and engineering in which you have a vector ( �A) and you wish to know the
component of that vector that’s perpendicular to a specified surface; if you
know the unit normal vector (n̂) for the surface, the scalar product �A ◦ n̂ gives
you that perpendicular component of �A.

The scalar product is also useful in finding the angle between two vectors.
To understand how that works, consider the two expressions for the dot product
given in Eqs. 2.1 and 2.2. Since

�A ◦ �B = | �A|| �B| cos θ = Ax Bx + Ay By + Az Bz, (2.3)

then dividing both sides by the product of the magnitudes of �A and �B gives

cos(θ) = Ax Bx + Ay By + Az Bz

| �A|| �B|
or

θ = arccos

(
Ax Bx + Ay By + Az Bz

| �A|| �B|
)
. (2.4)

So if you wish to find the angle between two vectors �A = 5ı̂ − 2ĵ + 4k̂ and
�B = 3ı̂ + ĵ + 7k̂, you can use Eq. 2.4 to find

θ = arccos

(
(5)(3)+ (−2)(1)+ (4)(7)√

(5)2 + (−2)2 + (4)2√(3)2 + (1)2 + (7)2
)

= arccos

(
41√

45
√

59

)
= 37.3◦.

One final note about the scalar product: any unit vector dotted with itself
gives a result of 1 (since, for example, ı̂ ◦ ı̂ = |ı̂ ||ı̂ | cos(0◦) = (1)(1)(1) = 1),
and the dot product between two different orthogonal unit vectors gives a result
of zero (since, for example, ı̂ ◦ ĵ = |ı̂ ||ĵ | cos(90◦) = (1)(1)(0) = 0).

2.2 Cross product

Another way to multiply two vectors is to form the “cross product” between
them. Unlike the dot product, which gives a scalar result, the cross prod-
uct results in another vector. Why bother learning this form of vector
multiplication? One reason is that the cross product is just what you need when
you’re trying to find the result of certain physical processes, such as applying a
force at the end of a lever arm or firing a charged particle into a magnetic field.
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Computing the cross product between two vectors is only slightly more com-
plicated than finding the dot product. If you know the Cartesian components
of both vectors, the cross product is given by

�A × �B = (Ay Bz − Az By)ı̂

+ (Az Bx − Ax Bz)ĵ

+ (Ax By − Ay Bx )k̂, (2.5)

which can be written as

�A × �B =
∣∣∣∣∣∣

ı̂ ĵ k̂
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (2.6)

If you haven’t seen determinants before and you need some help getting from
Eq. 2.6 to Eq. 2.5, you can find an explanation of how this works on the book’s
website.

The direction of the vector formed by the cross product of �A and �B is
perpendicular to both �A and �B (that is, perpendicular to the plane contain-
ing both �A and �B), as shown in Figure 2.2. Of course, there are two directions
perpendicular to this plane, so how do you know which one corresponds to
the direction of �A × �B? The answer is provided by the “right-hand rule,”
which you can invoke by opening your right hand and making your thumb
perpendicular to the direction of your fingers in the plane of your palm. Now
imagine using your right palm and fingers to push the first vector ( �A in this
case) into the direction of the second vector ( �B in this case) through the
smallest angle. As you push, your thumb shows you the direction of the cross
product.2

A very important difference between the dot product and the cross product is
that the order of the vectors is irrelevant for the dot product but matters greatly
for the cross product. You can see this by imagining the cross product �B× �A in
Figure 2.2. In order to push vector �B into vector �A with your right palm, you’d
have to turn your hand upside-down (that is, with your thumb pointing down).
And since your thumb shows you the direction of the cross product, you can
see that �B × �A points in the opposite direction from �A × �B. That means that

�A × �B = − �B × �A, (2.7)

2 Some people find it easier to imagine aligning the fingers of your (open) right hand with the
direction of the first vector, and then curling your fingers toward the second vector. Or you can
point your right index finger in the direction of the first vector and your right middle finger in
the direction of the second vector. Whether you use the pushing, curling, or pointing approach,
your right thumb shows you the direction of the cross product.
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A

A × B

Plane containing both A and B

A

B

B

A × B

θ

Figure 2.2 Direction of the cross product �A × �B.

B

The length of the cross product
equals the area of the parallelogram
formed by vectors A and B

Parallelogram

A × B

Height is
|B|sin(θ)

A
Plane containing both A and B

θ

Figure 2.3 The cross product as area.

since the negative of a vector is just a vector of the same magnitude in the
opposite direction. A quick method of computing the magnitude of the cross
product is to use

| �A × �B| = | �A|| �B| sin(θ), (2.8)

where | �A| is the magnitude of �A, | �B| is the magnitude of �B, and θ is the angle
between �A and �B.3

One way to picture the length and direction of the cross product is illustrated
in Figure 2.3. Just as the dot product involves the projection of one vector onto
another, the cross product also has a geometrical interpretation. In this case,
the magnitude of the cross product between two vectors is proportional to the
area of the parallelogram formed with those two vectors as adjacent sides. As
you may recall, the area of a parallelogram is just its base times its height, and

3 The equivalence of Eq. 2.8 and the magnitude of the expression in Eq. 2.5 is demonstrated in
the problems at the end of this chapter.
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in this case the height of the parallelogram is | �B| sin(θ) and the length of the
base is | �A|. That makes the area of the parallelogram equal to | �A|| �B| sin(θ),
exactly as given in Eq. 2.8.

So if the angle between two vectors �A and �B is zero or 180◦ (that is, if �A
and �B are parallel or antiparallel), the cross product between them is zero. And
as the angle between �A and �B approaches 90◦ or 270◦, the magnitude of the
cross product increases, reaching a maximum value of | �A|| �B|when the vectors
are perpendicular.

Using the definition of the cross product and the right-hand rule, you should
be able to convince yourself that the following relations are true:

ı̂ × ı̂ = 0 ı̂ × ĵ = k̂ ĵ × ı̂ = −k̂
ĵ × ĵ = 0 ĵ × k̂ = ı̂ k̂ × ĵ = −ı̂
k̂ × k̂ = 0 k̂ × ı̂ = ĵ ı̂ × k̂ = −ĵ .

(2.9)

Applying these relations term-by-term to the product of �A = Ax ı̂+ Ay ĵ+ Azk̂
and �B = Bx ı̂ + By ĵ + Bzk̂ should help you understand where Eqs. 2.6 and
2.5 come from (and if you need some help making that work out, there’s a
problem on this at the end of this chapter, with the full solution on the book’s
website).

Applications of the cross product include torque problems (in which �τ =
�r × �F) and magnetic force problems (in which �FB = q �v × �B); you can find
examples of these in the chapter-end problems.

2.3 Triple scalar product

Once you understand the dot product and cross product described in the previ-
ous two sections, you may be wondering if it’s possible to combine these two
vector operations. Happily, it’s not only possible, it’s actually useful to do so.
After all, you can define all the mathematical operations you’d like, but unless
those operations result in something that you can apply to solve problems,
you’d have to leave them in the “curiosity” file. You’ve seen how the dot prod-
uct finds employment when projections of vectors onto specified directions are
needed and when work is to be calculated, and how the cross product can be
called into action when torques and magnetic forces are at play. But does it
make sense to combine the dot and cross product operations in a manner such
as �A◦( �B× �C)? Yes it does.4 This is called the “triple scalar product” or “scalar
triple product” and it has several useful applications.

4 But ( �A ◦ �B)× �C makes no sense, since ( �A ◦ �B) gives a scalar, and you can’t cross that scalar
into �C .
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The mathematics of this operation are straightforward; you know that

�B × �C = (ByCz − BzCy)ı̂

+ (BzCx − Bx Cz)ĵ

+ (Bx Cy − ByCx )k̂, (2.10)

and from Eq. 2.1 you also know that

�A ◦ �B = Ax Bx + Ay By + Az Bz,

so combining the dot and cross product gives

�A ◦
( �B × �C) = Ax (ByCz − BzCy)

+ Ay(BzCx − Bx Cz)

+ Az(Bx Cy − ByCx ). (2.11)

A handy way to write this is

�A ◦
( �B × �C) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (2.12)

One geometrical interpretation of the triple scalar product can be under-
stood with the help of Figure 2.4. In this figure, vectors �A, �B, and �C represent
the sides of a parallelepiped. The area of the base of this parallelepiped is
| �B × �C |, as in Figure 2.3, and its height is equal to | �A| cos(φ), where φ
is the angle between �A and the direction of �B × �C . That means that the
volume of the parallelepiped (the height times the area of the base) must be
| �A| cos(φ)(| �B× �C |). Writing this as | �A|| �B × �C | cos(φ) should help you see
that this has the same form as the definition of the dot product in Eq. 2.2 and
is therefore just �A ◦ ( �B × �C).

Plane containing both B and C

Parallelepiped

Height is
|A|cos(φ)

B × C

A Area of base
is B × C

B

C
φ

Figure 2.4 The triple scalar product as volume.
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Hence the triple scalar product �A◦( �B× �C)may be interpreted as the volume
of the parallelepiped formed by vectors �A, �B, and �C . You should note that the
triple product will give a positive result so long as the vectors �A, �B, and �C
form a right-handed system (that is, pushing �A into �B with the palm of your
right hand gives a direction onto which �C projects in a positive sense (likewise
for pushing �B into �C and pushing �C into �A).

Seeing the relationship between the triple scalar product of three vectors and
the volume formed by those vectors makes it easy to understand why the triple
scalar product may be used as a test to determine whether three vectors are
coplanar (that is, whether all three lie in the same plane). Just imagine how
the parallelepiped in Figure 2.4 would look if vectors �A, �B, and �C were all
in the same plane. In that case, the height of the parallelepiped would be zero
and the projection of �A onto the direction of �B × �C would be zero, which
means the triple product �A ◦ ( �B × �C) would have to be zero. Stated another
way, if the projection of �A onto the direction of �B × �C is not zero, then �A
cannot lie in the same plane as �B and �C . Thus

�A ◦ ( �B × �C) = 0 (2.13)

is both a necessary and a sufficient condition for vectors �A, �B, and �C to be
coplanar.

Equating �A ◦ ( �B× �C) to the volume of the parallelepiped formed by vectors
�A, �B, and �C should also help you see that any cyclic permutation of the vectors

(such as �B ◦ ( �C × �A) or �C ◦ ( �A × �B)) gives the same result for the triple
scalar product, since the volume of the parallelepiped is the same in each of
these cases. Some authors describe this as the ability to interchange the dot
and the cross without affecting the result (since ( �A × �B) ◦ �C is the same as
�C ◦ ( �A × �B)).

One application in which the triple scalar product finds use is the determi-
nation of reciprocal vectors, as explained in the sections in Chapter 4 dealing
with covariant and contravariant components of vectors.

2.4 Triple vector product

The triple scalar product described in the previous section is not the only use-
ful way to multiply three vectors. An operation such as �A × ( �B × �C) (called
the “triple vector product”) comes in very handy when you’re dealing with
certain problems involving angular momentum and centripetal acceleration.
Unlike the triple scalar product, which produces a scalar result (since the sec-
ond operation is a dot product), the triple vector product yields a vector result
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(since both operations are cross products). You should note that �A × ( �B × �C)
is not the same as ( �A× �B)× �C ; the location of the parentheses matters greatly
in the triple vector product. The triple vector product is somewhat tedious to
calculate by brute force, but thankfully a simplified expression exists:

�A × ( �B × �C) = �B( �A ◦ �C)− �C( �A ◦ �B). (2.14)

After all the previous discussion of the various ways in which vectors can be
multiplied, you can be forgiven for thinking that the right side of this equation
looks a bit strange, with no circle or cross between �B and �A ◦ �C or between �C
and �A ◦ �B. Just remember that �A ◦ �C and �A ◦ �B are scalars, so the expressions
in parentheses in Eq. 2.14 are simply scalar multipliers of vectors �B and �C .
Does this mean that the result of the operation �A × ( �B × �C) is a vector that is
some linear combination of the second and third vectors in the triple product?
That’s exactly what it means, as you can see by considering Figure 2.5.

In this figure, you can see the vector �B × �C pointing straight up, perpendic-
ular to the plane containing vectors �B and �C . Now imagine forming the cross
product of vector �A with vector �B× �C by pushing �A into the direction of �B× �C
with the palm of your right hand. The result of this operation, labelled vector
�A × ( �B × �C), is back in the plane containing vectors �B and �C . To understand

why this is true, consider the fact that the vector that results from the operation
�B × �C must be perpendicular to the plane containing �B and �C . If you now
cross �A into that vector, the resulting vector must be perpendicular to both �A
and to ( �B × �C), which puts it back in the plane containing vectors �B and �C .
And if the vector result of the operation �A × ( �B × �C) is in the same plane as
vectors �B and �C , then it must be a linear combination of those two vectors.

You can remember Eq. 2.14 as the “BAC minus CAB” rule so long as you
remember to write the members of the triple product in the correct sequence

Plane containing both B and C
(but not A)

A × (B × C)
(same plane as B and C)

B × C

B

C

A

Figure 2.5 Vectors involved in the triple vector product �A × ( �B × �C).
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( �A, �B, �C) with the parentheses around the last two vectors. To see where this
comes from, you can simply use the definition of the cross product (Eq. 2.6) to
write

�A × ( �B × �C) =
∣∣∣∣∣∣

ı̂ ĵ k̂
Ax Ay Az

( �B × �C)x ( �B × �C)y ( �B × �C)z

∣∣∣∣∣∣ . (2.15)

And from Equation 2.5 you know that

�B × �C = (ByCz − BzCy)ı̂

+ (BzCx − Bx Cz)ĵ

+ (Bx Cy − ByCx )k̂. (2.16)

Substituting these terms into Eq. 2.15 gives

�A × ( �B × �C) =
∣∣∣∣∣∣

ı̂ ĵ k̂
Ax Ay Az

(ByCz − BzCy) (BzCx − Bx Cz) (Bx Cy − ByCx )

∣∣∣∣∣∣ .
(2.17)

Multiplying this out looks ugly at first:

�A × ( �B × �C) = [Ay(Bx Cy − ByCx )− Az(BzCx − Bx Cz)]ı̂
+ [Az(ByCz − BzCy)− Ax (Bx Cy − ByCx )]ĵ
+ [Ax (BzCx − Bx Cz)− Ay(ByCz − BzCy)]k̂. (2.18)

But a little rearranging gives

�A × ( �B × �C) = (AyCy + AzCz)(Bx ı̂)− (Ay By + Az Bz)(Cx ı̂)

+ (AzCz + Ax Cx )(By ĵ )− (Az Bz + Ax Bx )(Cy ĵ )

+ (Ax Cx + AyCy)(Bzk̂)− (Ax Bx + Ay By)(Czk̂), (2.19)

which still isn’t pretty, but it does hold some promise. That promise can be
realized by adding nothing to each row of Eq. 2.19. Nothing, that is, in the
following form:

Ax Bx Cx (ı̂)− Ax Bx Cx (ı̂) Add this to the top row;

Ay ByCy(ĵ )− Ay ByCy(ĵ ) Add this to the middle row;

Az BzCz(k̂)− Az BzCz(k̂) Add this to the bottom row.
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These additions make Eq. 2.19 a good deal more friendly:

�A × ( �B × �C)
= (Ax Cx + AyCy + AzCz)(Bx ı̂)− (Ax Bx + Ay By + Az Bz)(Cx ı̂)

+ (Ax Cy + AyCy + AzCz)(By ĵ )− (Ax Bx + Ay By + Az Bz)(Cy ĵ )

+ (Ax Cx + AyCy + AzCz)(Bzk̂)− (Ax Bx + Ay By + Az Bz)(Czk̂).

Or

�A × ( �B × �C) = (Ax Cx + AyCy + AzCz)(Bx ı̂ + By ĵ + Bzk̂)

− (Ax Bx + Ay By + Az Bz)(Cx ı̂ + Cy ĵ + Czk̂).

But Bx ı̂ + By ĵ + Bzk̂ is just the vector �B, Cx ı̂ + Cy ĵ + Czk̂ is the vector �C ,
and the other two terms fit the definition of dot products (Eq. 2.1). Thus

�A × ( �B × �C) = ( �A ◦ �C) �B − ( �A ◦ �B) �C
= �B( �A ◦ �C)− �C( �A ◦ �B).

2.5 Partial derivatives

Once you understand the basic vector operations of dot, cross, and triple
products, it’s a small step to more advanced vector operations such as gradient,
divergence, curl, and the Laplacian. But these are differential vector operations,
so before you can make that step, it’s important for you to understand the dif-
ference between ordinary derivatives and partial derivatives. This is worth your
time and effort because differential vector operations have many applications
in diverse areas of physics and engineering.

You probably first encountered ordinary derivatives when you learned how
to find the slope of a line (m = dy

dx ) or how to determine the speed of an
object given its position as a function of time (vx = dx

dt ). Happily, partial
derivatives are based on the same general concepts as ordinary derivatives, but
extend those concepts to functions of multiple variables. And you should never
have any doubt as to which kind of derivative you’re dealing with, because
ordinary derivatives are written as d

dx or d
dt and partial derivatives are written as

∂
∂x or ∂

∂t .
As you may recall, ordinary derivatives come about when you’re interested

in the change of one variable with respect to another. For example, you may
encounter a variable y which is a function of another variable x (which means
that the value of y depends on the value of x). This can be written as y = f (x),
where y is called the “dependent variable” and x is called the “independent
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variable.” The ordinary derivative of y with respect to x (written as dy
dx ) tells

you how much the value of y changes for a small change in the variable x . If
you make a graph with y on the vertical axis and x on the horizontal axis, as
in Figure 2.6, then the slope of the line between any two points (x1, y1) and
(x2, y2) on the graph is simply y2−y1

x2−x1
= 	y

	x . That’s because the slope is defined
as “the rise over the run,” and since the rise is 	y for a run 	x , the slope of
the line between any two points must be 	y

	x .
But if you look closely at the expanded region of Figure 2.6, you’ll notice

that the graph of y versus x has a slight curve between points (x1, y1) and
(x2, y2), so the slope is actually changing in that interval. Thus the ratio 	y

	x
can’t represent the slope everywhere between those points. Instead, it rep-
resents the average slope over this interval, as suggested by the dashed line
between points (x1, y1) and (x2, y2) (which by the mean value theorem does
equal the slope somewhere in between these two points, but not necessarily
in the middle). To represent the slope at a given point on the curve more pre-
cisely, all you have to do is to allow the “run” 	x to become very small. As
	x approaches zero, the difference between the dashed line and the curved
line in Figure 2.6 becomes negligible. If you write the incremental run as dx
and the (also incremental) rise as dy, then the slope at any point on the line can
be written as dy

dx . This is the reasoning that equates the derivative of a function
to the slope of the graph of that function.

Now imagine that you have a variable z that depends on two other variables,
say x and y, so z = f (x, y). One way to picture such a case is to visualize a
surface in three-dimensional space, as in Figure 2.7. The height of this surface
above the xy plane is z, which gets higher and lower at different values of
x and y. And since the height z may change at a different rate in different
directions, a single derivative will not generally be sufficient to characterize
the total change in height as you move from one point to another. You can see

y

x

y = f(x)

Slope =
rise
run

=

(x1, y1)
(x2, y2)

Δy = rise
Δx = run

Δy

Δx

Figure 2.6 Slope of the line y = f (x).
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z1

z = f(x,y)

Figure 2.7 Surface in 3-D space (z = f (x, y)).

z

x

y

z = f(x,y)

Slope along x-direction
is not very steep

Slope along y-direction
is quite steep

Figure 2.8 Surface in 3-D space (z = f (x, y)).

the height z changing at different rates in Figure 2.8; at the location shown in
the figure, the slope of the surface is quite steep if you move in the direction of
increasing y (while remaining at the same value of x), but the slope is almost
zero if you move in the direction of increasing x (while holding your y-value
constant).

This illustrates the usefulness of partial derivatives, which are derivatives
formed by allowing one independent variable (such as x or y in Figure 2.8)
to change while holding other independent variables constant. So the partial
derivative ∂z

∂x represents the slope of the surface at a given location if you
move only along the x-direction from that location, and the partial derivative ∂z

∂y
represents the slope if you move only along the y-direction. You may find these
partial derivatives written as ∂z

∂x |y and ∂z
∂y |x , where the variables that appear in

the subscript after the vertical line are held constant.
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As you’ve probably already guessed, the change in the value of z as either
x or y changes is easily found using partial derivatives. If only x changes,
dz = ∂z

∂x dx , and if only y changes, then dz = ∂z
∂y dy. And if both x and y

change, then

dz = ∂z

∂x
dx + ∂z

∂y
dy. (2.20)

The process of taking a partial derivative of a given function is quite straight-
forward; if you know how to take ordinary derivatives, you already have the
tools you’ll need to take partial derivatives. Simply treat all variables (with
the exception of the one variable over which the derivative is being taken) as
constants, and take the derivative as you normally would. This is best explained
using an example.

Consider a function such as z = f (x, y) = 6x2 y+3x+5xy+10. The terms
of this polynomial are sufficiently complex to make its shape less than obvious,
which is where a computational tool such as Mathematica or MATLAB can
be very handy. Writing a few lines of code will help you understand how this
function behaves, as you can see in Figure 2.9. Even a quick look at this warped
little plane makes it clear that the slope of the function is quite different in the
x- and y-directions, and the slope is also highly dependent on the location
on the surface. In a 3D plot such as Figure 2.9, it’s always easiest to see the
slope at the edges of the plotted region, so take a look at the slope along the
x-direction for a y value of −3. As x varies from −3 to +3 (while y is held
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Figure 2.9 Plot of the function z = f (x, y) = 6x2 y + 3x + 5xy + 10
for −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3.
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constant at −3), the slope starts off positive and gets less steep as you move
in the +x-direction from x = −3 toward x = 0. The slope then becomes zero
somewhere near x = 0, then turns negative and becomes increasingly steep as
x approaches +3. Doing the same quick analysis along the y-direction while
holding x constant at−3 indicates that the slope is approximately constant and
positive as y varies from −3 to +3.

Now that you have some idea of what to expect, you can take the partial
derivative of z = 6x2 y + 3x + 5xy + 10 with respect to x simply by treating
the variable y as a constant:

∂z

∂x
= 12xy + 3+ 5y. (2.21)

Likewise, the partial derivative with respect to y is found by holding x
constant:

∂z

∂y
= 6x2 + 5x . (2.22)

Before interpreting these derivative results, you may want to take a moment
to make sure you understand why the process of taking the derivative of a
function involves bringing down the exponent of the relevant variable and then

subtracting one from that exponent (so d(x2)
dx = 2x , for example). The answer

is quite straightforward. Since the derivative represents the change in the func-
tion z as the independent variable x changes over a very small run, the formal
definition for this derivative can be written as

dz

dx
≡ lim
	x→0

z(x +	x)− z(x)

	x
. (2.23)

So in the case of z = x2, you have

d(x2)

dx
≡ lim
	x→0

(x +	x)2 − x2

	x
. (2.24)

If you think about the term in the numerator, you’ll see that this is x2+2x	x+
(	x)2 − x2, which is just 2x	x + (	x)2, and dividing this by 	x gives
2x +	x . But as 	x approaches zero, the 	x term becomes negligible, and
this approaches 2x . So where did the 2 come from? It’s just the number of
cross terms (that is, terms with the product of x and 	x) that result from rais-
ing (x + 	x) to the second power. Had you been taking the derivative of x3

with respect to x , you would have had three such cross terms. So you bring
down the exponent because that’s the number of cross terms that result from
taking x + 	x to that power. And why do you then subtract one from the
exponent? Simply because when you take the change in the function z (that is,
(x+	x)2− x2), the highest-power terms (x2 in this case) cancel, leaving only
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terms of one lower power (x1 in this case). It’s a bit laborious, but the same

analysis can be applied to show that d(x3)
dx = 3x2 and that d(xn)

dx = nxn−1.
So that’s why you bring down the exponent and subtract one, but what does

it mean when you take derivatives and get answers such as Eqs. 2.21 and 2.22?
It simply means that the slope varies with direction and location on the sur-
face z. So, for example, the slope along the x-direction at location (−3,2) is
12xy+ 3+ 5y= 12(−3)(2)+ 3+ 5(2) = −59, while at the same location the
slope along the y-direction is 6x2 + 5x = 6[(−3)2] + 5(−3) = 39.

You can do a rough check on your calculated partial derivative in Eq. 2.21
by inserting the value of −3 for y to see that the slope of z at this value of y is
12(x)(−3) + 3 + 5(−3) = −36x − 12. Thus as you move in the x-direction
at y = −3, the slope should vary from +96 at x = −3, to zero at x = −1/3,
and down to −120 at x = +3. This is consistent with the quick analysis of the
slope after Figure 2.9.

Likewise, Eq. 2.22 tells you that the slope of z in the y-direction at x = −3 is
constant and positive, also consistent with the behavior expected from a quick
analysis of the shape of the function z.

And just as you can take “higher order” ordinary derivatives such as
d

dx (
dz
dx )= d2z

dx2 and d
dy (

dz
dy )= d2z

dy2 , you can also take higher-order partial deriva-

tives. So for example ∂
∂x (

∂z
∂x )= ∂2z

∂x2 tells you the change in the x-direction slope

of z as you move along the x-direction, and ∂
∂y (

∂z
∂y )= ∂2z

∂y2 tells you the change
in the y-direction slope as you move along the y-direction.

It’s important for you to realize that an expression such as ∂2z
∂x2 is the

derivative of a derivative, which is not the same as ( ∂z
∂x )

2, which is the square
of a first derivative. That’s easy to verify for the example given above, in

which ∂z
∂x = 12xy + 3 + 5y. In that case, ∂2z

∂x2 = 12y, whereas ( ∂z
∂x )

2 =
(12xy + 3+ 5y)2. By convention the order of the derivative is always written
between the “d” or “∂” and the function, as d2z or ∂2z, so be sure to look
carefully at the location of superscripts when you’re dealing with derivatives.

You may also have occasion to use “mixed” partial derivatives such as
∂
∂x (

∂z
∂y ) = ∂2z

∂x∂y . If you’ve been tracking the discussion of partial derivatives as

slopes of functions in various directions, you can probably guess that ∂2z
∂x∂y rep-

resents the change in the y-direction slope as you move along the x-direction,

and ∂2z
∂y∂x represents the change in the x-direction slope as you move along

the y-direction. Thankfully, for well-behaved5 functions these expressions are

5 What exactly is a “well-behaved” function? Typically this means any function that is
continuous and has continuous derivatives over the region of interest.
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interchangeable, so you can take the partial derivatives in either order. You can
easily verify this for the example given above by comparing ∂

∂y of Eq. 2.21

with ∂
∂x of Eq. 2.22 (the result is 12x + 5 in both cases).

There’s another widely used aspect of partial derivatives you should make
sure you understand, and that’s the chain rule. Up to this point, we’ve been
dealing with functions such as z = f (x, y) without considering the fact that
the variables x and y may themselves be functions of other variables. It’s com-
mon to call these other variables u and v and to allow both x and y to depend
on one or both of u and v. You may encounter situations in which you know
the variation in u and v, and you want to know how much your function z will
change due to those changes. In such cases, the chain rule for partial derivatives
gives you the answer:

∂z

∂u
= ∂z

∂x

∂x

∂u
+ ∂z

∂y

∂y

∂u
, (2.25)

and
∂z

∂v
= ∂z

∂x

∂x

∂v
+ ∂z

∂y

∂y

∂v
. (2.26)

The chain rule is a concise expression of the fact that z depends on both x
and y, and since both x and y may change if u changes, the change in z with
respect to u is the sum of two terms. The first term is the change in x due to
the change in u ( ∂x

∂u ) times the change in z due to that change in x ( ∂z
∂x ), and the

second term is the change in y due to the change in u ( ∂y
∂u ) times the change

in z due to that change in y ( ∂z
∂y ). Adding those two terms together gives you

Eq. 2.25, and the same reasoning applied to changes in z caused by changes in
v leads to Eq. 2.26.

2.6 Vectors as derivatives

In many texts dealing with vectors and tensors, you’ll find that vectors are
equated to “directional derivatives” and that partial derivatives such as ∂

∂x and
∂
∂y are referred to as basis vectors along the coordinate axes.

To understand this correspondence between vectors and derivatives, con-
sider a path such as that shown in Figure 2.10. You can think of this as a
path along which you’re travelling with velocity �v; for simplicity imagine
that this path lies in the xy plane. Now imagine that you’re keeping track of
time as you move, so you assign a value (such as the t values shown in the
figure) to each point on the curve. By marking the curve with values, you have
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vectors
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Figure 2.10 Parameterized curve and tangent vectors.

“parameterized” the curve (with t as your parameter).6 Note that there need
not be equal distance along the curve between your parameter values (there
definitely won’t be if you choose time as your parameter and then change your
speed as you move; the reckless driver depicted in Figure 2.10 has apparently
sped up in the turn).

As a final bit of visualization, imagine that this curve lies in a region in which
the air temperature is different at each location. So as you move along the
curve, you will experience the spatial change in air temperature as a temporal
change (in other words, you’ll be able to make a graph of air temperature vs.
time). Of course, how fast the air temperature changes for you will depend
both on the distance between measurable changes in the temperature in the
direction you’re heading and on your speed (how fast you’re covering that
distance).

With this scenario in mind, the concept of a directional derivative is easy
to understand. If the function f (x, y) describes the temperature at each x, y
location, the directional derivative ( d f

dt ) tells you how much the value of the
function f changes as you move a small distance along the curve (in time dt).
But recall the chain rule:

d f

dt
= dx

dt

∂ f

∂x
+ dy

dt

∂ f

∂y
. (2.27)

This equation says simply that the directional derivative of the function f along
the curve parameterized by t (that is, d f

dt ) equals the rate of change of the
x-coordinate ( dx

dt ) as you move along the curve times the rate of change of the

temperature function with x ( ∂ f
∂x ) plus the rate of change of the y-coordinate

( dy
dt ) as you move along the curve times the rate of change of the temperature

6 Some authors are careful to distinguish between a “path” and a “curve,” using “curve” only
when a parameter has been assigned to each point on a path.
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function with y ( ∂ f
∂y ). But ( dx

dt ) is just vx , the x-component of your velocity, and

( dy
dt ) is vy , the y-component of your velocity. And since you know that your

velocity is a vector that is always tangent to the path on which you’re moving,
you can consider the directional derivative d f

dt to be a vector with direction
tangent to the curve and with length equal to the rate of change of f with t
(that is, the time rate of change of the air temperature).

Now here’s the important concept: since f can be any function, you can
write Eq. 2.27 as an “operator” equation (that is, an equation waiting to be fed
a function on which it can operate):

d

dt
= dx

dt

∂

∂x
+ dy

dt

∂

∂y
. (2.28)

The trick to seeing the connection between derivatives and vectors is to view
this equation as a vector equation in which

Vector = x-component · x basis vector+ y-component · y basis vector.

Comparing this to Eq. 2.28, you should be able to see that the directional
derivative operator d

dt represents the tangent vector to the curve, the dx
dt and

dy
dt terms represent the x- and y-components of that vector, and the operators
∂
∂x and ∂

∂y represent the basis vectors in the direction of the x and y coordinate
axes.

Of course, it’s not just air temperature that can be represented by f (x, y);
this function can represent anything that is spatially distributed in the region
around your curve. So f (x, y) could represent the height of the road, the qual-
ity of the scenery, or any other quantity that varies in the vicinity of your curve.
Likewise, you could have chosen to parameterize your path with markers other
than time; had you assigned a value s or λ to each point on your path, the
directional derivative d

ds or d
dλ would still represent the tangent vector to the

curve, dx
ds or dx

dλ would still represent the x-component of that vector, and dy
ds

or dy
dλ would still represent the y-component of that vector.
If you plan to proceed on to the study of tensors, you will find that under-

standing this relationship between basis vectors along the coordinate axes and
partial derivatives is of significant value.

2.7 Nabla – the del operator

The partial derivatives discussed in the previous section can be put to use in
a wide range of problems, and when you come across such problems you
may find that they involve equations that contain an inverted upper case delta
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wearing a vector hat ( �∇). This symbol represents a vector differential operator
called “nabla” or “del,” and its presence instructs you to take derivatives of the
quantity on which the operator is acting. The exact form of those derivatives
depends on the symbol following the del operator, with �∇( ) signifying gradi-
ent, “ �∇◦” signifying divergence, “ �∇×” indicating curl, and ∇2( ) signifying
the Laplacian. Each of these operations is discussed in later sections; for now
we’ll just consider what an operator is and how the del operator can be written
in Cartesian coordinates.

Like all good mathematical operators, del is an action waiting to happen.
Just as √ tells you to take the square root of anything that appears under its

roof, �∇ is an instruction to take derivatives in three directions. Specifically, in
Cartesian coordinates

�∇ ≡ ı̂
∂

∂x
+ ĵ ∂

∂y
+ k̂

∂

∂z
, (2.29)

where ı̂ , ĵ , and k̂ are the unit vectors in the direction of the Cartesian
coordinates x , y, and z.

This expression may appear strange, since in this form it’s lacking anything
on which it can operate. However, if you follow the del with a scalar or vector
field, you can extract information about how those fields change in space. In
this context, “field” refers to an array or collection of values defined at various
locations. A scalar field is specified entirely by its magnitude at these locations:
examples of scalar fields include the air temperature in a room and the height
of terrain above sea level. A vector field is specified by both magnitude and
direction at various locations: examples include electric, magnetic, and gravi-
tational fields. Specific examples of how the del operator works on scalar and
vector fields are given in the following sections.

2.8 Gradient

When the del operator �∇ is followed by a scalar field, the result of the opera-
tion is called the gradient of the field. What does the gradient tell you about a
scalar field? Two important things: the magnitude of the gradient indicates how
quickly the field is changing over space, and the direction of the gradient indi-
cates the direction in which the field is increasing most quickly with distance.
So although the gradient operates on a scalar field, the result of the gradient
operation is a vector, with both magnitude and direction. Thus, if the scalar
field represents terrain height, the magnitude of the gradient at any location
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tells you how steeply the ground is sloped at that location, and the direction of
the gradient points uphill along the steepest slope.

The definition of the gradient of the scalar fieldψ in Cartesian coordinates is

grad(ψ) = �∇ψ ≡ ı̂ ∂ψ
∂x + ĵ ∂ψ∂y + k̂ ∂ψ

∂z (Cartesian). (2.30)

Thus the x-component of the gradient of ψ indicates the slope of the scalar
field in the x-direction and the other components indicate the slope in the other
directions. The square root of the sum of the squares of these components
provides the total steepness of the slope at the location at which the gradient is
taken.

You can see a simple example of the result of the gradient operator by
considering the tilted plane in Figure 2.11(a). This plane is defined by the sim-
ple equation ψ(x, y) = 5x + 2y, and you can find the gradient using the
two-dimensional version of Eq. 2.30:

�∇ψ = ı̂
∂(5x + 2y)

∂x
+ ĵ ∂(5x + 2y)

∂y

= 5ı̂ + 2ĵ .

So even though ψ is a scalar function, its gradient is a vector; it has a com-
ponent along the x-axis and a component along the y-axis. And what do these
components tell you?

For one thing, the fact that the x-component is more than twice the size of
the y-component tells you that the tilt of the plane is steeper in the x-direction
than in the y-direction. You can also tell that the slope in each direction is
constant, because the components are not functions of x or y. Both of those
conclusions are consistent with Figure 2.11(a).
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Figure 2.11 Function ψ = 5x + 2y and the gradient and contours of ψ .
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And if you wish to determine the magnitude of the gradient, that’s easily
done. Since the x-component of the gradient is 5 and the y-component is 2, the
magnitude of the gradient is simply (52 + 22)1/2 = 5.39 over the entire plane.
You can also find the angle that the gradient vectors make with the positive
x-axis using arctan(2/5) = 21.8◦. The gradient and contours of the central
portion of the function ψ are shown in Figure 2.11(b).

In cylindrical and spherical coordinates, the gradient is:

�∇ψ ≡ r̂ ∂ψ
∂r + ϕ̂ 1

r
∂ψ
∂ϕ
+ ẑ ∂ψ

∂z (cylindrical), (2.31)

and

�∇ψ ≡ r̂ ∂ψ
∂r + θ̂ 1

r
∂ψ
∂θ
+ ϕ̂ 1

r sin θ
∂ψ
∂ϕ

(spherical). (2.32)

You’ll see more gradients in Section 2.11 covering the Laplacian opera-
tor, which represents the divergence of the gradient. You can read about the
divergence in the next section.

2.9 Divergence

When dealing with vector fields, you may encounter the del operator followed
by a dot ( �∇◦), signifying the divergence of a vector field. The concept of diver-
gence often arises in the areas of physics and engineering that deal with the
spatial variation of vector fields, because divergence describes the tendency
of vectors to “flow” into or out of a point of interest.7 Electrostatic fields, for
example, may be represented by vectors that point radially away from points
at which positive electric charge exists, just as the flow vectors of a fluid point
away from a source (such as an underwater spring). Likewise, electrostatic field
vectors point toward locations at which negative charge is present, analogous
to fluid flowing toward a sink or drain. It was the brilliant Scottish mathemat-
ical physicist James Clerk Maxwell who coined the term “convergence” for
the mathematical operation which measures the rate of vector “flow” toward
a given location. In modern usage we consider the opposite behavior (vectors
flowing away from a point), and outward flow is considered positive diver-
gence. In the case of fluid flow, the divergence at any point is a measure of the
tendency of the flow vectors to diverge from that point (that is, to carry more
material away from it than toward it). Thus points of positive divergence mark
the location of sources, while points of negative divergence show you where
the sinks are located.

7 In many instances, nothing in the vector field is actually flowing; the word “flow” is used only
as an analogy in which the arrows pointing in the direction of the field are imagined to
represent the physical flow of an incompressible fluid.
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To understand how this works, take a look at the vector fields shown in
Figures 2.12 and 2.13. To find the locations of positive divergence in each of
these fields, look for points at which the flow vectors either spread out or are
larger pointing away from the location and shorter pointing toward it. Some
authors suggest that you imagine sprinkling sawdust on flowing water to assess
the divergence; if the sawdust is dispersed, you have selected a point of positive
divergence, while if it becomes more concentrated, you’ve picked a location of
negative divergence.

Using such tests, it’s clear that locations such as 1 and 2 in Figure 2.12
and locations 4 and 5 in Figure 2.13(a) are points of positive divergence (flow
away from these points exceeds flow toward), while the divergence is negative
at point 3 in Figure 2.12 (flow toward exceeds flow away).

The divergence at various points in Figure 2.13(b) is less obvious. Location
6 is obviously a point of positive divergence, but what about locations 7 and 8?
The flow lines are clearly spreading out at those locations, as they do at location
5 in Figure 2.13(a), but they’re also getting shorter pointing away. Does the
spreading out compensate for the slowing down of the flow?

1

2

3

x0 1/2 1

Figure 2.12 Parallel vector field with varying amplitude.

4 6

7

5 8

(a) (b)

Figure 2.13 Radial vector fields with varying amplitudes.
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Answering that question requires a useful mathematical form of the diver-
gence as well as a description of how the vector field varies from place to place.
The differential form of the mathematical operation of divergence or “del dot”
( �∇◦) on a vector �A in Cartesian coordinates is

�∇ ◦ �A =
(

ı̂
∂

∂x
+ ĵ ∂

∂y
+ k̂

∂

∂z

)
◦
(

ı̂ �Ax + ĵ �Ay + k̂ �Az

)
, (2.33)

and, since ı̂ ◦ ı̂ = ĵ ◦ ĵ = k̂ ◦ k̂ = 1, this is

�∇ ◦ �A =
(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
. (2.34)

Thus the divergence of �A is simply the change in its x-component along the
x-axis plus the change in its y-component along the y-axis plus the change in
its z-component along the z-axis. Notice that the divergence of a vector field is
a scalar quantity; it has magnitude but no direction.

You can now apply this to the vector field in Figure 2.12. In Figure 2.12,
assume that the magnitude of the vector field varies sinusoidally along the x-
axis as �A = sin(πx)ı̂ while remaining constant in the y- and z-directions.
Thus,

�∇ ◦ �A = ∂Ax

∂x
= π cos(πx), (2.35)

since Ay and Az are zero. This expression is positive for 0 < x < 1/2, 0 at
x = 1/2, and negative for 1/2 < x < 3/2, just as a visual inspection suggests.

Now consider Figure 2.13(a), which represents a slice through a spherically
symmetric vector field with amplitude increasing as the square of the distance
from the origin. Thus �A = r2r̂ . Since r2 = (x2 + y2 + z2) and

r̂ = xı̂ + yĵ + zk̂√
x2 + y2 + z2

,

this means

�A = r2r̂ = (x2 + y2 + z2)
xı̂ + yĵ + zk̂√
x2 + y2 + z2

= (x2 + y2 + z2)1/2(xı̂ + yĵ + zk̂),

and

∂Ax

∂x
= (x2 + y2 + z2)1/2 + x

(
1

2

)
(x2 + y2 + z2)−1/2(2x).



2.9 Divergence 49

Doing likewise for the y- and z-components and adding yields

�∇ ◦ �A = 3(x2 + y2 + z2)1/2 + (x2 + y2 + z2)√
x2 + y2 + z2

= 4(x2 + y2 + z2)1/2 = 4r.

Thus the divergence in the vector field in Figure 2.13(a) is increasing linearly
with distance from the origin.

Finally, consider the vector field in Figure 2.13(b), which is similar to the
previous case but with the amplitude of the vector field decreasing as the
square of the distance from the origin. The flow lines are spreading out as they
were in Figure 2.13(a), but in this case you might suspect that the decreas-
ing amplitude of the vector field will affect the value of the divergence. Since
�A = (1/r2)r̂ ,

�A = 1

(x2 + y2 + z2)

xı̂ + yĵ + zk̂√
x2 + y2 + z2

= xı̂ + yĵ + zk̂

(x2 + y2 + z2)(3/2)
,

and

∂Ax

∂x
= 1

(x2 + y2 + z2)3/2
− x

(
3

2

)
(x2 + y2 + z2)−5/2(2x).

Adding in the y- and z-derivatives gives

�∇ ◦ �A = 3

(x2 + y2 + z2)3/2
− 3(x2 + y2 + z2)

(x2 + y2 + z2)5/2
= 0.

This validates the suspicion that the reduced amplitude of the vector field with
distance from the origin may compensate for the spreading out of the flow
lines. Note that this is true only for the case in which the amplitude of the
vector field falls off as 1/r2 (and only for points away from the origin).8

Therefore, you must consider two key factors in determining the divergence
at any point: the spacing and the relative amplitudes of the field lines at that
point. These factors both contribute to the total flow of field lines into or out of
an infinitesimally small volume around the point. If the outward flow exceeds
the inward flow, the divergence is positive at that point. If the outward flow is
less than the inward flow, the divergence is negative, and if the outward and
inward flows are equal the divergence is zero at that point.

So far the divergence has been calculated for the Cartesian coordinate sys-
tem, but depending on the symmetries of the problem, it might be solved

8 At the origin, where r = 0, a (1/r2)-vector field experiences a singularity, and the Dirac delta
function must be employed to determine the divergence.
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more easily using non-Cartesian systems. The divergence may be calculated
in cylindrical and spherical coordinate systems using

�∇ ◦ �A = 1

r

∂

∂r
(r Ar )+ 1

r

∂Aφ
∂φ
+ ∂Az

∂z
, (cylindrical) (2.36)

and

�∇ ◦ �A = 1

r2

∂

∂r
(r2 Ar )+ 1

r sin θ

∂

∂θ
(Aθ sin θ)+ 1

r sin θ

∂Aφ
∂φ

. (spherical)

(2.37)

If you doubt the efficacy of choosing the proper coordinate system,
you should re-work the last two examples in this section using spherical
coordinates.

2.10 Curl

The del operator followed by a cross ( �∇×) signifies the differential operation
of curl. The curl of a vector field is a measure of the field’s tendency to circulate
about a point, much like the divergence is a measure of the tendency of the
field to flow away from a point. But unlike the divergence, which produces
a scalar result, the curl produces a vector. The magnitude of the curl vector
is proportional to the amount of circulation of the field around the point of
interest, and the direction of the curl vector is perpendicular to the plane in
which the field’s circulation is a maximum.

The curl at a point in a vector field can be understood by considering the
vector fields shown in Figure 2.14. To find the locations of large curl in each
of these fields, look for points at which the flow vectors on one side of the
point are significantly different (in magnitude, direction, or both) from the

1

3

(a) (b) (c)
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6

Figure 2.14 Vector fields with various values of curl.
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flow vectors on the opposite side of the point. Once again a thought experi-
ment is helpful: imagine holding a tiny paddlewheel at each point in the flow.
If the flow would cause the paddlewheel to rotate, the center of the wheel
marks a point of non-zero curl. The direction of the curl is along the axis of the
paddlewheel. By convention, the positive-curl direction is determined by the
right-hand rule: if you curl the fingers of your right hand along the circulation
direction, your thumb points in the direction of positive curl.

Using the paddlewheel test, you can see that points 1, 2, and 3 in
Figure 2.14(a) and point 5 in Figure 2.14(b) are high-curl locations, and some
curl also exists at point 4. The uniform flow around point 6 and the diverging
flow lines around Point 7 in Figure 2.14(c) would not cause a tiny paddlewheel
to rotate, meaning that these are points of low or zero curl.

To make this quantitative, you can use the differential form of the curl or
“del cross” ( �∇×) operator in Cartesian coordinates:

�∇ × �A =
(

ı̂
∂

∂x
+ ĵ ∂

∂y
+ k̂

∂

∂z

)
×
(

ı̂ Ax + ĵ Ay + k̂ Az

)
. (2.38)

Recall that the vector cross-product may be written as a determinant:

�∇ × �A =

∣∣∣∣∣∣∣
ı̂ ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣ , (2.39)

which expands to

�∇ × �A =
(
∂Az

∂y
− ∂Ay

∂z

)
ı̂ +

(
∂Ax

∂z
− ∂Az

∂x

)
ĵ +

(
∂Ay

∂x
− ∂Ax

∂y

)
k̂. (2.40)

Notice that each component of the curl of �A indicates the tendency of the
field to rotate in one of the coordinate planes. If the curl of the field has a
large x-component, it means that the field has significant circulation about
that point in the yz plane. The overall direction of the curl represents the axis
about which the rotation is greatest, with the sense of the rotation given by the
right-hand rule.

If you’re wondering how the terms in this equation measure rotation,
consider the vector fields shown in Figure 2.15. Look first at the field in
Figure 2.15(a) and the x-component of the curl in the equation: this term
involves the change in Az with y and the change in Ay with z. Proceeding
in the positive y-direction from the left side of the point of interest to the right,
Az is clearly increasing (it’s pointing in the negative z-direction on the left side
of the point of interest and the positive z-direction on the right side), so the term
∂Az
∂y must be positive. Looking now at Ay , you can see that it is positive below
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x

y

zz

x

y

(b)

Ay Ay

AyAy

AzAz Az Az

(a)

Figure 2.15 Effect of
∂Ay
∂z and ∂Az

∂y on the value of the curl.

the point of interest and negative above, so it is decreasing in the positive z-
direction. Thus ∂Ay

∂z is negative, which means that it increases the value of the

curl when it is subtracted from ∂Az
∂y . Thus the curl has a large value at the point

of interest, as expected in light of the circulation of �A about this point.
The situation in Figure 2.15(b) is quite different. In this case, both ∂Ay

∂z and
∂Az
∂y are positive, and subtracting ∂Ay

∂z from ∂Az
∂y gives a small result. The value

of the x-component of the curl is therefore small in this case. Vector fields with
zero curl at all points are called “irrotational.”

Here are expressions for the curl in cylindrical and spherical coordinates:

�∇× �A =
(

1

r

∂Az

∂φ
− ∂Aφ

∂z

)
r̂+
(
∂Ar

∂z
− ∂Az

∂r

)
φ̂+ 1

r

(
∂(r Aφ)

∂r
− ∂Ar

∂φ

)
ẑ,

(cylindrical) (2.41)

�∇ × �A = 1

r sin θ

(
∂(Aφ sin θ)

∂θ
− ∂Aθ
∂φ

)
r̂ + 1

r

(
1

sin θ

∂Ar

∂φ
− ∂(r Aφ)

∂r

)
θ̂

+ 1

r

(
∂(r Aθ )

∂r
− ∂Ar

∂θ

)
φ̂.

(spherical) (2.42)

A common misconception is that the curl of a vector field is non-zero wher-
ever the field appears to curve. However, just as the divergence depended both
on the spreading out and the changing length of field lines, the curl depends not
only on the curvature of the lines but also on the strength of the field. Consider
a curving field that points in the φ̂ direction and decreases as 1/r :
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�A = k

r
φ̂.

Finding the curl of this field is particularly straightforward in cylindrical
coordinates:

�∇ × �A =
(

1

r

∂Az

∂φ
− ∂Aφ

∂z

)
r̂ +

(
∂Ar

∂z
− ∂Az

∂r

)
φ̂ + 1

r

(
∂(r Aφ)

∂r
− ∂Ar

∂φ

)
ẑ.

Since Ar and Az are both zero, this is

�∇ × �A
=
(
−∂Aφ
∂z

)
r̂ + 1

r

(
∂(r Aφ)

∂r

)
ẑ =

(
−∂(k/r)

∂z

)
r̂ + 1

r

(
∂(rk/r)

∂r

)
ẑ = 0.

To understand the physical basis for this result, consider again the fluid-flow
and paddlewheel analogy. Imagine the forces on the paddlewheel placed in the
field shown in Figure 2.16(a). The center of curvature is well below the bottom
of the figure, and the spacing of the arrows indicates that the field is getting
weaker with distance from the center. At first glance, it may seem that this
paddlewheel would rotate clockwise due to the curvature of the field, since the
flow lines are pointing slightly upward at the left paddle and slightly downward
at the right. But consider the effect of the weakening of the field above the axis
of the paddlewheel: the top paddle receives a weaker push from the field than
the bottom paddle, as shown in Figure 2.16(b). The stronger force on the bot-
tom paddle will attempt to cause the paddlewheel to rotate counter-clockwise.
Thus the downward curvature of the field is offset by the weakening of the
field with distance from the center of curvature. And if the field diminishes
as 1/r , the upward-downward push on the left and right paddles is exactly
compensated by the weaker-stronger push on the top and bottom paddles. The
clockwise and counter-clockwise forces balance, and the paddlewheel does not
turn – the curl at this location is zero, even though the field lines are curved.

Weaker field

Stronger field

(a) (b)

Upward-
pointing

field

Downward-
pointing

field

Weaker push
to the right

Stronger push
to the right

Upward push Downward push

Figure 2.16 Offsetting components of the curl of �A.
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For this 1/r field, the curl is zero everywhere except at the center of curvature
(where a singularity exists and must be handled using the delta function).

2.11 Laplacian

Once you know that the gradient operates on a scalar function and produces a
vector and that the divergence operates on a vector and produces a scalar, it’s
natural to wonder whether these two operations can be combined in a mean-
ingful way. As it turns out, the divergence of the gradient of a scalar function
φ, written as �∇ ◦ ( �∇φ), is one of the most useful mathematical operations in
physics and engineering. This operation, usually written as ∇2φ (but some-
times as �φ), is called the “Laplacian” in honor of Pierre-Simon Laplace, the
great French mathematician and astronomer.

Before trying to understand why the Laplacian operator is so valuable,
you should begin by recalling the operations of gradient and divergence in
Cartesian coordinates:

Gradient:

�∇φ = ı̂
∂φ

∂x
+ ĵ ∂φ

∂y
+ k̂

∂φ

∂z
. (2.43)

Divergence:

�∇ ◦ �A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
. (2.44)

Since the x-component of the gradient of φ is ∂φ
∂x , the y-component of the gra-

dient of φ is ∂φ
∂y , and the z-component of the gradient of φ is ∂φ

∂z , the divergence
of the vector produced by the gradient is

�∇ ◦ �∇φ = ∇2φ = ∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
. (2.45)

Just as the gradient ( �∇), divergence ( �∇◦), and curl ( �∇×) represent
differential operators, so too the Laplacian (∇2) is an operator waiting to be
fed a function. As you may recall, the gradient operator tells you the direc-
tion of greatest increase of the function (and how steep the increase is), the
divergence tells you how strongly a vector function “flows” away from a point
(or toward that point if the divergence is negative), and the curl tells you how
strongly a vector function tends to circulate around a point. So what does the
Laplacian, the divergence of the gradient, tell you?

If you write the Laplacian operator as ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , it should
help you see that this operator finds the change in the change of the function
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(if you make a graph, the change in the slope) in all directions from the point
of interest. That may not seem very interesting, until you consider that accel-
eration is the change in the change of position with time, or that the maxima
and minima of functions (peaks and valleys) are regions in which the slope
changes significantly, or that one way to find blobs and edges in a digital
image is to look for points at which the gradient of the brightness suddenly
changes.

To understand why the Laplacian performs such a diverse set of useful tasks,
it helps to understand that at each point in space, the Laplacian of a function
represents the difference between the value of the function at that point and
the average of the values at surrounding points. How does it do that? Consider
the region around the point labeled (0, 0, 0) in Figure 2.17. The function φ
exists in all three dimensions around this region, and the cube is shown only
to illustrate the location of six points around the central point (0, 0, 0), where
the value of the function φ is φ0. Notice that there are points in front of and
behind the central point (along the x-axis), points to the left and right (along
the y-axis), and points above and below (along the z-axis). To see how the
change in the change in φ is related to φ0, consider for now the points along the
x-axis, as shown in Figure 2.18. Notice that the value of φ at the point in back
of the central point is labeled φBack and the value of φ in front of the central
point is labeled φFront . If each of these points is located a distance of 	x

x

y

z

(0, 0, 0)
Right

Top

Left
Front

Bottom

Back

Figure 2.17 Points surrounding (0, 0, 0) at which φ = φ0.
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x

= ~ 

=~

A

Bat A

at B

=

∂x

∂φ φ0 – φBack

Δx

Δx φBack

φ0Δx

Δx

φFront

–
φFront – φ0

Δx

φ0 – φBack

Δx

Δx

∂x

∂φ

∂x

∂φ
∂x

∂

φFront – φ0

Δx

Figure 2.18 Change in φ along x-axis.

from (0, 0, 0), then the partial derivative of φ at point B can be approximated
by (φ0 − φBack)/	x . Likewise, the partial derivative of φ at point A can be
approximated by (φFront − φ0)/	x .

But the Laplacian involves not just the change in φ, but the change in the
change of φ. For that, you can write

∂

∂x

(
∂φ

∂x

)
= (φFront − φ0)/	x − (φ0 − φBack)/	x

	x
,

∂2φ

∂x2
= φFront + φBack − 2φ0

	x2
. (2.46)

And although this might not look very helpful, good things happen when you
combine this expression with the expression for the two points to the right and
left of (0, 0, 0):

∂2φ

∂y2
= φRight + φLe f t − 2φ0

	y2
, (2.47)

and the equation for the points on top and on the bottom of (0, 0, 0):

∂2φ

∂z2
= φT op + φBottom − 2φ0

	z2
. (2.48)

If you pick your locations symmetrically so that 	x = 	y = 	z, then these
three equations together give you the following:
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∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2

= φFront + φBack + φRight + φLe f t + φT op + φBottom − 6φ0

	x2
. (2.49)

Using the del-squared notation for the Laplacian and a little rearranging makes
this

∇2φ = −6

	x2

[
φ0 − 1

6
(φFront + φBack + φRight + φLe f t + φT op + φBottom)

]

= −6

	x2
(φ0 − φavg), (2.50)

where the average value of the function φ over the six surrounding points is
φavg = 1

6 (φFront + φBack + φRight + φLe f t + φT op + φBottom).
Equation 2.50 tells you that the Laplacian of a function φ at any point is

proportional to the difference between the value of φ at that point and the aver-
age value of φ at the surrounding points. The negative sign in this equation
tells you that the Laplacian is negative if the value of the function at the point
of interest is greater than the average of the function’s value at the surround-
ing points, and the Laplacian is positive if the value at the point of interest is
smaller than the average of the value at the surrounding points.

And how does the difference between a function’s value at a point and the
average value at neighboring points relate to the divergence of the gradient of
that function? To understand that, think about a point at which the function’s
value is greater than the surrounding average – such a point represents a local
maximum of the function. Likewise, a point at which the function’s value is
less than the surrounding average represents a local minimum. This is the rea-
son you may find the Laplacian described as a “concavity detector” or a “peak
finder” – it finds points at which the value of the function sticks above or falls
below the values at the surrounding points.

To better understand how peaks and valleys relate to the divergence of the
gradient of a function, recall that the gradient points in direction of steepest
incline (or decline if the gradient is negative), and divergence measures the
“flow” of a vector field out of a region (or into the region if the divergence
is negative). Now consider the peak of the function shown in Figure 2.19(a)
and the gradient of the function in the vicinity of that peak, shown in Fig-
ure 2.19(b). Near the peak, the gradient vectors “flow” toward the peak from
all directions. Vector fields that converge upon a point have negative diver-
gence, so this means that the divergence of the gradient in the vicinity of a
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Figure 2.19 Function φ (varying as 1/r) and the gradient and contours of φ
near the peak.
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Figure 2.20 Function φ (varying as −1/r) and the gradient and contours of φ
near the bottom of the valley.

peak will be a large negative number. This is consistent with the conclusion
that the Laplacian is negative near a function’s maximum point.

The alternative case is shown in Figures 2.20(a) and 2.20(b). Near the bot-
tom of a valley, the gradient “flows” outward in all directions, so the divergence
of the gradient is a large positive number in this case (again consistent with the
conclusion that the Laplacian of a minimum point is positive). And what is the
value of the Laplacian of a function away from a peak or valley? The answer to
that question depends on the shape of the function in the vicinity of the point in
question. As described in Section 2.9, the value of the divergence depends on
how strongly the function “flows” away from a small volume surrounding the
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point of interest. Since the Laplacian involves the divergence of the gradient,
the question is whether the gradient vectors “flow” toward or away from the
point (in other words, whether the gradient vectors tend to concentrate toward
or disperse away from that point). If the inward flow of gradient vectors equals
the outward flow, then the Laplacian of the function is zero at that point. But if
the length and direction of the gradient vectors conspire to make the outward
flow greater than the inward flow at some point, then the Laplacian is positive
at that point.

For example, if you’re climbing out of a circularly symmetric valley with
constant slope, the gradient vectors are spreading apart without changing in
length, which means the divergence of the gradient (and hence the Laplacian)
will have a positive value at that point. But if a different valley has walls for
which the slope gets less steep (so the gradient vectors get shorter) as you move
away from the bottom of the valley, it’s possible for the reduced strength of the
gradient vectors to exactly compensate for the spreading apart of those vectors,
in which case the Laplacian will be zero.

To see how this works mathematically, consider a three-dimensional func-
tion φ whose value decreases in inverse proportion to the distance r from the
origin. This function may be written as φ = k/r , where k is just a constant of
proportionality and r is the distance from the origin. Thus r = (x2+y2+z2)1/2

and φ = k/(x2 + y2 + z2)1/2. You can find the value of the Laplacian for this
case using Eq. 2.45; the first step is to find the partial derivative of φ with
respect to x

∂φ

∂x
= −k(2x)

2(x2 + y2 + z2)3/2
= −kx

(x2 + y2 + z2)3/2
,

after which you take another partial with respect to x :

∂2φ

∂x2
= −k

(x2 + y2 + z2)3/2
+
(

3

2

)
kx(2x)

(x2 + y2 + z2)5/2

= −k

(x2 + y2 + z2)3/2
+ 3kx2

(x2 + y2 + z2)5/2
.

The same approach for the second-order partials with respect to y and z gives

∂2φ

∂y2
= −k

(x2 + y2 + z2)3/2
+ 3ky2

(x2 + y2 + z2)5/2
,

and

∂2φ

∂z2
= −k

(x2 + y2 + z2)3/2
+ 3kz2

(x2 + y2 + z2)5/2
.
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Now it’s just a matter of adding all three second-order partials:

∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
= −3k

(x2 + y2 + z2)3/2
+ 3k(x2 + y2 + z2)

(x2 + y2 + z2)5/2

= −3k

(x2 + y2 + z2)3/2
+ 3k

(x2 + y2 + z2)3/2
= 0.

So for a three-dimensional function with 1/r -dependence, the Laplacian of
the function is zero everywhere away from the origin. What about at the origin
itself? That point requires special treatment, since the 1/r -dependence of the
function becomes problematic at r = 0. That special treatment involves the
Dirac delta function and integral rather than differential techniques.

You may occasionally have need to calculate the Laplacian in non-Cartesian
coordinates. For function ψ , the Laplacian in cylindrical and spherical coordi-
nates is given by:

Cylindrical

∇2ψ = 1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2
+ ∂

2ψ

∂z2
, (2.51)

Spherical

∇2ψ = 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2
. (2.52)

2.12 Chapter 2 problems

2.1 For vectors �A = 3ı̂ + 2ĵ − k̂ and �B = ĵ + 4k̂, find the scalar product
�A ◦ �B and the angle between �A and �B.

2.2 If vector �J = 2ı̂ − ĵ + 5k̂ and �K = 3ı̂ + 2ĵ + k̂, find the vector �L that
equals the cross product �J × �K . Also show that �L is perpendicular to
both �J and to �K .

2.3 Show that �A ◦ �B = Ax Bx + Ay By + Az Bz = | �A|| �B/ cos(θ) and that
| �A × �B| = | �A|| �B/ sin(θ).

2.4 Using the vectors of the previous two problems, find the triple product
�J ◦ ( �A × �B). Compare your answer to ( �J × �A) ◦ �B.

2.5 Using the vectors of Problems 1 and 2, find the triple vector product
�J × ( �A× �B). Compare your answer to ( �J × �A)× �B and to �B× ( �J × �A).

2.6 For the function f (x, y) = x2 + 3y2 + 2xy + 3x + 5, find ∂ f
∂x and ∂ f

∂y .

2.7 If φ = x2 + y2, what is �∇φ at the position (x, y) = (3 cm, −2 cm)?
2.8 Find the divergence of the vector field given by �C = 5xyı̂ − 3x ĵ + 5z2k̂.
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2.9 What is the curl of the vector field given in the previous problem?
2.10 Find the Laplacian of the function given in Problem 2.6.
2.11 In mechanics, the work (W) done by a force ( �F) acting over a displace-

ment ( �dr ) is defined as the scalar product between the force and the
displacement, so W = �F ◦ �dr . How much work is done by the vertically
downward force of Earth’s gravity (| �F | = mg, where g is the acceler-
ation of gravity) on a car with a mass of 1200 kg as the car moves 50
meters down a hill whose surface makes an angle of 20 degrees below
the horizontal?

2.12 Imagine trying to turn the head of a bolt by pushing on the handle of a
wrench. The vector torque exerted by the force you apply ( �F) is given by
the equation �τ = �r × �F , where �r is a vector from the point of rotation
to the point of application of the force. If you push on the handle of the
wrench with a force of 25 N at a distance of 12 cm from the point of
rotation, in what direction should you push to maximize the torque on
the bolt head? If you push in that direction, how much torque will you
exert on the bolt head?



3

Vector applications

The real value of understanding vectors and how to manipulate them becomes
clear when you realize that your knowledge allows you to solve a variety of
problems that would be much more difficult without vectors. In this chapter,
you’ll find detailed explanations of four such problems: a mass sliding down
an inclined plane, an object moving along a curved path, a charged particle
in an electric field, and a charged particle in a magnetic field. To solve these
problems, you’ll need many of the vector concepts and operations described in
Chapters 1 and 2.

3.1 Mass on an inclined plane

Consider the delivery woman pushing a heavy box up the ramp to her delivery
truck, as illustrated in Figure 3.1. In this situation, there are a number of forces
acting on the box, so if you want to determine how the box will move, you need
to know how to work with vectors. Specifically, to solve problems such as this,
you can use vector addition to find the total force acting on the box, and then
you can use Newton’s Second Law to relate that total force to the acceleration
of the box.

To understand how this works, imagine that the delivery woman slips off the
side of the ramp, leaving the box free to slide down the ramp under the influ-
ence of gravity. For starters, pretend that the ramp is so slippery that friction
between the bottom of the box and the ramp surface is negligible (so the coef-
ficient of friction is effectively zero). How fast will the box be moving when it
reaches the bottom of the ramp? Perhaps more importantly, on what does that
speed depend?

Whenever you approach a problem like this, it’s a good idea to begin
by drawing a diagram that shows all the forces acting on the box. Such a

62
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Figure 3.1 The delivery-truck problem.

Fn

Fg

Figure 3.2 Free-body diagram for mass on frictionless ramp.

“free-body” diagram will help you determine the total force acting on the
object, from which you can easily determine the object’s acceleration using
Newton’s Second Law (�a = 
 �F/m).1 And once you know the acceleration,
it’s an easy matter to find the velocity. An example of the free-body diagram
for this (frictionless) case is shown in Figure 3.2.

By removing the delivery woman and friction from the problem, the only
remaining forces acting on the box are the force of gravity �Fg , which points
vertically downward,2 and the normal force �Fn , which is perpendicular (or
“normal”) to the surface of the ramp. The origin of these forces is easy to
understand; the gravitational force is produced by the mass of the Earth, and
the normal force is produced by the ramp as a reaction to the force produced by
the box on the ramp (if the ramp weren’t pushing upward on the box, gravity
would cause the box to accelerate straight downward).

1 You may be more accustomed to seeing this as �F = m�a, but the form shown above is meant to
remind you that it’s the sum of the forces that produces acceleration, and the primary job of all
mass is to resist acceleration (which is why mass lives in the denominator – if the same force is
applied to a large mass and a small mass, the small mass experiences greater acceleration).

2 This ignores local gravitational anomalies, which is a very reasonable thing to do for problems
of this type.
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Fn

Fg

y

x

Figure 3.3 Free-body diagram with coordinate axes.

Do these two forces really act only at a single point somewhere inside the
box, as implied by Figure 3.2? Clearly not, since every particle in the box
is being pulled downward by the Earth’s gravity, and the force of the ramp
on the box occurs along the entire underside of the box. But to determine
the acceleration of the box in this problem, you don’t need to worry about
the actual point of application of the forces, because you can treat the box
as a particle that exists at a single location. That’s not always the case; in
problems involving torque and angular acceleration, for example, the point of
application of the force may be critically important. But the box in this prob-
lem is sliding, not rolling, down the ramp, and you’re perfectly justified in
treating the box as a single particle and drawing the forces as though they
all act at the same point. Furthermore, you’re less likely to make a mistake
about the angles of the forces if you draw them as in Figure 3.2. This approach
can be justified using the concept of center of mass (CM), since for a rigid
object of mass m you can consider the entire object as a single point and write
�aC M = �FC M/m.

Before doing the vector addition of the two forces acting on the box to deter-
mine the total force, it’s a good idea to draw a set of coordinate axes onto your
free-body diagram, as in Figure 3.3. Of course, you’re free to draw the axes in
any direction you choose, but when you’re faced with a problem of a mass on
an inclined plane, there are certain benefits to drawing the x-axis pointing
down the ramp (and parallel to the ramp surface) and the y-axis pointing
upward (and perpendicular to the ramp surface). This approach has the advan-
tage that the normal force lies entirely along the positive y-axis, and the motion
of the block sliding down the ramp is entirely in the positive x-direction (as
long as the box stays on the ramp). To pay for that advantage, you’ll have
to use a bit of geometry to find the x- and y-components of the gravitational
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Figure 3.4 Geometry to find the angle of �Fg .

force, since the vector �Fg points straight downward and is therefore aligned
with neither the down-plane (x-) nor the perpendicular-to-plane (y-) axis.3

The key to finding the x-component ( �Fg,x ) and the y-component ( �Fg,y) of
the gravitational force ( �Fg) is to realize that the angle θ between the ramp
surface and the horizontal is also the angle between �Fg and the negative y-axis,
as shown in Figure 3.4(a).

If you’re uncertain why the two angles shown as θ in Figure 3.4(a) must be
the same, take a look at Figure 3.4(b). Completing the two triangles shown in
Figure 3.4(b) should help you see that the angle between �Fg and the negative
y-axis is indeed θ (you may also be able to see this by imagining the case in
which θ = 0◦ or θ = 90◦).

Once you’re convinced that the angle between �Fg and the negative y-
axis is θ , it’s quite straightforward to determine �Fg,x and �Fg,y , the x- and
y-components of the gravitational force vector �Fg . As you can see in
Figure 3.5, the components of �Fg are given by

�Fg,x = | �Fg|sinθ(ı̂),

�Fg,y = | �Fg|cosθ(−ĵ ), (3.1)

where the minus sign before the ĵ accounts for the fact that this component
points in the negative y-direction.

3 You may, of course, choose your axes to point exactly horizontally and vertically, in which case
�Fg would point entirely in the negative y-direction. In that case, the normal vector �Fn would

have both x- and y-components. But since other forces (such as friction and the delivery
woman’s push) generally point along the ramp surface, tilting your coordinate axes may well
save you time later.
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Figure 3.5 x- and y-components of �Fg .

A note about notation: as mentioned in Chapter 1, it’s customary to write
Eqs. 3.1 as

Fg,x = | �Fg|sinθ,

Fg,y = −| �Fg|cosθ,
(3.2)

that is, as scalars rather than vectors. That’s because the direction of vector
components should be clear from the subscript: the x-component is always
in the ı̂ direction (or −ı̂ direction if it’s negative), and the y-component is
always in the ĵ direction (or −ĵ direction if it’s negative). So you can write
the components of a vector as scalars or vectors, as long as you remember that
each component points in a specific direction, which means you cannot simply
add the x- and y-components algebraically, even if they’re written as scalars.
You must add them as vectors.

Whether you write the components as vectors or scalars, having the x- and
y-components of �Fg in hand and knowing that the normal force of the plane on
the box is entirely in the positive y-direction, you’re now in a position to use
vector addition to find the total force acting on the box. Writing the magnitude
of the sum of the forces in the x-direction, you have

|
 �Fx | = | �Fg|sinθ, (3.3)

and in the y-direction

|
 �Fy | = (| �Fn| − | �Fg|cosθ). (3.4)

Alternatively, instead of writing separate equations for the x- and
y-components of the total force, you can write a vector equation incorporating
both:


 �F = (| �Fg|sinθ)î + (| �Fn| − | �Fg|cosθ) ĵ, (3.5)
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which contains exactly the same information as Eqs. 3.3 and 3.4.
Getting from the total force to the acceleration of the box is a simple step

thanks to Isaac Newton, whose Second Law tells you that the magnitudes of
the x- and y-components of the acceleration are

ax = |
 �Fx |/m = (| �Fg|sinθ/m), (3.6)

and

ay = |
 �Fy |/m = [(| �Fn| − | �Fg|cosθ)/m], (3.7)

or, in full vector form,

�a = 
 �F/m = (| �Fg|sinθ/m)î + [(| �Fn| − | �Fg|cosθ)/m] ĵ . (3.8)

Whether you realize it or not, you almost certainly know two facts that will
allow you to simplify these equations considerably. The first is that the magni-
tude of the force of gravity (| �Fg|) on an object of mass “m” is simply equal to
mg, where “g” is the magnitude of the acceleration of gravity (9.8 m/s2 at the
Earth’s surface).4 So wherever you have the factor | �Fg|, you can substitute the
expression mg.

The second simplification is produced by the realization that as long as the
box stays on the ramp and doesn’t fly off into the air or break through to the
ground, the y-component of the acceleration (ay) must remain zero (remember
that the y-axis is perpendicular to the surface of the ramp). Using the fact that
| �Fg| = mg and that ay = 0 turns Eqs. 3.6 and 3.7 into the following:

ax = mg sin θ/m = g sin θ (3.9)

and

ay = (| �Fn| − mg cos θ)/m = 0. (3.10)

When you’re working a physics problem, it’s a good idea to step back from
your calculations once in a while to look at your intermediate results to see
if they’re trying to tell you something – and that’s certainly the case at this
point. Equation 3.9 already has an important result for you: in the absence of
the upward-pushing delivery woman and with no friction, the box will accel-
erate down the ramp (that is, in the +x-direction) with an acceleration that
depends on only two things: which planet the delivery truck is on (that is, the
value of “g”) and the angle that the ramp makes with the horizontal (θ). In this

4 Remember that mass is a measure of the amount of material an object contains and weight is
the force of gravity on that mass. So mass is a scalar (magnitude only) and weight is a vector
(magnitude = mg and direction = straight down). Should you travel in space, your weight will
change as you leave the Earth’s gravity behind, but your mass will remain the same.
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case, just as for a freely falling object, the mass of the box does not affect its
acceleration.5

Since the sine of the ramp angle can never be greater than one, Eq. 3.9 also
tells you that the magnitude of the acceleration of the object (g sin θ ) can never
be greater than g, the accleration of gravity. It can, of course, be equal to g if
sin θ = 1. But this would mean that θ would have to be 90◦ (since sin 90◦ = 1),
in which case the ramp would be exactly vertical. In such cases, you no longer
have an object sliding down a ramp, you have an object falling next to a wall.

There’s also good information lurking in Eq. 3.10, but you have to think a bit
to see it. According to this equation, the y-component of the box’s acceleration
is equal to the difference between the magnitude of the normal force (| �Fn|) and
the y-component of the gravitational force (mg cos θ ). But since you know that
in this problem the box remains on the ramp and the y-acceleration is therefore
zero, you can use Eq. 3.10 to determine the magnitude of the normal force.
Since

ay = (| �Fn| − mg cos θ)/m = 0,

then

| �Fn| = mg cos θ. (3.11)

So the normal force depends on the weight of the object (mg) and the cosine
of the ramp angle (θ ). Understanding this will help you avoid a common pit-
fall for students who know that the normal force is the reaction force produced
on the object by the ramp, and who then mistakenly conclude that the normal
force must always equal the weight of the object (mg). That line of reason-
ing only works for horizontal surfaces, because for any inclined surface, it’s
only the component of the object’s weight that’s perpendicular to the surface
that produces the reaction force we call the normal force. That perpendicu-
lar component of the object’s weight is shown in Figure 3.5 to be mg cos θ ,
which spans the range from mg (when θ = 0◦, meaning the ramp is horizontal
and bears the full weight of the object) to zero (when θ = 90◦, meaning the
ramp is vertical and bears none of the object’s weight). In all other cases, the
magnitude of the normal force will have a value between 0 and mg.

If you’re wondering why you should bother finding �Fn if you’re only inter-
ested in the x-component of the acceleration, the answer is that you may not

5 But doesn’t the Earth pull harder on a more-massive object? Yes it does, but a more-massive
object also resists acceleration more than a less-massive object. Since gravitational mass
(which determines how strongly gravity pulls on an object) has the same value as inertial mass
(which determines how strongly the object resists acceleration), the result is that all objects fall
freely (or slide freely down frictionless ramps) with an acceleration that does not depend on
their mass.
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care about �Fn for the frictionless case (unless you’re worried about your ramp
breaking), but you’ll definitely need �Fn when friction exists between the ramp
surface and the bottom of the box.

With the magnitude of the down-ramp component of the acceleration (ax )
available from Eq. 3.9, all that remains is for you to find the speed of the
box at the bottom of the ramp. Finding speed from acceleration turns out to
be quite straightforward, especially when the acceleration is constant (as it is
in this case), provided that you’re in possession of either one of two pieces
of information: the time the box takes to reach the bottom of the ramp, or
(more likely), the distance from the box’s starting point to the bottom of the
ramp. You’ll also need the initial speed, which you can generally discern from
the initial conditions, and which you can take to be zero in this case. As you
may remember from kinematics, the final speed of an object moving in the
x-direction with initial speed vx,ini tial undergoing constant accleration ax over
time t is given by

vx, f inal = vx,ini tial + ax t, (3.12)

or, if you know d , the distance in the positive x-direction over which the
acceleration occurs,

(vx, f inal)
2 = (vx,ini tial)

2 + 2ax d. (3.13)

Using the expression for acceleration from Eq. 3.9, this becomes

(vx, f inal)
2 = (0)2 + 2 (g sin θ) d

or

vx, f inal =
√

2 (g sin θ) d. (3.14)

So, for example, a box sliding down a 2 m ramp with an angle of 30◦ to the
horizontal on the surface of the Earth will be moving at a speed of

vx, f inal =
√

2
[
(9.8m/s2) sin 30◦

]
2m = 4.4m/s (3.15)

when it reaches the bottom of the ramp. If you’re curious about how long it
takes the box to travel the 2 m down the ramp under these conditions, you can
plug this value for the final speed into Eq. 3.12 and solve for t , which turns out
to be about 0.9 s in this case.

Stripping away effects such as friction is often a good way to learn the fun-
damentals of a problem, but if you’ve ever encountered a ramp outside of
physics texts, there’s a good chance you had to deal with friction. Happily,
once you understand how to use vectors, including friction in the “box on a
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ramp” problem becomes a simple matter of adding another force into the mix
before solving for the acceleration.

As you may recall, friction operates in two regimes: “static” friction deter-
mines how hard you have to push on a stationary object to get it moving, but
once the object is moving, the frictional force that opposes the motion is pro-
duced by “kinetic” friction. So although both types of friction oppose motion,
the magnitude of the force produced by static friction depends on the applied
force (the harder you push, the stronger the opposing force of static friction,
until the object “breaks free” and begins moving), while the magnitude of the
kinetic-friction force depends only on the normal force and the coefficient of
kinetic friction between the object and the surface.6 To determine the effect
of kinetic friction on the speed of the box at the bottom of the ramp, you can
modify your free-body diagram to include the frictional force ( �F f ), as shown
in Figure 3.6.

Notice that the direction of the frictional force is chosen so as to oppose the
motion, and since the box is moving down the ramp in this case, the force of
kinetic friction points up the ramp (in the negative x-direction).

To determine the effect of friction on the acceleration of the box sliding
down the ramp, you simply have to include the frictional force ( �F f ) in your
equation for the sum of the forces in the x-direction (Eq. 3.3), which becomes

|
 �Fx | = | �Fg|sinθ − | �F f |. (3.16)

This makes the acceleration

ax = 
Fx/m =
(
| �Fg|sinθ − | �F f |

)
/m. (3.17)

Clearly, to determine the magnitude of the acceleration (ax ), you’ll need to
find an expression for | �F f |, just as you used mg sin θ for |Fg,x | in Eq. 3.9.

y

x

Fn Ff

Fg

Figure 3.6 Free-body diagram for object on ramp with friction.

6 You can read more about this in introductory physics texts such as Serway & Jewett or
Halliday, Resnick, & Walker.
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Fortunately, that’s easy to do, because the magnitude of the force of kinetic
friction is simply the product of the magnitude of the normal force (| �Fn|) and
the coefficient of kinetic friction (μk):

| �F f | = μk | �Fn|. (3.18)

You also know from Eq. 3.11 that | �Fn| = mg cos θ , so

ax = (mg sin θ − μk mg cos θ) /m

= (g sin θ − μk g cos θ) . (3.19)

Comparing this expression for the acceleration of the box to the acceleration
in the frictionless case (Eq. 3.9), you’ll be happy to note that the term due to
gravity (g sin θ ) is exactly the same in both cases, and the term due to friction
(μk g cos θ ) is subtracted from the gravity term. This means that the acceler-
ation of the box will be made smaller by the frictional force. So in the case
considered previously of a box sliding down a 2 m ramp that makes an angle
of 30◦ with the horizontal, if the coefficient of kinetic friction between the box
and the ramp is 0.4, the speed of the box at the bottom of the ramp will be
reduced to

vx, f inal =
√

2
[
(9.8m/s2) sin 30◦ − (0.4)(9.8m/s2) cos 30◦

]
2m

= 2.5m/s. (3.20)

There is one aspect of Eq. 3.19 that may worry you: what if the second term
is larger than the first? For any angle between 0◦ and 45◦, the cosine is bigger
than the sine, so if the coefficient of kinetic friction (μk) is sufficiently large,
this equation predicts that the acceleration will be in the negative x-direction,
meaning the box will acclerate up the ramp even if no one is pushing on it.
As physicists like to say, “That’s not physical,” meaning that this result contra-
dicts other well-established laws of physics (conservation of energy comes to
mind in this case). So where have we gone wrong in our analysis? We haven’t,
really, you just need to think carefully about the initial assumptions. One of
those assumptions was that the box is travelling down the ramp, which is why
we drew the frictional force pointing up the ramp in our free-body diagram
(Figure 3.6). But if the ramp isn’t very steep and the coefficient of friction
between the box and the ramp is sufficiently large, the down-ramp component
of the force of gravity will not be strong enough to overcome the frictional
force, and the box will not slide down the ramp.7 So there’s nothing wrong

7 You can determine whether the box will move by comparing the maximum static frictional
force (which is just the product of the coefficient of static friction and the normal force) to the
sum of the x-components of all the other forces.
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with Eq. 3.19, it’s just that it only applies to the situation in which the box is
moving down the ramp under the influence of gravity, in which case the force
of kinetic friction points up the ramp.

So there you have it. You’ve used vectors to represent the forces of gravity
and friction, and knowing how to find vector components and how to perform
vector addition has allowed you to find the acceleration and speed of the box
under various conditions. And if a box sliding straight down a ramp is a bit too
mundane for your taste, you may want to take a look at the next three appli-
cation examples. In them, you’ll see how vectors can be helpful in analyzing
motion on a curved path and how vector operations can be used to understand
the behavior of electric and magnetic fields.

3.2 Curvilinear motion

In everyday language, the word “acceleration” is used as a synonym for
“increasing speed.” Hence the “accelerator” in an automobile usually refers
to the gas pedal. But in physics and engineering, acceleration is defined as any
change in velocity, and velocity is a vector quantity with both magnitude and
direction. So changing the direction of the velocity is also a form of accelera-
tion, meaning that most cars have three accelerators: the gas pedal, the brake,
and the steering wheel. “Stepping on the gas” produces an acceleration in the
same direction as the velocity vector (causing the speed to increase), press-
ing on the brake produces an acceleration directly opposite to the direction of
the velocity vector (causing the speed to decrease), and turning the steering
wheel produces an acceleration perpendicular to the velocity vector (causing
the car’s direction to change but not affecting the speed).8 Acceleration in the
direction parallel (or antiparallel) to the velocity vector is called “tangential”
and acceleration perpendicular to the velocity is called “radial.” Any time an
object experiences radial acceleration, it does not move in a straight line, and
its motion is called “curvilinear.” An example of curvilinear motion is shown
in Figure 3.7, in which a car is going around a curve.

Note that at any instant, the velocity vector points directly along the path
the car is following. For a curving path, that means the instantaneous veloc-
ity vector is tangent to the path, as you can see when the car is at position B
in Figure 3.7. If you wish to determine the acceleration at points such as A,
B, and C along the car’s path, it’s not enough to know the velocity at those
points; you have to know how the velocity is changing with time at those
locations.
8 In reality, turning the steering wheel produces frictional forces that also slow the car down, but

it’s the perpendicular component of the acceleration that causes the car to turn.
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Figure 3.7 Velocity vectors for a car following a curved path.

A good way to visualize the acceleration vector is to graphically represent
the velocity vector at the instants of time just before and just after the car is at
positions A, B, and C. This is illustrated in Figure 3.8 for the following case:
the car is slowing down at Position A as it approaches the turn, maintaining
constant speed while turning at Position B, and then speeding up as it exits the
turn at Position C.

You can get a sense of the acceleration just by examining the change in the
velocity vectors at each position. Comparing the velocity vectors just before
and just after Position A, you can see that the magnitude (length) of the vector
is getting smaller but the direction remains the same. This means that the speed
of the car is decreasing but the car is not yet turning. Now look at the velocity
vectors just before and after Position B: the direction of the vector is changing
but its length is not, so the car is turning while maintaining constant speed.
Finally, by examining the velocity vectors before and after Position C, you can
see that the length is increasing, meaning the car is speeding up after leaving
the turn.

The direction of the acceleration is easily found by remembering that the
average acceleration is given by the equation �a = 	�v/	t , where 	�v is the
change in velocity over time	t . That change in velocity is just �v f inal−�vini tial ,
which you can determine by subtracting the earlier velocity vector from the
later one at each position in Figure 3.8. To make that easier, the vectors are
reproduced in Figure 3.9.
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Figure 3.8 Change in car’s velocity vectors at Positions A, B, and C.
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Figure 3.9 Velocity vectors before and after Positions A, B, and C.

Note that the vectors shown in Figure 3.9 include not only �v f inal and �vini tial ,
but also the negative of �vini tial . That’s because you’ll need to know −�vini tial

to compute the change in velocity, since 	�v = �v f inal − �vini tial , which is the
same as �v f inal + (−�vini tial). Remember that to add two vectors graphically
you simply move the tail of one to the head of the other and then draw the
resultant from the start of the first to the end of the second vector. The results
of adding vectors �v f inal and −�vini tial are shown in Figure 3.10.

In Figure 3.10, the velocity vectors −�vini tial and �v f inal for Positions A and
C are shown slightly offset since they would overlay one another if they were
drawn truly head-to-tail. If you look at the direction of the vector representing
the change in velocity (	�v) at each position, you’ll see that while the car is
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Figure 3.10 Change in velocity vectors at Positions A, B, and C.

slowing down at Position A, the change in velocity is in the opposite direction
from the velocity at this point. Since the acceleration (�a) is defined as the vector
change in velocity (	�v) divided by the scalar time period (	t) over which that
change occurs, the direction of �a must be the same as the direction of 	�v.
Hence the acceleration direction at Position A is opposite to the direction of
the velocity vector, as you’d expect when the car is slowing down. This is an
example of negative tangential acceleration.

Now consider the direction of the vector change in velocity	�v at Position B,
where the car is going around the turn at constant speed. In this case, subtract-
ing �vini tial from �v f inal gives a vector 	�v that is perpendicular to the velocity
vector. This shows that the acceleration vector for an object moving along a
curve at constant speed points toward the center of curvature (to help you visu-
alize this direction, the	�v vectors are shown on the car’s path in Figure 3.11).
At position B, this is an example of radial acceleration.9

Finally, as the car speeds up at Position C, you can see that the direction
of the vector change in velocity 	�v is the same as the direction of the veloc-
ity vector, meaning that the accleration in this case is parallel to the velocity.
Hence this is an example of positive tangential acceleration.

For Position B, a careful analysis of the length of the vector change in veloc-
ity reveals that the magnitude of the radial acceleration depends on the square
of the speed and on the radius of curvature of the path. Before getting into
that, it’s worth a few minutes of your time to make sure you understand the
terminology commonly used to describe acceleration and force in curvilinear
motion. Acceleration toward the center of curvature (such as the acceleration at
Position B in Figure 3.11) is called “centripetal” (for “center-seeking”) accel-
eration, and the force producing that acceleration is often called centripetal
force. It’s important for you to understand that a centripetal force is not a new

9 As described later in this section, most texts define the positive direction for radial acceleration
to be outward from the center of curvature, in which case the acceleration at Point B would be
considered negative radial acceleration.
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Figure 3.11 Acceleration vectors at Positions A, B, and C.

kind of force that is somehow different from mechanical, electrical, magnetic,
or other kinds of force. The word “centripetal” simply describes the direction
of the force, but the force itself is provided by the same old kinds of forces to
which you’re accustomed. So for a car going around a curve, the centripetal
force is simply the frictional force of the tires on the ground. If you tie a rock
to a rope and twirl the rope in a circle, the centripetal force on the rock is
produced by the tension of the rope. And if you fill a bucket with water and
swing it over your head, the centripetal force on the bucket (and via the bucket
on the water) comes from the muscles in your arm. So the centripetal force is
whatever force is producing the centripetal acceleration that causes the object
to follow a curved path.

As footnoted earlier, it’s conventional to consider radial acceleration (�ar )
as positive outward (away from the center of curvature), and since centripetal
acceleration (�ac) is defined as positive toward the center of curvature, you may
run across an equation such as �ar = −�ac. This is simply a statement that the
radial acceleration and centripetal acceleration are commonly defined to have
the same magnitude but opposite directions.

You should note that in the case of the car on the curving road, the rock being
twirled in a circle on a rope, and the bucket of water being swung over your
head, the centripetal acceleration (and hence the centripetal force) is toward the
center of curvature, and there is no acceleration (and no force) pointing radially
outward. But what about the “centrifugal” force that the occupants of the car
feel toward the outside of the curve (that is, toward the left door if the car is
turning to the right)? What they’re feeling is the force of the left door on their
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bodies as they attempt to obey Newton’s First Law and continue moving in a
straight line while the car is accelerating to the right. So centrifugal force is the
apparent force experienced by observers in the reference frame that is rotating
with the object (physicists refer to acclerating reference frames such as this
as “non-inertial”). Hence if you’re riding in a right-turning car, as you slide
across the seat and up against the left door, in your (rotating) reference frame
you’re accelerating to your left, which causes you to conclude that there’s a
force in that direction (outward from the center of curvature). But for those
of us not riding in the car, we don’t see any such force; we simply observe
the centripetal acceleration of the car as the friction of the tires on the road
provides a centripetal (rightward) force.

The concept of centripetal and centrifugal force can be understood by con-
sidering an Olympic hammer-thrower as she spins a heavy mass on the end
of cable, as illustrated from above in Figure 3.12. For the thrower, it feels
like the object is pulling directly outward (away from her). Once again, in
the non-rotating reference frame of the stadium, that’s just because the object
is attempting to obey Newton’s First Law and continue moving in a straight
line. So from our vantage point in the viewing stand, we see that the hammer-
thrower is having to produce a centripetal (radially inward) force to make the
object follow a curved path.

So is the hammer-thrower wrong in her assessment? Absolutely not. In her
reference frame, which is rotating along with the mass, her conclusion that
a radially outward (centrifugal) force exists is perfectly valid. After all, she
knows that she has to exert a very strong inward force on the cable to keep the
mass at the same distance from her (because in her reference frame the mass

Thrower

Cable

Mass

Figure 3.12 Top view of hammer-thrower.
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has zero acceleration until she releases it). Hence she is correct in concluding
that in her reference frame there must be a force in the radially outward direc-
tion to balance her inward pull. So if you hear someone say that the centrifugal
force is “fictitious,” they generally mean that centrifugal force is an apparent
force to an observer in a rotating (non-inertial) reference frame.

Once you understand the concepts of centripetal acceleration and force, it’s
reasonable to ask how strong the centripetal force must be to cause an object to
follow a given path. It’s simple to determine the centripetal force using New-
ton’s Second Law ( �F = m�a) if you know the object’s mass and have some
way of finding the centripetal acceleration. Happily, the centripetal accelera-
tion turns out to depend only on the object’s speed and the radius of curvature
of the path, as you can see by considering Figures 3.13 and 3.14.

In Figure 3.13 you can see the velocity vectors at two locations for an object
in uniform circular motion (meaning that the object’s speed and the radius of
curvature are both constant over the time period under consideration). Note
that the two positions are separated by angle 	θ at the center of curvature,
which makes the arc length between the initial and final positions equal to
r	θ , where r is the radius of curvature and 	θ is in radians. Since the speed
of the object is constant over this distance, you know that |�vini tial | must equal
|�v f inal | (in other words, the direction but not the length of the velocity vector

r

r

rΔθ

Δθ

vfinalvinitial

Figure 3.13 Geometry of changing direction of velocity.

length =  vfinal  = |v|length = |Δv|

length =  vinitial  = |v|

length = |v|Δθ

Δθ

Figure 3.14 Geometry for determining length of 	�v.
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has changed). You can therefore set |�vini tial | = |�v f inal | = |�v|, where |�v| is the
speed of the object at both positions. Since the average speed of the object is
defined as the distance covered divided by the time taken to cover that distance,
you can write

|�v| = r	θ

	t
, (3.21)

which means that

	θ = |�v|	t

r
. (3.22)

The reason that an expression such as Eq. 3.22 for 	θ is valuable is that this
angle change is directly related to the magnitude of the vector change in veloc-
ity, which you need to know if you want to find the centripetal acceleration.
To see that, consider what happens if you form the vector	�v by adding �v f inal

to −�vini tial , as in Figure 3.14. The first thing you should note is that the angle
between the vectors �v f inal and −�vini tial is equal to 	θ (if you don’t see why
that’s true, go back to Figure 3.13 and imagine extending both vectors �v f inal

and −�vini tial until they cross). Also note that the vector 	�v is drawn at the
location mid-way between the original location of �vini tial and the original
location of �v f inal , since that’s the location at which you’re finding the cen-
tripetal acceleration. The final thing to note in this figure is that both �v f inal

and−�vini tial have length equal to |�v|, which makes the arc length shown in the
figure equal to |�v|	θ .

Now imagine what will happen if you allow the angle 	θ to shrink toward
zero. As the angle decreases, the arc length |�v|	θ will get closer and closer to
the length of 	�v. Plugging in the value for 	θ from Eq. 3.22, you have in the
small-angle limit

|	�v| ≈ |�v|	θ = |�v| |�v|	t

r

= |�v|
2	t

r
, (3.23)

which means that the magnitude of the instantaneous centripetal acceleration is

|�ac| = |	�v|
	t
= |�v|

2	t

r	t

= |�v|
2

r
. (3.24)

So there you have it: the centripetal acceleration at any given point is simply
the square of the speed divided by the radius of curvature of the path at that
point. Hence doubling your speed means that your centripetal acceleration is
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four times larger, which means that the centripetal force must be four times
stronger.

If you’re concerned that Eq. 3.24 may apply only in the case of uniform
circular motion, remember that by allowing 	θ to become arbitrarily small
you’ve ensured that neither the speed nor the radius of curvature has changed
during the time period under consideration.

What does Eq. 3.24 tell you about the amount of force needed to cause
an object to follow a specified curving path? Consider the hammer-thrower
discussed above and shown in Figure 3.12, and assume that she intends to
launch a 4 kg mass at the end of a 1.2 m cable with a speed of 20 m/s. Assuming
she achieves her maximum speed just before letting go of the cable, at that
point the centripetal accleration will be

|�ac| = |�v|
2

r
= (20m/s)2

1.2m
= 333.3m/s2,

which means that the thrower must provide a centripetal force of

| �Fc| = m|�ac| = 4kg
(

333.3m/s2
)

= 1333.3N

which is almost 300 pounds of force (and this doesn’t include the mass of the
cable).

With Eq. 3.24 to help you find the magnitude of the centripetal accelera-
tion, and knowing that the tangential acceleration is just the change in speed
over time (�atang = 	�v/	t), the total acceleration can be found through
vector addition, as shown in Figure 3.15. Thus the magnitude of the total
acceleration is

atang

ac

aTotal

Figure 3.15 Total acceleration as the vector sum of centripetal and tangential
acceleration.
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|�aT otal | =
√
(|�ac|)2 + (|�atang|)2

=
√(

v2

r

)2

+
( |	�v|
	t

)2

. (3.25)

You’ll find an example of combined tangential and centripetal acceleration
in the problems at the end of this chapter.

3.3 The electric field

If the previous two sections convinced you that vectors are very helpful in
solving mechanics problems, the next two sections should help you under-
stand why vectors are absolutely essential in problems involving electric and
magnetic fields and their effect on charged particles. You’ll also see how the
vector operations of divergence, curl, gradient, and Laplacian are used in elec-
trostatics. Even if you’ve never taken an E&M course (and never hope to), the
examples in these sections should be sufficiently self-contained to allow you
to understand how vectors and vector operations can be used in E&M.

The natural way to begin a discussion of electric and magnetic fields is to
provide a clear, concise definition that states exactly what an electric or mag-
netic field is. Such a definition would appear right here if I had one. But almost
two centuries after Michael Faraday first used the words “field of force” to
describe the region around electric charges, we still don’t have a standard way
of saying what such a field is. The Oxford English Dictionary provides def-
initions for “field” that include an “area or space” under the influence of an
agent, a “state or situation” in which force is exerted, and the “action” of a
force. According to James Clerk Maxwell, “The electric field is the portion of
space in the neighbourhood of electrified bodies.” In Halliday, Resnick, and
Walker you can learn to define the electric field by placing a small positive test
charge q0 at some point and measuring the electrostatic force �FE on that test
charge;10 the electric field �E is then defined as �E = �FE/q0. In Griffiths’ Intro-
duction to Electrodynamics, he states that “. . . physically, �E(P) is the force
per unit charge that would be exerted on a test charge placed at P .” The words
“would be” in that definition are important, because it is not necessary for the
test charge to be present in order for the field to exist.

10 Why do physics and engineering texts always refer to a small test charge? For two reasons:
firstly, the amount of charge on the test charge must be small so that the electric field produced
by the test charge is negligible when compared to the electric field that you’re trying to
determine using the test charge. Secondly, the test charge must be physically small because
you’re using it to determine the field at a specific position, so you don’t want your test charge
to extend over a large region of space.
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The common thread running through all these definitions is this: fields and
forces are closely related. So we’ll take the following as our definition of the
electric field �E :

�E ≡ �FE

q0
, (3.26)

where �E is the vector electric field, q0 is a small test charge, and �FE is the
electric force produced on the test charge by the electric field. Defining the
electric field through this equation should help you remember that �E is a
vector quantity with magnitude directly proportional to force and with direc-
tion given by the direction of the force on a positive test charge (because
if q0 is negative, there would be a minus sign on one side of the equation,
which would mean that vector �E would be in the opposite direction from
vector �FE ).

This definition should also help you see that �E has dimensions of force
divided by charge, for which the standard (SI) units are newtons per coulomb
(N/C). These units are equivalent to volts per meter (V/m), since volts have
dimensions of force times distance divided by charge (units of newtons times
meters/coulombs). So you’ll find the units of electric field given as N/C in
some texts and V/m in others, and you can rest assured that these mean exactly
the same thing.

There is, however, something important to be noticed in the units of the elec-
tric field vector: the dimension of length (units of meters in this case) appears
in the denominator of the dimensions of the electric field. And that means that
the vector that represents an electric field has a fundamental difference from
the vectors that represent quantities such as position (which has dimension of
length), velocity (dimension of length over time), or acceleration (dimension
of length over time squared). As you can read in Chapter 4, that’s because vec-
tors whose dimensions contain length in the numerator transform oppositely to
vectors whose dimensions have length in the denominator when you perform
certain coordinate-system changes. If this seems unclear and you don’t plan to
venture into the tensor portion of this book, do not panic; none of this will pre-
vent you from using the concepts and operations described in Chapters 1 and 2
to solve problems involving vectors of this kind, exactly as you’re about to do
in the remainder of this section. But if you’ve run across objects called “one-
forms” or “covectors” (of which the electric field is an example) and you’re
wondering how those objects are different from the things you’ve been call-
ing vectors, the appearance of length in the denominator of the dimension is
the beginning of the answer (you’ll find the rest of the answer in Chapter 4 if
you’re interested).
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You should also make sure you understand that if you know the electric field
�E at a given location, placing any amount of charge q at that location will result

in an electric force �FE given by

�FE = q �E . (3.27)

So while Eq. 3.26 uses the electric force on a positive test charge to define the
electric field, Eq. 3.27 is a generally useful expression for finding the electric
force on any amount of charge at the location for which the electric field is
known.

Defining an electric field is useful, but exactly how would you go about pro-
ducing an electric field? One way is to gather up some electric charge, because
every bit of charge produces an electric field, just as every bit of mass produces
a gravitational field. Electric fields can also be produced by changing magnetic
fields, but it is the “electrostatic” field produced by stationary electric charge
that will be used to demonstrate the application of vectors in this section.

It’s often helpful to be able to visualize the electric field in the vicinity of
a charged object. The most common approaches to constructing a visual rep-
resentation of an electric field are to use either arrows or “field lines” which
point in the direction of the field at each point in space. In the arrow approach,
the strength of the field is indicated by the length of the arrow, while in the
field-line approach, it’s the density of the lines that tells you the field strength,
with closer lines signifying a stronger field. When you look at a drawing of
electric field lines or arrows, be sure to remember that the field exists between
the lines as well.

The electric fields produced by positive and negative point charges are
shown using the arrow approach in Figure 3.16 and using the field-line
approach in Figure 3.17. When you look at electric field lines such as these,

+

(a)

_

(b)

Figure 3.16 The electric field of positive and negative point charges drawn
using arrows.
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+

(a)

–

(b)

Figure 3.17 The electric field of positive and negative point charges drawn
using field lines.

don’t forget that the field arrows and lines always point in the direction of
the electric force on a positive test charge, and that electrostatic field lines
always begin on positive charge and end on negative charge. And since the
field lines show the direction of the electric field at any given point, it’s impos-
sible for two fields lines to cross, since that would indicate that the electric
field is pointing in more than one direction at the point of intersection (if two
electric fields are superimposed at a given point, they simply add as vectors to
give the total electric field at that point, and that total field can only point in a
single direction).

At this point, you should make sure that you understand that electric fields
can both be produced by electric charge as well as produce a force on another
electric charge. So you’re likely to face problems in which you first have to
determine the total electric field produced by charge at a certain location and
then figure out the effect of that field on a completely different charge (not one
of the charges producing the field). But doesn’t the charge that’s being affected
(let’s call that one the “subject charge”) also produce its own electric field? Yes
it does, but as long as the electric field produced by the subject charge isn’t
strong enough to cause the other charges to move around, you can approach
problems like this by finding the total electric field produced by all the other
charges and then using that field to determine the force on the subject charge.
This approach is very much like finding the Earth’s gravitational field at some
point in space and then using that field to figure out the gravitational force on
an object of known mass at that location, without considering what effect the
mass of the object might have on the Earth.

Problems like this are especially straightforward if the electric field is being
produced by one or more discrete point charges. That’s because the electric
field �E of a point charge q is simply
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�E = ke
q

r2
r̂ , (3.28)

where ke is the Coulomb constant (8.99 × 109 Nm2/C2), r is the distance in
meters from the point charge to the location at which the electric field is being
determined, and r̂ is a unit vector pointing radially outward from the point
charge.

Thus a single proton (electric charge of 1.6 × 10−19 C) at a distance of one
meter produces an electric field given by

�E = (8.99× 109 Nm2/C2)

(
1.6× 10−19C

(1 m)2

)
r̂

= 1.45× 10−9(N/C) r̂ .

Note that the direction of that field is radially away from the proton, since
the unit vector r̂ always points radially outward from the origin. An electron,
having negative charge, produces an electric field of the same magnitude as
that of the proton, but the electron’s electric field points toward the electron.
To see that, note that when you plug in a negative charge for q in Eq. 3.28, you
have

�E = (8.99× 109 Nm2/C2)

(−1.6× 10−19 C

(1 m)2

)
r̂

= −1.45× 10−9(N/C) r̂ = 1.45× 10−9(N/C)(−r̂),

where the minus sign tells you that the direction of the electron’s electric field
is in the negative r̂ direction, which is toward the source charge (since r̂ is
always radially outward, minus r̂ is always radially inward). This is consistent
with electric field lines beginning on positive charge and ending on negative
charge.

To understand how to add the vector electric fields, consider the situation
shown in Figure 3.18. Note that q1 is positive, so its electric field must point
radially outward from the location of q1, while q2 and q3 are negative, so their

q1 = +5 nC

q2 = –6 nC

q3 = –8 nC

electron(–5, +4) cm

(–5, –4) cm

(+7, +2) cm
(0,0) cm

Figure 3.18 Example values for charges near an electron.



86 Vector applications

_

+

-

q1
field

q2
field

q3
field

You want to determine
the total electric field
at this point

Figure 3.19 The electric fields produced by charges q1, q2, and q3.

electric fields must point radially inward toward their locations. To find the
total electric field at the position of the electron, it may help you to picture the
fields produced by q1, q2, and q3 as shown in Figure 3.19.

If you read the discussion of field lines earlier in this section, you should
realize that the electric field exists between the lines as well as at the locations
of the lines themselves. But just to help you visualize the direction of the fields
from each of the three charges, the field lines in Figure 3.19 have been drawn
on a tilt so that they are directly in line with the location at which you’re trying
to find the total field (the origin in this case). You should also remember that
just because the lines have grown too small to see does not mean that the field
has gone to zero. Hence the electric field produced by q1 points down and to
the right at the location of the electron, the field from q2 points down and to
the left, and the field from q3 points up and to the right. It is these three vector
fields that you will have to add together to determine the total electric field at
the point of interest.

Using Eq. 3.28, the electric fields due to the three point charges q1, q2, and
q3 may be written as

�E1 = ke
q1

r2
1

r̂1,

�E2 = ke
q2

r2
2

r̂2,

�E3 = ke
q3

r2
3

r̂3.

(3.29)
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Of course, you know from Figure 3.19 that these three electric fields do not
point in the same direction. That’s because the unit vector r̂1 points radially
outward from the location of charge q1, and r̂2 and r̂3 point radially outward
from q2 and q3, respectively. This means you can’t add the three electric fields
algebraically; to find the total field you must use vector addition. You’ll find
an example of the vector addition of electric fields in the problems at the end
of this chapter and the on-line solutions.

As you might suspect, it’s not just the simple operations of vector addition
and multiplication by a scalar that find use in electrostatics. If you followed
the discussion of the divergence operation in Chapter 2, you may be wonder-
ing about the divergence of the electrostatic fields produced by a point charge
(Figures 3.16 and 3.17). In fact, one of the fundamental laws of electrostatics
is Gauss’s Law for electric fields, the differential form of which is

�∇ ◦ �E = ρ/ε0, (3.30)

where ρ represents the volume electric charge density (coulombs per cubic
meter) and ε0 is the vacuum permittivity of free space (8.85×10−12 Nm2/C2).

Gauss’s Law for electric fields tells you that electric field lines diverge from
any location at which positive charge exists (positive ρ) and converge upon
any location at which negative charge is present (negative ρ). This explains the
analogy between the “flow” of electrostatic field lines and the flow of a fluid.
In this analogy, positive charge acts as the “source” of electrostatic field lines
in the same sense as a faucet acts as the source of fluid, and negative charge
acts as a “sink” of electrostatic field lines just as a drain does for fluid.

Note what happens when you take the divergence of the electric field of a
point charge (this is most easily done in spherical coordinates):

�∇ ◦ �E = 1

r2

∂

∂r
(r2 Er ) = 1

r2

∂

∂r

(
r2ke

q

r2

)
= 1

r2

∂

∂r
(keq) = 0.

This is consistent with the worked example in Chapter 2 showing that the
divergence of any radial vector field is zero if the amplitude of the field falls
off as 1/r2. Zero, that is, at all locations except where r = 0, the location of
the source of the field. Thus Gauss’s Law tells you that electrostatic field lines
diverge only from those locations at which positive electric charge exists, and
converge only on those locations at which negative charge exists.

You can gain additional understanding of the behavior of the electrostatic
field by considering the curl of �E for a point charge. Since Eθ and Eφ are both
zero, the curl in spherical coordinates becomes
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�∇ × �E = 1

r

1

sin θ

∂Er

∂φ
θ̂ + 1

r

(
−∂Er

∂θ

)
φ̂

= 1

r

1

sin θ

∂

∂φ

(
keq

r

)
θ̂ + 1

r

[
− ∂

∂θ

(
keq

r

)]
φ̂

= 0.

This is not a surprising result in light of the radial nature of the electrostatic
field of a point charge.

As mentioned in Chapter 2, vector fields with zero curl are called irro-
tational, and such fields have several important properties. One of those
properties arises from the fact that the curl of a gradient is always zero: an
irrotational vector field may always be written as the gradient of a scalar field.

In the case of electrostatic fields, the electric field may be written as the gra-
dient of the scalar electric potential (usually written as φ or V ). By convention,
the electric field is written as the negative gradient of the scalar potential, so
you’re likely to see this relationship written as

�E = −�∇V, (3.31)

where V is the scalar electric potential with units of Nm/C (equivalent to joules
per coulomb or volts).

Since the electric field is the negative of the change in electric potential
with distance, moving along an electric field line in the direction it’s pointing
means that you’re moving toward a region of lower electric potential. Likewise,
moving in the opposite direction (opposite to the direction of the field) takes
you into a region of higher potential, and moving perpendicular to the field
lines results in no change in potential. Hence the “equipotential” surfaces are
always perpendicular to the electric field lines.

Another differential vector operation useful in electrostatics is the Laplacian
(∇2). Recall that the Laplacian involves the second spatial derivative, specif-
ically the divergence of the gradient. Since the electrostatic field �E may be
written as the negative of the gradient of the scalar potential V , taking the
divergence of the electric field gives:

�∇ ◦ �E = �∇ ◦ (−�∇V ) = −∇2V . (3.32)

Since Gauss’s Law says that the divergence of the electrostatic field must equal
ρ/ε0, this means

∇2V = −ρ/ε0. (3.33)

This is known as Poisson’s Equation. Since the Laplacian finds peaks and val-
leys of a function (locations at which the value of the function differs from the
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average value at surrounding locations), Poisson’s Equation tells you that the
electric potential can have local maxima and minima only at locations at which
charge is present (that is, where ρ �= 0). And if you recall that the Laplacian
is negative at peaks and positive at valleys, you can see that positive charge
produces a peak in electric potential while negative charge produces a valley.
This is one reason that the electric field is taken as the negative gradient of the
electric potential.

In regions in which the electric charge density (ρ) is zero, Poisson’s
Equation becomes Laplace’s Equation:

∇2V = 0, (3.34)

so there are no maxima or minima in electric potential for locations with zero
charge density.

3.4 The magnetic field

In this section, you can read about the behavior of the magnetic field ( �B) and
the magnetic force on a moving charged particle. You’ll also find a discus-
sion of the application of the vector operations of divergence and curl to the
magnetostatic field.

Unlike electrostatic field lines, which diverge from positive charge and con-
verge on negative charge, magnetic field lines form circles around the electric
current (flowing charge) that is producing the magnetic field. And just as
stationary source charges produce electrostatic fields, stationary currents (in
which the charge flow is constant) produce magnetic fields that are called
“magnetostatic.” An example of such a field is shown in Figure 3.20. The
direction of those field lines is determined using the right-hand rule: if you
put the thumb of your right hand along the direction of current flow and curl

I

B

Current-carrying
straight wire

(out of page
   on this side)

(into page
      on this side)

B

Figure 3.20 Magnetic field of a long, straight wire.
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your fingers (like you’re grabbing the current), the magnetic field points in the
direction of your curled fingers. So if you were to reverse the direction of that
current flow, the magnetic field lines would still form circles around the cur-
rent, but the magnetic field lines would point in the opposite direction (as you
can tell by observing the direction of your curled fingers when your thumb
points in the opposite direction).

You can tell by the spacing of the field lines in Figure 3.20 that the strength
of the magnetic field is decreasing as the distance from the current increases.
For a thin wire of infinite length carrying current I , the vector magnetic field
is given by the equation

�B = μ0 I

2πr
φ̂, (3.35)

where μ0 is a constant called the magnetic permeability of free space, r is
the distance from the wire to the point at which the magnetic field is being
determined, and φ̂ is the cylindrical-coordinate unit vector that points in the
direction circulating around the wire. The standard (SI) unit of magnetic field
is the tesla (T).

Comparing the magnetic field lines around an electric current to the vector
fields with various values of divergence and curl discussed in Chapter 2, you
may have already guessed that magnetic fields fit into the “low divergence,
high curl” category. Recall that electric field lines originate on positive charge
and terminate on negative charge, and it is only at the location of those charges
that the divergence of the electrostatic field is non-zero. And since magnetic
field lines circulate back onto themselves rather than diverging from and con-
verging upon specific locations, it’s reasonable to expect small values for the
divergence of the magnetic field. In fact, the divergence of the magnetic field
( �B) is exactly zero, as indicated by Gauss’s Law for magnetic fields:

�∇ ◦ �B = 0. (3.36)

You can verify this for the magnetic field of a long, straight wire by taking the
divergence of the field in Eq. 3.35:

�∇ ◦ �B = 1

r sin θ

∂Bφ
∂φ
= 1

r sin θ

∂

∂φ

(
μ0 I

2πr

)
= 0.

As you might expect from the discussion of curl in Chapter 2, the magnetic
field around a current-carrying wire has zero curl:
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�∇ × �B =
(
−∂Bφ
∂z

)
r̂ + 1

r

(
∂(r Bφ)

∂r

)
ẑ

=
[
− ∂
∂z

(
μ0 I

2πr

)]
r̂ + 1

r

[
∂

∂r

(
r
μ0 I

2πr

)]
ẑ

= 0.

As in the case of the divergence of the electric field, which has a non-zero value
only at locations at which charge exists, the only locations at which the curl of
the magnetic field is non-zero are locations at which current exists (that is, at
the singularity point r = 0).

Other uses of vectors and vector operations come about when you consider
the force ( �FB) produced by a magnetic field ( �B) on a moving electric charge
(q). This force is given by the vector equation

�FB = q �v × �B, (3.37)

where �v is the velocity of the charged particle with respect to the magnetic
field. The magnitude of the force is readily found using the definition of the
magnitude of the vector cross product (| �A × �B| = | �A|| �B| sin θ ):

| �FB | = q|�v|| �B| sin θ, (3.38)

where θ is the angle between vector �v and vector �B.
Examined carefully, Eqs. 3.37 and 3.38 can tell you a great deal about how

magnetic fields affect charged particles. Compare these equations to Eq. 3.27
( �FE = q �E), and note that there are similarities and differences between
electric and magnetic forces:

• Similarity: Both are directly proportional to the amount of charge (q);
• Similarity: Both are directly proportional to the field strength ( �E or �B);
• Difference: The velocity (�v) of the particle appears in the magnetic

equation;
• Difference: The magnetic force depends on the angle between the velocity

and the magnetic field;
• Difference: The magnetic force is perpendicular to both the velocity and the

magnetic field.

The similarities seem reasonable: both electric and magnetic forces are
stronger if the fields are stronger and if the amount of charge is greater. Also,
charges with opposite signs feel forces in opposite directions. The first listed
difference (the fact that the magnetic force depends on the velocity of the parti-
cle) has the interesting consequence that a charged particle at rest with respect
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to the magnetic field (�v = 0) feels no force whatsoever from that field. And
for particles moving with respect to the magnetic field, the faster the particle
moves, the stronger the magnetic force becomes.

The presence of the vector cross product in the magnetic force equation
also has some important consequences. One of those consequences is that
charged particles moving in a direction parallel or antiparallel to the magnetic
field feel zero magnetic force. That’s because in both the parallel (θ = 0◦)
and antiparallel (θ = 180◦) cases, the sine term in Eq. 3.38 is zero. So
the closer the angle θ between �v and �B is to 90◦, the stronger the magnetic
force.

Another consequence of the vector cross product in Eq. 3.37 is that the mag-
netic force ( �FB) can never point in the direction of the magnetic field, since the
vector result of the cross product is by definition perpendicular to both vectors
forming the product (�v and �B in this case). For this same reason, the magnetic
force can never point in the direction of the particle’s velocity vector, and must
in fact be perpendicular to that vector. So if you imagine the flat plane formed
by the velocity vector and the magnetic field, you can be sure that the magnetic
force (if any) must be perpendicular to that plane.

If you’ve read the discussion of radial and tangential acceleration in Sec-
tion 3.2, you should understand that this means that magnetic fields can
provide radial but never tangential acceleration to a charged particle (since
tangential acceleration requires a component of force that’s either parallel
or antiparallel to the velocity vector). And since �v × �B always points per-
pendicular to �v, magnetic fields can provide only radial acceleration. Thus
magnetic fields may change the direction but never the speed of charged
particles.

An example of the geometry involved in magnetic force is shown in
Figure 3.21. In this figure, the direction of the magnetic field is into the page, as

B

v
q

Figure 3.21 Charged particle moving to right; magnetic field into page.



3.4 The magnetic field 93

B vq

Force in same direction as v × B if q positive

Force in opposite direction from v × B if q negative

Push v into B (into page)
with right hand; thumb
shows direction of v × B 

FB

FB

Figure 3.22 Magnetic force for positive and negative charges.

indicated by the crosses inside circles,11 and the charged particle (q) is moving
to the right.

To determine the direction of the magnetic force in this case, you simply
have to imagine forming the vector cross product �v × �B using the right-hand
rule, as shown in Figure 3.22. Once you know the direction of �v × �B, it’s
very important to remember (but easy to forget) that you must then reverse
the direction if the charge q is negative (since by Eq. 3.37, �FB = q �v × �B,
meaning that the magnetic force is opposite to the direction of �v × �B if
q is negative). This explains why two directions for the magnetic force �FB

are shown in Figure 3.22: upward if q is positive and downward if q is
negative.

Once you understand the direction of the magnetic force relative to the
velocity of the charged particle, it should help explain why you may have
heard or read about charged particles “circling around magnetic field lines” or
perhaps “spiralling along the magnetic field.” Consider the positively charged
particle q in Figure 3.23. If this particle is initially at the leftmost position in
the figure, travelling with velocity �v straight up the page, and the magnetic field
�B points directly out of the page, the direction of the magnetic force q �v× �B is
initally to the right (as you can determine using the right-hand rule). This force
causes the particle to travel on the dashed path to the topmost position in the
figure. At that point, the magnetic force �FB points straight down the page. Just
as at the previous position, since q is positively charged, the magnetic force
points in the same direction as �v × �B. This now-downward force causes the
particle to travel to the rightmost position, at which point the velocity is straight

11 This is common notation in physics and engineering; you can remember it by thinking of a
hunter’s feathered arrow. Seen from the back, you can see the back edges of the feathers, so it
looks like this: ⊗. But seen from the front, you can see the arrow’s point, so it looks like
this: �.
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Figure 3.23 Magnetic force on positive charge.

down the page and the magnetic force �FB points directly to the left. This force
causes the particle to reach the bottom position in Figure 3.23, at which point
the velocity is to the left and the magnetic force points straight up the page.
Under the influence of this force, the particle will travel back to the starting
(leftmost) position, and the entire cycle will repeat. So this positively charged
particle makes a clockwise circle around the outward-pointing magnetic
field.

Applying the same reasoning to a negatively charged particle, you should
be able to determine that it will make counter-clockwise circles around the
same outward-pointing magnetic field. And if the field direction is reversed,
so that �B points into the page rather than outward, the sense of the parti-
cle’s rotation will be reversed (so that a positively charged particle will circle
counter-clockwise and a negatively charged particle will circle in the clockwise
direction).

The particles in these examples retrace the same path over and over, so what
makes some particles “spiral around” the lines of the magnetic field? Simply
this: the particle’s velocity must have a component parallel (or antiparallel) to
the direction of the magnetic field. Note that the particle shown in Figure 3.23
is moving entirely in the plane of the page, and the magnetic field is perpen-
dicular to the page. Hence the particle’s velocity vector has no component
along the magnetic field (into or out of the page). If such a component were
present, the particle would have a component of its motion along the field
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lines while also circling around them. In that case, the circular path shown in
Figure 3.23 would move into or out of the paper over time, and the circle would
become a spiral. The magnetic field has no effect on the velocity component
(v||) parallel or antiparallel to the field (since there’s no magnetic force in that
direction), so the speed with which the particle moves along the field line is
constant as long as no other forces are acting.

3.5 Chapter 3 problems

3.1 Solve the box-on-a-ramp problem (that is, find the acceleration of
the box) for the frictionless case using a Cartesian coordinate system
for which the y-axis points vertically upward and the x-axis points
horizontally to the right.

3.2 The maximum force of static friction is μs �Fn , where μs is the coefficient
of static friction and �Fn is the normal force. How big must the coefficient
of static friction μs be to prevent a box of mass m from sliding down a
ramp inclined 20 degrees from the horizontal?

3.3 If a delivery woman pushes a box of mass m up a 2 m ramp with a force
of 10 N, how fast is the box moving at the top of the ramp if the ramp
angle to the horizontal is 25 degrees and the coefficient of kinetic friction
is 0.33?

3.4 If the hammer-thrower shown on the cover of this book wishes to
launch a hammer of mass 7.26 kg on a cable of length 1.22 m with a
speed of 22 m/s, what is the magnitude of the centripetal force he must
supply?

3.5 Imagine a Formula 1 car going around a curve with radius of 10 m while
slowing from a speed of 180 mph to 120 mph in 2 s. What are the magni-
tude and direction of the car’s acceleration at the instant the car’s speed
is 150 mph?

3.6 If three electric charges q1, q2, and q3 have the values and locations
shown in Figure 3.18, find the electric field they produce at the origin
(x = 0, y = 0), then use your value of the field to determine the electric
force on an electron at that location.

3.7 If the vector electric field �E in some region is given in spherical coordi-
nates by 5

r r̂ + 2
r sin θ cosφ θ̂ − 1

r sin θ cosφ φ̂ (N/C), what is the volume
charge density ρ in that region?

3.8 If the scalar electric potential V in some region is given in cylindrical
coordinates by V (r, φ, z) = r2sinφ e−3/z , what is the electric field �E in
that region?
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3.9 For the scalar electric potential V of Problem 3.8, use Poisson’s Equation
to find volume charge density ρ in that region.

3.10 Find the magnitude and direction of the magnetic force on a charged
particle with charge −4 nC and velocity �v = 2.5 × 104 ı̂ + 1.1 × 104 ĵ

(m/s) if the magnetic field in the region is given by �B = 1.2× 10−3 ı̂ +
5.6× 10−3 ĵ − 3.2× 10−3 k̂ (T).



4

Covariant and contravariant
vector components

The vector concepts and techniques described in the previous chapters are
important for two reasons: they allow you to solve a wide range of problems
in physics and engineering, and they provide a foundation on which you can
build an understanding of tensors (the “facts of the universe”). To achieve that
understanding, you’ll have to move beyond the simple definition of vectors as
objects with magnitude and direction. Instead, you’ll have to think of vectors
as objects with components that transform between coordinate systems in spe-
cific and predictable ways. It’s also important for you to realize that vectors
can have more than one kind of component, and that those different types of
component are defined by their behavior under coordinate transformations.

So this chapter is largely about the different types of vector component,
and those components will be a lot easier to understand if you have a solid
foundation in the mathematics of coordinate-system transformation.

4.1 Coordinate-system transformations

In taking the step from vectors to tensors, a good place to begin is to con-
sider this question: “What happens to a vector when you change the coordinate
system in which you’re representing that vector?” The short answer is that
nothing at all happens to the vector itself, but the vector’s components may be
different in the new coordinate system. The purpose of this section is to help
you understand how those components change.

Before getting to that, you should spend a few minutes considering the
statement that the vector itself doesn’t change if you change the coordinate
system. This may seem obvious in the case of scalars – after all, whether you
measure temperature in Celsius or Fahrenheit doesn’t make a room feel hot-
ter or colder. Now remember that vectors are mathematical representations of

97
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physical entities, and those entities don’t change just because you change the
coordinate system in which you’re representing them. Think about it: does the
size of a room change if you tilt your head to one side? Clearly not. But if you
use your tilted head to define up and down, then the points you designate as
the top and bottom of the room may change, and this will change what you
call the “height” and “width” of the room. The important idea is that the room
itself doesn’t change (it “remains invariant”) under such a change of coordinate
system. And if you define the center of your head to be the origin of your coor-
dinate system, then walking toward one wall will “offset” the room (that is, the
x , y, and z values of locations within the room may change), but once again
the room itself is unchanged. Likewise, specifying dimensions of the room in
inches rather than meters will allow you to put larger numbers in the real-estate
ad, but that doesn’t mean your room will hold a bigger sofa.

So if coordinate-system transformations such as rotation, translation, and
scaling leave physical quantities unchanged, what exactly does happen to a
vector when you transform coordinates? To understand that, consider the sim-
ple rotation of the two-dimensional Cartesian coordinate system shown in
Figure 4.1. In this transformation, the location of the origin has not changed,
but both the x- and y-axis have been tilted counter-clockwise by an angle θ .
The rotated axes are labeled x ′ and y′ and are drawn using dashed lines to
distinguish them from the original axes.

What impact does this rotation have on a vector in this space? Take a look
at vector �A and its components in Figure 4.2(a) and (b). Note that the rotation
has no effect on the length or direction of �A (at first glance, �A may look a
bit different in Figure 4.2(a) and 4.2(b), but you can verify using a ruler and
protractor that the vector itself is exactly the same). But the rotation has clearly
caused the components of �A to change: A′x (the x ′-component of A in the
tilted coordinate system) is longer than Ax , and A′y is shorter than Ay . If you

y′ y

x

x′
θ

θ

Figure 4.1 Rotation of 2-D coordinate system.
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Figure 4.2 Change in vector components due to rotation of coordinate
system.

were to continue rotating your axes in the same direction, you’d eventually
reach an angle at which �A lies entirely along the x ′-axis, at which point the
y′-component of �A would vanish (that is, A′y = 0) and the x ′-component would

equal the length of �A (A′x = | �A|).
Finding the change in the components of a vector due to rotation of the

coordinate axes can be done both graphically using simple geometry and
analytically using the dot product. You’ll find the graphical approach in this
section; the analytical approach is the subject of one of the problems at the end
of this chapter.

If you think about the changes to Ax and Ay in Figure 4.2, you might come
to realize that the vector component A′x in the rotated coordinate system cannot
depend entirely on the component Ax in the original system. After all, Ax

contains some but not all of the information about vector �A; the rest is in Ay .
And as the axes rotate, the axis that had pointed exclusively in the x-direction
now points partially in the (former) y-direction. So it seems reasonable that
the portion of �A that had previously pointed in the original y-direction (and
so contributed only to Ay) now points partially in the x ′-direction, and hence
contributes to the x ′-component as well as the y′-component.

You can see how this works in Figure 4.3. The (a) portion of this figure
shows how the vector component Ax in the original (non-rotated) coordinate
system contributes to A′x in the rotated system, and the (b) portion shows how
the vector component Ay in the original system contributes to A′x in the rotated
system.

As you can see in both portions of the figure, A′x can be considered to be
made up of two segments, labeled �1 and �2. So

A′x = �1 + �2, (4.1)
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Figure 4.3 Dependence of A′x on Ax and Ay .
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and to determine how these segments depend on Ax and Ay , consider the right
triangles shown in Figure 4.3. In the (a) portion of the figure, you can see that
Ax is the hypotenuse of a right triangle formed by drawing a perpendicular
from the end of Ax to the x ′-axis. Call the angle between the x-axis and the
x ′-axis α11 (the reason for using double subscripts will become clear when
rotations are written in matrix notation). Then the length of �1 (the projection
of Ax onto the x ′-axis) is Ax cos(α11). Hence

�1 = Ax cos(α11). (4.2)

To find the length of �2, consider the right triangle shown in Figure 4.3(b).
In this case, the triangle is formed by sliding A′x upward along the y′-axis
and then drawing a perpendicular from the tip of A′x to the x-axis. From this
triangle, you should be able to see that

�2 = Ay cos(α12), (4.3)

where α12 is the angle formed by the tips of A′x and Ay (which is also the angle
between the x ′-axis and the y-axis, as you can see from the parallelogram in
Figure 4.3(b).

Adding the expressions for �1 and �2, you can write A′x as

A′x = Ax cos(α11)+ Ay cos(α12), (4.4)

where Ax and Ay are the components of vector �A in the non-rotated coordinate
system, α11 is the angle between the x ′-axis and the x-axis, and α12 is the angle
between the x ′-axis and the y-axis. You should note that the new component
(A′x ) is a weighted linear combination of the original components (Ax and
Ay). “Weighted” because the cosine factors determine how heavily each of the
original components contributes to the new one, “linear” because the original
components appear to the first power only, and “combination” because both
Ax and Ay contribute to A′x .

A similar analysis for A′y , the y-component of vector �A in the rotated
coordinate system, gives

A′y = Ax cos(α21)+ Ay cos(α22), (4.5)

where α21 is the angle between the y′-axis and the x-axis, and α22 is the angle
between the y′-axis and the y-axis.

The relationship between the components of vector �A in the rotated and
non-rotated systems is conveniently expressed using vector/matrix notation1 as

1 Remember, there’s a review of matrix notation and algebra on the book’s website.
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A′x
A′y

)
=
(

cos (α11) cos (α12)

cos (α21) cos (α22)

)(
Ax

Ay

)
. (4.6)

This is called a “transformation equation” for the components of vector �A, and
the two-column matrix is called a “transformation matrix.” The elements of
that matrix are called the “direction cosines.” Note that for a rigid rotation of
the Cartesian axes through angle θ , the angles α11 and α22 are both equal to θ ,
while α12 = 90◦ − θ and α21 = 90◦ + θ . The transformation matrix in this
case is(

cos (θ) cos (90◦ − θ)
cos (90◦ + θ) cos (θ)

)
=
(

cos (θ) sin (θ)
− sin (θ) cos (θ)

)
, (4.7)

since cos(90◦ − θ) = sin(θ) and cos(90◦ + θ) = − sin(θ).
To understand how this works in practice, consider vector �A given as

�A = 5ı̂ + 3ĵ (4.8)

in a two-dimensional Cartesian coordinate system. Now imagine that the
x- and y-axes of that coordinate system are rotated counter-clockwise by 150◦,
as shown in Figure 4.4.

Before jumping to the equations to find the components A′x and A′y in the
rotated coordinate system, it’s worth a few minutes to take a look at the diagram
to estimate what the effect of the rotation on the components will be. From
Figure 4.4(b), it’s pretty clear that both the A′x and A′y components will be
negative, and the A′y component appears to be somewhat larger than the A′x
component.

y′
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x′
Ay

Ax

A
x

y′
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x′
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A ′
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x

(b)(a)

y

x

Figure 4.4 2-D Cartesian axes rotated by 150◦.
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Figure 4.5 Angles between original and rotated axes.

Now that you have an idea of what to expect, you can insert the relevant
values into Eq. 4.6. You know that Ax = 5 and Ay = 3, and using the angles
shown in Figure 4.5, you should be able to see that α11 = 150◦, α12 = 60◦,
α21 = 240◦, and α22 = 150◦.

So you have

(
A′x
A′y

)
=
(

cos (150◦) cos (60◦)
cos (240◦) cos (150◦)

)(
Ax

Ay

)
, (4.9)

or

A′x = 5 cos(150◦)+ 3 cos(60◦) = −2.8, (4.10)

and

A′y = 5 cos(240◦)+ 3 cos(150◦) = −5.1. (4.11)

As a quick visual analysis suggested, both components are negative and the
y′-component is larger than the x ′-component in the rotated system.

It is very important for you to understand that the transformation equation
(4.6) does not rotate or change the vector �A in any way; it determines the values
of the components of vector �A in a new coordinate system. This distinction is
important because you may be tempted to apply this transformation matrix to
basis vectors such as ı̂ (1, 0) and ĵ (0, 1), which for a counter-clockwise 150◦
rotation gives for ı̂



104 Covariant and contravariant vector components(
cos (150◦) cos (60◦)
cos (240◦) cos (150◦)

)(
1
0

)
=
(

1 cos (150◦)+ 0 cos (60◦)
1 cos (240◦)+ 0 cos (150◦)

)

=
( −0.866
−0.5

)
, (4.12)

and for ĵ(
cos (150◦) cos (60◦)
cos (240◦) cos (150◦)

)(
0
1

)
=
(

0 cos (150◦)+ 1 cos (60◦)
0 cos (240◦)+ 1 cos (150◦)

)

=
(

0.5
−0.866

)
. (4.13)

There’s nothing inherently wrong with doing this, as long as you remember
what the results mean: these are the components of the original unit vectors
ı̂ and ĵ (that is, the ones in the non-rotated coordinate system) expressed in
terms of the rotated coordinate axes, as you can see in Figure 4.6. These are
not the unit vectors ı̂ ′ and ĵ ′ which point in the direction of the x ′ and y′-axes
(remember that in the primed coordinate system, the unit vectors ı̂ ′ and ĵ ′,
pointing along the rotated coordinate axes, must have components (1, 0) and
(0, 1), respectively).

Rigid rotation of Cartesian axes is only one type of the myriad coordinate
transformations that can change the components of a vector. But as long as the
new components can be written as weighted sums of the original components,
the transformation is linear and can be represented by a matrix equation. For
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Figure 4.6 Components of ı̂ and ĵ in rotated coordinate system.
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reasons that will become clear when you read Section 4.3 of this chapter, such
transformations of vector components are called “inverse” or “passive” trans-
formations, which means the matrix equation of such a transformation will
look like this:⎛

⎝ Components of
same vector

in new system

⎞
⎠ =

⎛
⎝ Inverse

transformation
matrix

⎞
⎠
⎛
⎝ Components of

vector in
original system

⎞
⎠ .
(4.14)

At this point, you may be wondering how you might go about transform-
ing the unit vectors of the original (non-rotated) system (that is, ı̂ and ĵ ) into
the unit vectors of the primed (rotated) system (ı̂ ′ and ĵ ′). That’s a different
question, because you’re no longer asking, “Given the components of a vector
in one coordinate system, how do I find the components of that same vector
in a different coordinate system?” Instead, you’re asking, “How do I change a
given vector (in this case, a unit vector in one coordinate system) into a differ-
ent vector (the unit vector in a different coordinate system)?” That question is
addressed in the next section.

4.2 Basis-vector transformations

The previous section illustrated what happens to the components of a vector
when the two-dimensional Cartesian axes are rotated, and the results are not
surprising: the components of the vector referenced to the new (rotated) axes
are different from the components referenced to the original (non-rotated) axes.
More specifically, the new components are weighted linear combinations of the
original components.

Now here’s a very important point: as your studies carry you along the
path from vectors to tensors, you will undoubtedly run across discussions of
“covariant” and “contravariant” vector components.2 In those discussions, you
may see words to the effect that covariant components transform in the same
way as basis vectors (“co” ≈ “with”), and contravariant components trans-
form in the opposite way to basis vectors (“contra” ≈ “against”). As you’ll
see later in this chapter, there’s plenty of truth in that description, but there’s
also a major pitfall. That’s because the “transformation” of basis vectors usu-
ally refers to the conversion of the basis vectors in the original (non-rotated)
coordinate system to the different basis vectors which point along the coordi-
nate axes in the new (rotated) system, whereas the “transformation” of vector

2 These components are identical in the Cartesian coordinate systems considered so far.
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components refers to the change in the components of the same vector referred
to two different sets of coordinate axes. The potential for confusion here is suf-
ficiently great to cause Schutz to write that “the reason that ‘co’ and ‘contra’
have been abandoned is that they mix up two very different things.”3 Schutz
wrote that in 1983, and for better or worse, the “covariant/contravariant” ter-
minology is still with us – that’s why in this book you’ll find those words as
well as more modern terminology.

Why did the “covariant/contravariant” terminology take hold in the first
place? Probably because the process of changing a vector into a different vec-
tor has much in common with the process of transforming the components of
a vector from one coordinate system to another. This section shows you how
to make a new vector using rotation (specifically, how to rotate basis vectors).

To understand the process of rotating a vector, consider vector �A in
Figure 4.7(a). The rotation shown in Figure 4.7(b) causes vector �A to point
in a different direction, which means it is no longer the same vector (which
is why it’s labeled �A′ after the rotation). The relationship between the com-
ponents of the original (non-rotated) vector and the new (rotated) vector can
be found rather easily through geometric constructions such as those shown in
Figure 4.8. In this example, the rotation angle is α. The x- and y-components
of vectors �A and �A′ are

Ax = | �A| cos(θ), A′x = | �A′| cos(θ ′),
Ay = | �A| sin(θ), A′y = | �A′| sin(θ ′).

But θ ′ = α + θ , so the components A′x and A′y are

A′x = | �A′| cos(α + θ) = | �A′| [cos(α) cos(θ)− sin(α) sin(θ)] ,
A′y = | �A′| sin(α + θ) = | �A′| [sin(α) cos(θ)+ cos(α) sin(θ)] .

Since the length of �A must be the same as the length of �A′ (the vector rotated
but did not change length), you can write | �A| = | �A′|, which means that

y

x

A

y

x

(b)(a)

AA′

Figure 4.7 Rotation of a vector.

3 Schutz, B., A First Course in General Relativity, p. 64. See further reading.
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Figure 4.8 Angles involved in the rotation of a vector.

A′x = | �A′| [cos(α) cos(θ)− sin(α) sin(θ)]

= | �A| cos(α) cos(θ)− | �A| sin(α) sin(θ),

A′y = | �A′| [sin(α) cos(θ)+ cos(α) sin(θ)]

= | �A| sin(α) cos(θ)+ | �A| cos(α) sin(θ).

But | �A| cos(θ) is just Ax and | �A| sin(θ) is Ay , so you can write

A′x = Ax cos(α)− Ay sin(α),
A′y = Ax sin(α)+ Ay cos(α),

or, as a matrix equation,(
A′x
A′y

)
=
(

cos(α) − sin(α)
sin(α) cos(α)

)(
Ax

Ay

)
, (4.15)

which tells you how to find the components A′x and A′y of the new vector ( �A′)
in the original coordinate system.

To see how this works in practice, consider a rotation such as the one shown
in Figure 4.7, but through a larger rotation angle of α = 150◦. If the original
vector is given by �A = Ax ı̂ + Ay ĵ = 5ı̂ + 3ĵ , then(

A′x
A′y

)
=
(

cos(150◦) − sin(150◦)
sin(150◦) cos(150◦)

)(
5
3

)
=
( −5.83
−0.10

)
, (4.16)

so the new vector �A′ = −5.83ı̂ − 0.10ĵ . This means that by rotating vector
�A through 150◦, you’ve produced a new vector that lies almost entirely along

the negative x-axis (you can see this by noting that the x-component is neg-
ative and much larger than the y-component). Remember that this is a new
vector expressed using the same basis (ı̂ and ĵ ) and is not the same vector
expressed using a new basis (because in this case you rotated the vector, not
the coordinate system).
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Figure 4.9 Components of ı̂ ′ and ĵ ′ in original (unrotated) coordinate system.

You can, of course, rotate the basis vectors ı̂ and ĵ using this same approach.
This can be helpful if you’re faced with a problem involving a rotated coordi-
nate system and you wish to express the basis vectors pointing along the axes
of the rotated system in terms of the basis vectors in the original (non-rotated)
system. For example, to rotate the ı̂ unit vector by 150◦ counter-clockwise, you
can use(

ı̂ ′x
ı̂ ′y

)
=
(

cos(150◦) − sin(150◦)
sin(150◦) cos(150◦)

)(
1
0

)
=
( −0.866

0.5

)
, (4.17)

where ı̂ ′x represents the x-component of the 150◦-rotated ı̂ vector and ı̂ ′y repre-
sents the y-component of the rotated ı̂ vector, as shown in Figure 4.9(a). You
can also rotate the ĵ unit vector by the same angle using(

ĵ ′x
ĵ ′y

)
=
(

cos(150◦) − sin(150◦)
sin(150◦) cos(150◦)

)(
0
1

)
=
( −0.5
−0.866

)
, (4.18)

where ĵ ′x represents the x-component of the 150◦-rotated ĵ vector and ĵ ′y
represents the y-component of the rotated ĵ vector, as shown in Figure 4.9(b).

Just as in Eq. 4.15, the new components of the ı̂ ′ and ĵ ′ vectors are expressed
in the same coordinate system as the original ı̂ and ĵ . As pointed out in the
previous section, the components of ı̂ ′ and ĵ ′ in the rotated coordinate system
must be (1, 0) and (0, 1).

So if you wish to transform a set of basis vectors into new basis vec-
tors (pointing along different coordinate axes), you use a “direct” or “active”
transformation matrix, and the matrix equation looks like this:



4.3 Basis-vector vs. component transformations 109

(
New basis

vectors

)
=
⎛
⎝ Direct

transformation
matrix

⎞
⎠( Original basis

vectors

)
. (4.19)

Comparing this to Eq. 4.14 should help you understand that transforma-
tion matrices can be used for two different but related operations: finding the
components of the same vector in a new coordinate system or finding the
components of a different vector (such as a new basis vector) in the original
coordinate system. The next section presents a comparison of these two types
of transformation matrix.

4.3 Basis-vector vs. component transformations

Since Eq. 4.14 and Eq. 4.19 both involve transformation matrices, it’s natural
to wonder how those transformation matrices might be related. You can find a
clue to that relationship by comparing the transformation matrix in Eq. 4.7
(pertaining to component change due to a coordinate-axis rotation through
angle θ ) with that of Eq. 4.15 (pertaining to basis-vector rotation through angle
θ ). Extracting the transformation matrix from each of those equations gives:

From Eq. 4.7: (
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

↖
Transformation matrix for finding compo-
nents of same vector as coordinate system
is rotated through angle θ

From Eq. 4.15: (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

↖
Transformation matrix for finding new
basis vectors by rotating original basis vec-
tors through angle θ
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Multiplying these two matrices reveals the nature of the relationship
between them:(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
=
(

1 0
0 1

)
.

This means that in this case the component-transformation matrix is the inverse
of the basis-vector transformation matrix (since multiplying a matrix by its
inverse produces the identity matrix). The fact that in this case the transpose of
the transformation matrix is equal to its inverse means that this transformation
matrix is “orthogonal” (converting from one Cartesian coordinate system into
a different one).

In light of the inverse relationship between the basis-vector transformation
matrix and the vector-component transformation matrix, you might say that in
this case the vector components transform inversely to or “against” the man-
ner in which the basis vectors transform (provided that you remember that by
“components transform” you mean finding the components of the same vec-
tor in the new coordinate system, and by “basis vectors transform” you mean
rotating the basis vectors to point along different coordinate axes).

You should also remember that rotation of Cartesian coordinate axes is only
one among many possible forms of transformation. In general, any time you
choose to switch from one set of basis vectors to another, you must consider
the effect of your choice of new basis vectors on the components of the vectors
in your system. How the matrix that transforms the original basis vectors into
the new ones relates to the matrix that converts the vector components depends
on the type of component you’re using to represent the vector.

If you’re surprised to learn that there can be more than one type of compo-
nent for a given vector, you should consider a coordinate system in which
the axes are not perpendicular to one another. You can learn about such
“non-orthogonal” coordinate systems in the next section.

4.4 Non-orthogonal coordinate systems

In Cartesian coordinate systems, there’s no chance for ambiguity when you
consider the process of “projection” of a vector onto a coordinate axis. Using
the light source and shadow approach described in Chapter 1, you simply imag-
ine a source of light shining on the vector and the shadow produced by that
vector on one of the coordinate axes, as in Figure 1.6. In two-dimensional
Cartesian coordinates, the direction of the light may be specified in one of two
equivalent ways: parallel to one of the axes (actually antiparallel since the light
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Figure 4.10 Projections using light sources parallel to x- and y-axes.

shines back toward the origin), or perpendicular to the other axis. For example,
in Figure 1.6(a), you’re saying exactly the same thing if you describe the light
as shining “antiparallel to the y-axis” or “perpendicular to the x-axis.”

Now imagine a two-dimensional coordinate system in which the x- and
y-axes are not perpendicular to one another.4 In such cases, the process of
projecting a vector onto one of the coordinate axes takes on an additional com-
plication. Should the light sources shine (anti-) parallel to the coordinate axes,
as in Figure 4.10, or perpendicular to the axes, as in Figure 4.11?

In each case, a “projection” of the vector is formed onto one of the coordi-
nate axes, but those projections may have quite different lengths, as you can
see by comparing the lengths of the “shadows” cast in Figure 4.10 to those in
Figure 4.11.

You may certainly be forgiven for thinking “So what?” when confronted
with these differing projections. Does it really matter that there are two ways
to project a vector onto an axis in non-orthogonal coordinate systems?

One indication that the type of projection does matter comes about if you
attempt to use vector addition to form vector �A from the projection compo-
nents using the rules of vector addition. As you can see in Figure 4.12, that
process works perfectly if you use the parallel-projection components but fails
miserably when you attempt to use the perpendicular-projection components.

4 This is not just an academic exercise; non-orthogonal coordinate axes turn up quite naturally in
problems in relativity, fluid dynamics, and other areas.
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Figure 4.11 Projections using light sources perpendicular to x- and y-axes.
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Figure 4.12 Vector addition of components formed by parallel and perpen-
dicular projection.

This may cause you to wonder why the perpendicular-projection components
are called “components” at all.

Another way to appreciate the significance of the difference between paral-
lel and perpendicular projections is to consider how the components formed by
these two types of projection transform between coordinate systems. As you’ll
see later in this chapter, the components formed by projections perpendicular
to the coordinate axes transform between coordinate systems using the direct
transformation matrix that is also used to form the new basis vectors in the
new coordinate system, while the components formed by projections parallel
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to the coordinate axes transform between coordinate systems using the inverse
transformation matrix. This behavior has caused the perpendicular-projection
components to traditionally be called the “covariant” components of the vec-
tor, while the parallel-projection components are called the “contravariant”
components of the vector. Of course, for orthogonal coordinate systems, the
direction parallel to one of the coordinate axes is exactly the same as the direc-
tion perpendicular to other axes, so in that case the covariant and contravariant
components of a vector are identical, and no distinction is needed.

To learn why the covariant values are called “components,” and, much more
importantly, to understand why covariant and contravariant components are
meaningful quantities and how they may be used to write physical laws that do
not depend on the reference frame of the observer, you should first understand
the concept of dual basis vectors. You can read about such basis vectors in the
next section.

4.5 Dual basis vectors

For non-orthogonal coordinate systems, it’s clear from geometric considera-
tions such as those illustrated in Figure 4.12 that the perpendicular projections
of a vector onto the coordinate axes do not form “components” in the way
that parallel projections do; the perpendicular projections simply don’t add up
as vectors to give the original vector. But to truly understand the process of
“adding up” components as vectors, you have to think about the role of the
basis vectors in that addition. To see how that works for parallel projections,
take a look at the basis vectors �e1 and �e2 pointing along the (non-orthogonal)
coordinate axes in Figure 4.13 and the projections of vector �A onto those
directions. In this case, vector �A may be written as

�A = Ax �e1 + Ay �e2, (4.20)

where Ax and Ay represent the parallel-projection (contravariant) components
of �A.5

The same approach doesn’t work for the perpendicular-projection (covari-
ant) components Ax and Ay , as you can tell by looking at the lengths of the
projections in Figure 4.12(b); it’s clear that those two “components” multiplied
by the basis vectors �e1 and �e2 do not add up to give �A. So it’s reason-
able to wonder if there are alternative basis vectors that would allow the

5 The use of superscripts for the “x” and “y” in the contravariant components Ax and Ay is
deliberate and is the standard notation for distinguishing these contravariant components from
the covariant components Ax and Ay .
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Figure 4.13 Parallel-projection components and basis vectors.

perpendicular-projection components to form a vector in a manner analogous
to Eq. 4.20. Happily, there are, and those alternative basis vectors are called
“reciprocal” or “dual” basis vectors.

Dual basis vectors have two defining characteristics. The first is that each
one must be perpendicular to all original basis vectors with different indices.
So if you call the dual basis vectors �e 1 and �e 2 to distinguish them from the
original basis vectors �e1 and �e2, you can be sure that �e 1 is perpendicular to
�e2 (and thus perpendicular to the y-axis in this case). Likewise, �e 2 must be
perpendicular to �e1 (and thus perpendicular to the x-axis in this case). The
directions of the dual basis vectors �e 1 and �e 2 are shown in Figure 4.14.

The second defining characteristic for dual basis vectors is that the dot prod-
uct between each dual basis vector and the original basis vector with the same
index must equal one (so �e 1 ◦ �e1 = 1 and �e 2 ◦ �e2 = 1). This means that you
can find the lengths of the dual basis vectors as long as you know the lengths of
the original basis vectors and the angle between each dual basis vector and the
corresponding original basis vector.6 So to find the length of �e 1, you simply
have to multiply the length of the original basis vector �e1 by the cosine of the
angle between �e 1 and �e1 and then take the inverse of the result. Likewise, to
find the length of �e 2, multiply the length of the original basis vector �e2 by the
cosine of the angle between �e 2 and �e2 and take the inverse of that result. Thus:

|�e 1| = 1

|�e1| cos(θ1)
, (4.21)

6 Recall from Chapter 2 that �A ◦ �B = | �A|| �B| cos θ , where θ is the angle between �A and �B.
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Figure 4.14 Perpendicular-projection components and dual basis vectors.

and

|�e 2| = 1

|�e2| cos(θ2)
, (4.22)

where θ1 is the angle between �e 1 and �e1 and θ2 is the angle between �e 2 and �e2.
With the concept of dual basis vectors in hand, you’re in a position to under-

stand why the perpendicular-projection (covariant) components Ax and Ay

may rightfully be called “components.” The key is that the projections must
be made onto the direction of the dual basis vectors rather than onto the direc-
tions of the original basis vectors. If you do that, then the covariant components
Ax and Ay can be multiplied by the relevant basis vectors and added to give the
original vector �A in the same way as can be done using the parallel-projection
(contravariant) components Ax and Ay . The covariant-component equivalent
to Eq. 4.20 is thus

�A = Ax �e 1 + Ay �e 2. (4.23)

As you may have guessed, the use of superscripts to denote the dual basis
vectors �e 1 and �e 2 is not accidental; when these basis vectors are transformed
to a new coordinate system, the inverse transformation matrix is used, as it is
for the contravariant vector components Ax and Ay .

Note that in a two-dimensional coordinate system with orthonormal basis
vectors such as ı̂ and ĵ , the dual basis vectors are identical to the original basis
vectors along the coordinate axes. That’s easily understood, because the direc-
tion of each of the dual basis vectors must be perpendicular to the direction
of one of the original basis vectors (and hence must point along the x- and
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y-axes). And since the length of the dual basis vectors must equal the inverse
of the length of the original basis vectors times cos(θ) (which is 1/[1 cos(0◦)]
in this case), the dual basis vectors have the same length as well as the same
direction as ı̂ and ĵ . So the differences between original and dual basis vectors
disappear for orthonormal coordinate systems, just as the distinctions between
covariant and contravariant components disappear for such systems.

The concept of dual basis vectors can be readily extended to three dimen-
sions, and in that case determination of the length and direction of the dual
basis vectors is most easily done using the dot and cross product between vec-
tors. Specifically, the three-dimensional dual basis vectors �e 1, �e 2 and �e 3 can
be found from the original basis vectors �e1, �e2, and �e3 using the following
relations:

�e 1 = �e2 × �e3

�e1 ◦ (�e2 × �e3)
,

�e 2 = �e3 × �e1

�e1 ◦ (�e2 × �e3)
,

�e 3 = �e1 × �e2

�e1 ◦ (�e2 × �e3)
.

(4.24)

Each denominator is the triple scalar product of the original basis vectors,
which you may recall from Section 2.3 is the volume of the parallelepiped
formed by those vectors.

In these equations, the cross products in the numerators ensure that the first
characteristic of dual basis vectors is met (for example, that �e 1 is perpendicular
to �e2 and to �e3). The triple scalar products in the denominators ensure that the
second characteristic is met (for example, that �e 1 ◦ �e1 = 1).

The computation of dual basis vectors may seem like a long trek to make
simply to have an alternative way of writing vectors, but there’s a great truth to
be found by comparing Eqs. 4.20 and 4.23. Since these equations describe the
same vector, you may combine them to write

�A = Ax �e1 + Ay �e2 = Ax �e 1 + Ay �e 2, (4.25)

which serves to emphasize an important fact. If you seek to define a quantity
(such as vector �A) that remains invariant under a transformation of coordinates,
you have a choice: you can combine superscripted (contravariant) components
with subscripted (covariant) basis vectors, or you can combine subscripted
(covariant) components with superscripted (contravariant) basis vectors. That
should seem reasonable to you, because covariant quantities transform using
a direct transformation matrix, while contravariant quantities use an inverse



4.6 Finding covariant and contravariant components 117

transformation matrix. Multiplying such quantities guarantees that the result is
unaffected by the transformation.

You can see an example of how dual basis vectors and covariant and
contravariant components are determined in the next section.

4.6 Finding covariant and contravariant components

Once you grasp the concept of dual basis vectors in non-orthonormal coordi-
nate systems, finding the covariant and contravariant components of a vector
is straightforward. As an example, take a look at vector �A in Figure 4.15, with
non-orthogonal basis vectors �e1 and �e2.

Finding the contravariant components A1 and A2 is simply a matter of
parallel-projecting vector �A onto the directions of the original basis vectors
�e1 and �e2, as shown in Figure 4.16. A quick visual inspection suggests that
component A1|�e1| should be about 2/3 the length of original basis vector �e1,

y
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(4, 0)

e1

A

e2

Figure 4.15 Non-orthogonal basis vectors.
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Figure 4.16 Parallel projections onto original basis vectors.
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and component A2|�e2| should be about 1.5 times the length of original basis
vector �e2. The values of A1 and A2 can be found by writing the vector equation

�A = A1�e1 + A2�e2, (4.26)

which can be written as two equations for the components of �A:

Ax = A1e1,x + A2e2,x ,

Ay = A1e1,y + A2e2,y .

These two simultaneous equations may readily be solved for A1 and A2 using
the elimination or substitution method (both of which are demonstrated in the
on-line solutions to the problems at the end of this chapter). Another approach
is the matrix method and Cramer’s Rule (described in the matrix-algebra
review on the book’s website). Using this approach, you begin by substituting
the known values for vector �A as well as �e1 and �e2:(

7
2

)
= A1

(
1
3

)
+ A2

(
4
0

)
, (4.27)

which may also be written as(
7
2

)
=
(

1 4
3 0

)(
A1

A2

)
. (4.28)

Now use Cramer’s Rule to find A1 and A2:

A1 =

∣∣∣ 7 4
2 0

∣∣∣
∣∣∣ 1 4

3 0

∣∣∣
= −8

−12
= 0.667, A2 =

∣∣∣ 1 7
3 2

∣∣∣
∣∣∣ 1 4

3 0

∣∣∣
= −19

−12
= 1.583.

(4.29)
These values are consistent with the visual estimates from Figure 4.16.

To use the same process to find the perpendicular-projection (covariant)
components A1 and A2, you must first determine the length and direction of
the dual basis vectors. You know that the direction of �e 1 must be perpendicular
to that of �e2, and the direction of �e 2 must be perpendicular to that of �e1. As for
the lengths, first find the lengths of �e1 and �e2:

|�e1| =
√
(1)2 + (3)2 = 3.16, |�e2| =

√
(4)2 + (0)2 = 4.00. (4.30)

Then you can use Eqs. 4.21 and 4.22 to find |�e 1| and |�e 2|, but first you have
to figure out the angle between �e1 and �e 1 (which is θ1) and the angle between
�e2 and �e 2 (which is θ2). If you look at Figure 4.17, you should be able to
determine that θ1 = θ2 = arctan(1/3) = 18.43◦, so you have
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Figure 4.17 Perpendicular projections onto dual basis vectors.

|�e 1| = 1

|�e1| cos(θ1)
= 1

3.16 cos(18.43◦)
= 0.333,

|�e 2| = 1

|�e2| cos(θ2)
= 1

4.00 cos(18.43◦)
= 0.264.

(4.31)

You can see the (very short) dual basis vectors �e 1 and �e 2 in Figure 4.17.
Note that �e 1 is perpendicular to �e2 and that �e 2 is perpendicular to �e1, and their
lengths are given by Eq. 4.31.

Once you have the dual basis vectors in hand, you’re in a position to find
the perpendicular-projection (covariant) components A1 and A2. You can do
this geometrically by continuing the perpendicular-projection lines beyond the
direction lines of �e1 and �e2 and onto the direction lines of �e 1 and �e 2, as shown
in Figure 4.17. The magnitude of vector �A is

| �A| =
√
(7)2 + (2)2 = 7.28, (4.32)

and the angle between �A and the x-axis is arctan( 2
7 ) = 15.94◦. Using this

value and θ1 from above, you can determine that the angle between �A and �e1

is 55.62◦ and the angle between �A and �e2 is 15.94◦. So the length of �1 in
Figure 4.17(a) is

�1 = | �A| cos(55.62◦) = 4.11, (4.33)

and

A1|�e 1| = �1

cos(18.43◦)
= 4.33, (4.34)

so A1 = 4.33/0.333 = 13.0.
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Using the same approach to find A2 from Figure 4.17(b) gives

�2 = | �A| cos(15.94◦) = 7.00, (4.35)

and

A2|�e 2| = �2

cos(18.43◦)
= 7.38, (4.36)

so A2 = 7.38/0.264 = 28.0.
These results serve as a reminder that when you use non-normalized basis

vectors (that is, basis vectors with magnitude not equal to one), you cannot
equate the lengths of the projections onto the coordinate axes with the value
of a vector’s components. That’s because those projections are the products of
the components with the magnitudes of the basis vectors.

If you prefer the algebraic approach to finding A1 and A2, you can do that
by proceeding as you did for A1 and A2, although in this case you begin with

�A = A1�e 1 + A2�e 2, (4.37)

and then substitute the known values for vector �A as well as the x- and y-
components of the dual basis vectors �e 1 and �e 2:

e 1
x = |�e 1| cos(90◦) = 0.000, e 2

x = |�e 2| cos(360◦ − 18.43◦) = 0.250,
e 1

y = |�e 1| sin(90◦) = 0.333, e 2
y = |�e 2| sin(360◦ − 18.43◦) = −0.083.

So (
7
2

)
= A1

(
0

0.333

)
+ A2

(
0.25
−0.083

)
. (4.38)

As before, this may be written as(
7
2

)
=
(

0 0.25
0.333 −0.083

)(
A1

A2

)
. (4.39)

Again using Cramer’s Rule to solve for A1 and A2 gives

A1 =

∣∣∣ 7 0.25
2 −0.083

∣∣∣
∣∣∣ 0 0.25

0.333 −0.083

∣∣∣
= −1.081

−0.083
= 13.0,

A2 =

∣∣∣ 0 7
0.333 2

∣∣∣
∣∣∣ 0 0.25

0.333 −0.083

∣∣∣
= −2.331

−0.083
= 28.0, (4.40)

as expected from the geometric approach.
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A simpler approach to finding the contravariant and covariant components
of a vector once you have both the original and dual basis vectors in hand is to
use these relations:

A1 = �A ◦ �e1 = Ax e1,x + Aye1,y A2 = �A ◦ �e2 = Ax e2,x + Aye2,y,

(4.41)
and

A1 = �A ◦ �e 1 = Ax e1
x + Aye1

y A2 = �A ◦ �e 2 = Ax e2
x + Aye2

y . (4.42)

In the current example, this approach gives the covariant components as

A1 = (7, 2) ◦ (1, 3) = (7)(1)+ (2)(3) = 13,

A2 = (7, 2) ◦ (4, 0) = (7)(4)+ (2)(0) = 28,

and

A1 = (7, 2) ◦ (0, 0.333) = (7)(0)+ (2)(0.333) = 0.666,

A2 = (7, 2) ◦ (0.250,−0.083) = (7)(0.250)+ (2)(−0.083) = 1.58,

in agreement with the geometric and matrix-algebra approaches taken above.
It’s important for you to realize that what you’ve just found are the parallel-

projection (contravariant) and perpendicular-projection (covariant) compo-
nents of vector �A with respect to the original basis vectors �e1 and �e2 and the
dual basis vectors �e 1 and �e 2. So does that mean that �A is a covariant vector or
a contravariant vector?

The answer is neither (or both, if you prefer); it’s not the vector itself that
is contravariant or covariant, it’s the set of components that you form through
its parallel or perpendicular projections. As you read the literature on tensors,
you’re very likely to run into expressions such as “the contravariant vector
�A” or “the covariant vector �B,” and what the author generally means is that

the contravariant components of vector �A and the covariant components of
vector �B are being used for the problem (perhaps because they’re simpler).
But you can be sure that like all vectors, �A and �B both have contravariant and
covariant components, and you can find them using the techniques described
in this section.7

And if you’re wondering why you might want to go through the effort of
finding those components, rest assured that the payoff is worth the effort. To
appreciate the value of that payoff, you’ll have to begin thinking of vectors not
just as arrows with a certain length and pointing in a specified direction, but
rather as members of a class of objects called tensors that have very predictable

7 In Chapter 5, you can learn to move between contravariant and covariant components using the
metric tensor.
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(and useful) properties under transformation of coordinates. In that view, the
vectors you’ve been dealing with up to this point have all been tensors of rank
one. Seeing them as such, and understanding what that means, will be made
a great deal easier through the use of a notation called “index notation” and
a convention known as the “Einstein summation convention.” You can read
about index notation and the summation convention in the next section.

4.7 Index notation

You’ve seen the first glimmerings of index notation in the earlier section of
this chapter describing coordinate transformations. As you may recall, the
angles between the transformed (rotated) coordinate axes and the original
(non-rotated) axes of a two-dimensional coordinate system were called α11,
α12, α21, and α22. These angles could just as well have been designated αx ′x ,
αx ′y , αy′x , and the like, but there are several good reasons to use the index num-
bers 1, 2, and 3 rather than the letters x , y, and z to refer to coordinate axes
and vector components. One of those reasons is that many problems in physics
and engineering involve a number of dimensions greater than 3, and although
everyone agrees that “4” comes after “3,” a consensus hasn’t been reached on
what comes after “z.” Another reason is that index notation enables the great
convenience of the summation convention that you can read about later in this
section.

Using index notation, the coordinates of a point in three-dimensional
space are written as (x1, x2, x3) or (x1, x2, x3) rather than (x, y, z), and
the components of a vector are written as (A1, A2, A3) or (A1, A2, A3)

rather than (Ax , Ay, Az) or (Ax , Ay, Az). This system is easily extended to
N-dimensional space, in which the coordinates become (x1, x2, . . . , xN ) or
(x1, x2, . . . , x N ) and the vector components become (A1, A2, . . . , AN ) or
(A1, A2, . . . , AN ).

Applying this notation to the equation for the transformation of contravariant
vector components produced by a rotation of two-dimensional axes, Eq. 4.6
becomes (

A
′1

A
′2

)
=
(

cos (α11) cos (α12)

cos (α21) cos (α22)

)(
A1

A2

)
. (4.43)

In three dimensions, this is⎛
⎜⎝ A

′1

A
′2

A
′3

⎞
⎟⎠ =

⎛
⎝ cos (α11) cos (α12) cos (α13)

cos (α21) cos (α22) cos (α23)

cos (α31) cos (α32) cos (α33)

⎞
⎠
⎛
⎝ A1

A2

A3

⎞
⎠ . (4.44)
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Designating the elements of the transformation matrix a11, a12, a13, and so
forth allows you to write Eq. 4.44 as

A
′1 = a11 A1 + a12 A2 + a13 A3,

A
′2 = a21 A1 + a22 A2 + a23 A3,

A
′3 = a31 A1 + a32 A2 + a33 A3,

(4.45)

or

A
′1 =

3∑
j=1

a1 j A j ,

A
′2 =

3∑
j=1

a2 j A j ,

A
′3 =

3∑
j=1

a3 j A j .

(4.46)

Allowing “i” to stand for any of the indices 1, 2, or 3 makes this:

A
′i =

3∑
j=1

ai j A j . i = 1, 2, 3 (4.47)

As a final simplification, whenever an index appears twice in the same term,
once as a superscript and once as a subscript (as “ j” does in Eq. 4.47), you can
omit the summation symbol and write simply

A
′i = ai j A j , (4.48)

in which the reader knows to sum over the repeated index ( j in this case).
Such repeated indices are often called “dummy” indices, since any letter may
be used for that index and the result will be the same.8 It was Albert Einstein
who first suggested this summation convention, which he jokingly called his
“great discovery in mathematics.”9 Whatever you call it, this idea certainly has
saved a lot of ink and time since Einstein proposed it in 1916.

Before moving on, you should take a careful look at Eq. 4.48 and make
sure you understand that these few symbols mean exactly the same thing as
the many terms in the three separate equations of Eq. 4.45. They tell you that

8 Unlike the repeated “dummy” indices which indicate summation, i is called a “free” index and
no summation is implied.

9 Pais, A. 1983, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford
University Press, Oxford.
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each component in the primed coordinate system is a weighted linear combi-
nation of the components in the original (unprimed) coordinate system, with
the transformation matrix elements (ai j ) providing the weighting factors for
each term.

And if you want to know the exact meaning of each of those factors in
the transformation of covariant and contravariant vector components, the next
section will help with that.

4.8 Quantities that transform contravariantly

With the convenience of index notation and the summation convention at your
disposal, you should be ready to take the next step in the transition from think-
ing of vectors as quantities with magnitude and direction to understanding why
vectors belong to the class of objects known as tensors. That step begins by
asking the question of how a differential element of length d�s transforms from
one coordinate system to another.

In general, the equations relating the coordinates in one system to those in
another do not involve simple linear combinations of coordinate values. For
example, in transforming from spherical (r, θ, φ) to Cartesian (x, y, z) coordi-
nates, it’s not possible to write equations such as x = a11r + a12θ + a13φ,
because x depends on the product of r with the sine of θ and the cosine
of φ. And y and z have similar non-linear relationships to the spherical
coordinates.

If, however, you ask how the differentials of x , y, and z (that is, dx , dy, and
dz) depend on the differentials of r , θ , and φ (that is, dr , dθ , and dφ), you’ll
find that on this infinitesimally small scale, dx does depend linearly on dr , dθ ,
and dφ (as do dy and dz). So you are able to write

dx = a11dr + a12dθ + a13dφ, (4.49)

and likewise for dy and dz.
For any two coordinate systems in which a linear relationship exists between

differential length elements, writing the equations which transform between
the systems is straightforward. If you call the differentials of one coordinate
system dx , dy, and dz and the other coordinate system dx ′, dy′, and dz′,
the transformation equations from the unprimed to the primed systems come
directly from the rules of partial differentiation, as shown in the left column
below:
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dx ′ = ∂x ′

∂x
dx + ∂x ′

∂y
dy + ∂x ′

∂z
dz ⇒ dx

′1 = ∂x
′1

∂x1
dx1 + ∂x

′1

∂x2
dx2 + ∂x

′1

∂x3
dx3,

dy′ = ∂y′

∂x
dx + ∂y′

∂y
dy + ∂y′

∂z
dz ⇒ dx

′2 = ∂x
′2

∂x1
dx1 + ∂x

′2

∂x2
dx2 + ∂x

′2

∂x3
dx3,

dz′ = ∂z′

∂x
dx + ∂z′

∂y
dy + ∂z′

∂z
dz ⇒ dx

′3 = ∂x
′3

∂x1
dx1 + ∂x

′3

∂x2
dx2 + ∂x

′3

∂x3
dx3.

(4.50)

Using the index-notation approach of substituting x1, x2, and x3 for x , y,
and z results in the column shown on the right.10 Putting this into matrix
notation gives

⎛
⎜⎝ dx

′1

dx
′2

dx
′3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
′1

∂x1

∂x
′1

∂x2

∂x
′1

∂x3

∂x
′2

∂x1

∂x
′2

∂x2

∂x
′2

∂x3

∂x
′3

∂x1

∂x
′3

∂x2

∂x
′3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ dx1

dx2

dx3

⎞
⎠ , (4.51)

or, using individual equations with summation symbols

dx
′1 =

3∑
j=1

∂x
′1

∂x j
dx j , dx

′2 =
3∑

j=1

∂x
′2

∂x j
dx j , dx

′3 =
3∑

j=1

∂x
′3

∂x j
dx j .

If you now allow the letter i to represent each of the numerical values of the
index (1, 2, and 3), this can be written as

dx
′i =

3∑
j=1

∂x
′i

∂x j
dx j . (4.52)

Since the j index is repeated, a final simplification results from the Einstein
summation convention, allowing you to write

dx
′i = ∂x

′i

∂x j
dx j . (4.53)

So index notation has allowed the expression in Eq. 4.50, consisting of three
equations with three terms in each, to be written as this single equation. More
importantly, the form of this equation will help you understand why differential
length elements (dxi ) are considered to be contravariant quantities.

10 Superscripts are used for the indices because differential length elements transform as
contravariant quantities, as described later in this section.
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To gain that understanding, it’s useful to recall Eq. 4.48 from the previous
section:

A
′i = ai j A j ,

which tells you that the components of a vector in the primed (transformed)
coordinate system are the weighted linear combination of the components
of that same vector in the unprimed (original) coordinate system. And the
weighting factors ai j are the elements of the transformation matrix.

Now compare Eq. 4.53 to Eq. 4.48. On the left side of both equations,
a primed quantity (dx

′i or A
′i ) with free index i appears. On the right

side, both equations contain the product of a factor with free index i and

dummy index j ( ∂x
′i

∂x j or ai j ) with the left-side quantity unprimed and with

dummy index j (dx j or A j ). And you know that the factor ai j in Eq. 4.48
represents the elements of a transformation matrix for contravariant vector
components between the unprimed and the primed coordinate systems. So

it seems reasonable to conclude that the ∂x
′i

∂x j terms in Eq. 4.53 can be
seen as the elements of the transformation matrix for the differential length
elements.

So instead of looking at Eq. 4.53 as simply the index-notation version of the
chain rule, you should see it as a transformation equation that takes differential
length elements from the unprimed to the primed coordinate system (just as
Eq. 4.48 does for the contravariant components of vector �A).

And here’s the important insight: the ∂x
′i

∂x j terms are not only the ele-
ments of a transformation matrix from the unprimed to the primed coordinate
system, they’re also the components of the basis vectors tangent to the orig-
inal (unprimed) coordinate axes, expressed in the new (primed) coordinate
system.11

Furthermore, you know that basis vectors tangent to the original coordinate
axes are the covariant basis vectors described earlier. And since contravariant
vector components combine with covariant basis vectors to produce invariant
quantities, differential length elements must transform as contravariant vector
components. This is the reason that the indices are written as superscripts in
Eqs. 4.51 through 4.53; the differential length element is the “prototype” of
contravariant vector components.

Using index notation and representing the components of the basis vec-

tors as ∂x
′i

∂x j , you should now understand why the transformation equation for

contravariant components of vector �A is often written as

11 If you’re wondering how partial derivatives can represent basis vectors, you should review
Section 2.6 of Chapter 2.
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A
′i = ∂x

′i

∂x j
A j . (4.54)

Many authors present this as the definition of contravariant components.
To see how this notation works in practice, consider the transformation

from polar (r, θ ) to two-dimensional Cartesian (x, y) coordinates. In this case,
x
′1= x , x

′2= y, x1= r , and x2= θ , and you know that x = r cos(θ) and
y= r sin(θ). So what are the weighting factors (that is, the elements of the
transformation matrix) in this case? Taking the appropriate derivatives, you
find that

∂x
′1

∂x1
= ∂x

∂r
= cos(θ),

∂x
′2

∂x1
= ∂y

∂r
= sin(θ), (4.55)

∂x
′1

∂x2
= ∂x

∂θ
= −r sin(θ),

∂x
′2

∂x2
= ∂y

∂θ
= r cos(θ). (4.56)

Are these really the components of the tangent vectors to the original (r, θ )
coordinate axes (that is, are they pointing along those axes)? You can see that
they are by writing these terms as components in the primed coordinate system
(Cartesian in this case):

�e1 = ∂x
′1

∂x1
ı̂ + ∂x

′2

∂x1
ĵ = cos(θ)ı̂ + sin(θ)ĵ , (4.57)

�e2 = ∂x
′1

∂x2
ı̂ + ∂x

′2

∂x2
ĵ = −r sin(θ)ı̂ + r cos(θ)ĵ . (4.58)

The first of these expressions is a vector pointing radially outward (along the
r̂ -direction in polar coordinates) and the second is a vector pointing perpendic-
ular to the radial direction (along the θ̂ -direction).12 This demonstrates that the
partial derivatives in Eq. 4.53 do indeed represent components of the original
(unprimed) covariant basis vectors expressed in the new (primed) coordinate
system.

4.9 Quantities that transform covariantly

If the differential length element of the previous section serves as the “proto-
type” for quantities that transform as contravariant vector components, you
may be wondering if there’s a similar “prototype” for covariant quantities.
You can answer that question by considering a quantity such as the change
in temperature with distance (degrees per meter) over some region, which
you may recognize from Chapter 2 as the gradient of that quantity. Unlike

12 These basis vectors can be understood in terms of the non-Cartesian unit vectors discussed in
Section 1.5 of Chapter 1.
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the differential length element, which has dimensions directly related to the
coordinate dimensions, quantities such as the gradient have dimensions that
include the inverse of the coordinate dimensions (per unit length rather than
length in the case of spatial coordinates). This dimensional consideration sug-
gests that the gradient may be a good candidate for the prototype of quantities
that transform as covariant vector components. And index notation makes this
easy to see.

Imagine a scalar quantity such as temperature or density whose value at
various positions is given by the function f (x, y, z); the rate of change of
that quantity is ∂ f

∂x in the x-direction, ∂ f
∂y in the y-direction, and ∂ f

∂z in the z-
direction. It’s reasonable to ask how these rates of change vary if the coordinate
system is changed. To answer that question, you can proceed as we did for the
differential length element, using the chain rule for partial derivatives and then
employing index notation as follows:

∂ f

∂x ′
= ∂ f

∂x

∂x

∂x ′
+ ∂ f

∂y

∂y

∂x ′
+ ∂ f

∂z

∂z

∂x ′

⇒ ∂ f

∂x ′1
= ∂ f

∂x1

∂x1

∂x ′1
+ ∂ f

∂x2

∂x2

∂x ′1
+ ∂ f

∂x3

∂x3

∂x ′1
,

∂ f

∂y′
= ∂ f

∂x

∂x

∂y′
+ ∂ f

∂y

∂y

∂y′
+ ∂ f

∂z

∂z

∂y′

⇒ ∂ f

∂x ′2
= ∂ f

∂x1

∂x1

∂x ′2
+ ∂ f

∂x2

∂x2

∂x ′2
+ ∂ f

∂x3

∂x3

∂x ′2
,

∂ f

∂z′
= ∂ f

∂x

∂x

∂z′
+ ∂ f

∂y

∂y

∂z′
+ ∂ f

∂z

∂z

∂z′

⇒ ∂ f

∂x ′3
= ∂ f

∂x1

∂x1

∂x ′3
+ ∂ f

∂x2

∂x2

∂x ′3
+ ∂ f

∂x3

∂x3

∂x ′3
.

As before, you can write this as a matrix equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f

∂x ′1

∂ f

∂x ′2

∂ f

∂x ′3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂x ′1
∂x2

∂x ′1
∂x3

∂x ′1

∂x1

∂x ′2
∂x2

∂x ′2
∂x3

∂x ′2

∂x1

∂x ′3
∂x2

∂x ′3
∂x3

∂x ′3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f

∂x1

∂ f

∂x2

∂ f

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.59)
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or as individual equations using the summation symbol:

∂ f

∂x ′1
=

3∑
j=1

∂x j

∂x ′1
∂ f

∂x j
,

∂ f

∂x ′2
=

3∑
j=1

∂x j

∂x ′2
∂ f

∂x j
,

∂ f

∂x ′3
=

3∑
j=1

∂x j

∂x ′3
∂ f

∂x j
.

Once again employing i as the free index gives

∂ f

∂x ′i
=

3∑
j=1

∂x j

∂x ′i
∂ f

∂x j
, (4.60)

and the Einstein summation convention simplifies this to

∂ f

∂x ′i
= ∂x j

∂x ′i
∂ f

∂x j
. (4.61)

Comparing this to the equivalent expression for the differential length element
(Eq. 4.53) suggests that once again the vector components in the primed coor-
dinate system are the weighted linear combination of the components in the
original coordinate system. But in this case the elements of the transformation
matrix ( ∂x j

∂x ′i ) are the inverse of those in the transformation of the differen-

tial length elements (which are ∂x
′i

∂x j ). And just as in that case the ∂x
′i

∂x j terms
represent the components of vectors that point along the original coordinate
axes, in this case the ∂x j

∂x ′i terms represent the components of vectors that
are perpendicular to the original coordinate surfaces. Hence in this case the
weighting factors are the components of the (contravariant) dual basis vectors,
which means that the components of the gradient vector transform as covari-
ant components. Of course, for orthonormal coordinate systems the lengths
and directions of the original and dual basis vectors are exactly the same, and
there is no difference between the covariant and contravariant vector com-
ponents. In non-orthonormal coordinate systems, this distinction is critically
important.

Again using index notation and representing the dual basis vectors as ∂x j

∂x ′i ,
you probably won’t find it surprising that many authors define the covari-
ant components of vector �A as components that transform according to the
equation

A′i =
∂x j

∂x ′i
Ai . (4.62)

At this point you should be convinced that vectors are more than just lit-
tle arrows with magnitude and direction; they’re quantities that transform in
certain ways between coordinate systems. Specifically, every vector has both
contravariant and covariant components that transform in predictable ways.
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The contravariant components vary in the opposite manner to the basis vec-
tors pointing along the original coordinate axes, and the covariant components
vary in the same manner as those basis vectors. Most importantly, by combin-
ing the vector’s contravariant components with the original basis vectors, or
by combining the vector’s covariant components with the dual basis vectors,
the resulting quantity (the vector itself) remains invariant under all coordinate
transformations. It is this characteristic that qualifies vectors to join the ranks
of tensors.

Understanding the distinction between contravariant and covariant vector
components is extremely helpful in understanding tensors, because vectors are
tensors. Specifically, since all the components of a vector can be delineated
using only a single index, vectors are tensors of rank one. Under this definition,
scalars are tensors of rank zero, since scalars are single numbers and require
no index at all. And of what use are tensors of rank two and higher? You’ll
encounter those in Chapter 5.

4.10 Chapter 4 problems

4.1 Write the inverse transformation matrix for a 70◦ rotation of the 2-D
Cartesian coordinate axes and the indirect transformation matrix for the
rotation of a vector through an angle of 70◦ degrees. Show that the
product of these two transformation matrices is the identity matrix.

4.2 Use the inverse transformation matrix from Problem 4.1 to find the
components of vector �A = 2ı̂ + 5.5ĵ in the rotated coordinate system.

4.3 Use the direct transformation matrix from Problem 4.1 to rotate the origi-
nal coordinate basis vectors ı̂ and ĵ by 70◦, so they point along the rotated
axes.

4.4 Use a direct transformation matrix to rotate vector �A from Problem 4.2
through an angle of −70◦, and compare the x- and y-components of
the rotated vector (in the original coordinate system) to the x ′- and
y′-components of the unrotated vector in the rotated coordinate system.

4.5 Use the dot product of the original vector �A with the rotated basis vectors
( �A ◦ ı̂ ′ and �A ◦ ĵ ′) to find the components of �A in the rotated coordinate
system.

4.6 For vector �A = −5ı̂+6ĵ and basis vectors �e1 = ı̂+2ĵ and �e2 = −2ı̂−ĵ ,
find the contravariant components �A1 and �A2.

4.7 Find the dual basis vectors �e 1 and �e 2 for the basis vectors �e1 and �e2 of
Problem 4.6.

4.8 Find the covariant components �A1 and �A2 for vector �A of Problem 4.6.
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4.9 Use the subsitution method and the elimination method to solve the two
simultaneous equations that result from vector Eq. 4.26.

4.10 Show that the elements of the Cartesian-to-polar transformation matrix
are the components of the basis vectors tangent to the original (Cartesian)
coordinate axes.
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Higher-rank tensors

The previous chapter contains several ideas that are important to a full
understanding of tensors. The first is that any vector may be represented by
components that transform between coordinate systems in one of two ways.
“Covariant” components transform in the same manner as the original basis
vectors pointing along the coordinate axes, and “contravariant” components
transform in the inverse manner of those basis vectors.1 The second main idea
is that coordinate basis vectors are tangent to the coordinate axes, and that
there also exist reciprocal or dual basis vectors that are perpendicular to the
coordinate axes; these dual basis vectors transform inversely to the coordinate
basis vectors. The third idea is that combining contravariant components with
original basis vectors and combining covariant components with dual basis
vectors produces a result that is invariant under coordinate transformation. That
result is the vector itself, and the vector is the same no matter which coordinate
system you use for its components.

This chapter extends the concepts of covariance and contravariance beyond
vectors and makes it clear that scalars and vectors are members of the class of
objects called “tensors.”

5.1 Definitions (advanced)

In the basic definitions of Chapter 1, scalars, vectors, and tensors were defined
by the number of directions involved: zero for scalars, one for vectors, and
more than one for tensors.2 Now that you’ve seen the concepts of components,
basis vectors, and the transformation properties of each, you’re in a position

1 The prototype of a vector expressed in contravariant components is the displacement vector,
and the prototype of a vector expressed in covariant components is the gradient vector.

2 Note that specifying one direction in 3-dimensional space requires two angles.

132
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to understand the more-advanced definitions of scalars, vectors, and tensors.
Specifically:

A scalar is a single value with no directional indicator that represents a
quantity that does not vary as the coordinate system is changed.

So for a scalar with value φ in one coordinate system and value φ′ in another
coordinate system, you can be certain that the quantity represented by φ (com-
bined with the relevant unit) and φ′ (combined with its unit) is the same no
matter which system you use to represent it. Thus 1 inch and 2.54 centimeters
represent the same quantity of length.

A vector is an array of three values (in 3-D space) called “vector compo-
nents” that combine with directional indicators (“basis vectors”) to form a
quantity that does not vary as the coordinate system is changed.

So vector �A represents the same entity whether it is expressed using contravari-
ant components Ai or covariant components Ai :

�A = Ai �ei = Ai �e i ,

where �ei represents a covariant basis vector and �e i represents a contravariant
basis vector.

In transforming between coordinate systems, a vector with contravariant
components A j in the original (unprimed) coordinate system and contravariant
components A

′i in the new (primed) coordinate system transforms as

A
′i = ∂xi ′

∂x j
A j ,

where the ∂xi ′
∂x j terms represent the components in the new coordinate system

of the basis vectors tangent to the original axes.
Likewise, for a vector with covariant components A j in the original

(unprimed) coordinate system and covariant components A′i in the new
(primed) coordinate system, the transformation equation is

A′i =
∂x j

∂xi ′ A j ,

where the ∂x j

∂xi ′ terms represent the components in the new coordinate system
of the (dual) basis vectors perpendicular to the original axes.
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A tensor of rank n is an array of 3n values (in 3-D space) called “tensor com-
ponents” that combine with multiple directional indicators (basis vectors) to
form a quantity that does not vary as the coordinate system is changed.

From this definition, you can see that a second-rank tensor has 32 = 9 compo-
nents in three-dimensional space. Note that a tensor of rank 0 is a scalar and a
tensor of rank 1 is a vector.

There is no standard notation for tensors; you may see a tensor represented

with double overhead arrows (such as ��T ) or with a tilde or two-directional

arrow above or below (such as T̃ ,
←→
T or T←→). Many authors don’t bother with

arrows or tildes and represent tensors simply by writing the letter signifying the
tensor with “placeholder” indices to indicate the contravariant and covariant
rank of the tensor (such as T i j or T a

b ).

5.2 Covariant, contravariant, and mixed tensors

You should by this point understand that the expression

A
′i = ∂xi ′

∂x j
A j (5.1)

presents the contravariant components of vector �A in the transformed (primed)
coordinate system (A

′i ) as a weighted sum of the components of �A in the origi-

nal (unprimed) coordinate system (A j ). The weighting factors ( ∂xi ′
∂x j ) are simply

the elements of the transformation matrix from the unprimed to the primed
coordinate systems, and those elements represent the components of the basis
vectors tangent to the original coordinate axes. With that understanding, a
tensor expression such as

A
′i j = ∂xi ′

∂xk

∂x j ′

∂xl
Akl (5.2)

should have some recognizable elements. As you can probably surmise, in
this expression A

′i j are the contravariant tensor components in the new coor-
dinate system, Akl are the contravariant tensor components in the original

coordinate system, and ∂xi ′
∂xk as well as ∂x j ′

∂xl are elements of the transforma-
tion matrix between the original and new coordinate systems. And just as in
Eq. 5.1, the elements of the direct transformation matrix also represent the
basis vectors tangent to the original coordinate axes. But in the vector expres-
sion Eq. 5.1 each component pertains to a single basis vector, whereas the
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components in the tensor expression Eq. 5.2 pertain to two basis vectors. This
should seem reasonable to you, since the basic definitions in Chapter 1 state
that vectors involve a single direction while higher-rank tensors involve two or
more directions.

The vector Eq. 5.1 involves contravariant components (as indicated by the
use of superscripted indices in A

′i and A j ), but you know that an equivalent
expression exists for the covariant components:

A′i =
∂x j

∂xi ′ A j . (5.3)

In this equation, the covariant components of vector �A in the transformed
(primed) coordinate system (A′i ) are expressed as a weighted sum of the covari-
ant components of �A in the original (unprimed) coordinate system (A j ). In this

case, the weighting factors ( ∂x j

∂xi ′ ) are the elements of the inverse transformation
matrix from the unprimed to the primed coordinate systems, and those ele-
ments represent the dual basis vectors perpendicular to the original coordinate
axes.

Extending this to a second-rank tensor gives a transformation equation such
as this:

A′i j =
∂xk

∂xi ′
∂xl

∂x j ′ Akl . (5.4)

In this expression, A′i j are the covariant tensor components in the new coordi-
nate system, Akl are the covariant tensor components in the original coordinate
system, and ∂xk

∂xi ′ as well as ∂xl

∂x j ′ are elements of the transformation matrix
between the original and new coordinate systems. And much as in Eq. 5.3,
the elements of the transformation matrix represent the dual basis vectors
perpendicular to the original coordinate axes.

As you may have anticipated, another possibility exists for second-rank
tensors:

A
′i
j =

∂xi ′

∂xk

∂xl

∂x j ′ Ak
l , (5.5)

in which the tensor ��A is represented by one contravariant and one covariant
index; each uses the transformation matrix appropriate for its type.

5.3 Tensor addition and subtraction

As you may recall from Section 1.4, two or more vectors can be added simply
by adding their corresponding components. Hence a single vector equation
such as
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�C = �A + �B, (5.6)

actually consists of three equations (in three-dimensional space), since each
component of the resultant vector �C must be the sum of the corresponding
components of vectors �A and �B:

Cx = Ax + Bx ,

Cy = Ay + By,

Cz = Az + Bz .

(5.7)

Higher-order tensors can be added using the same process, provided that the
tensors to be added have the same structure (that is, they are the same order and
have the same number of covariant indices and the same number of contravari-
ant indices). The result of tensor addition is also a tensor, and the resultant
tensor has the same structure as each of the tensors that are added:

Ci j = Ai j + Bi j ,

Ci j = Ai j + Bi j ,

Ci
j = Ai

j + Bi
j .

(5.8)

Note that each of these expressions represents more than one equation; the
exact number depends on the number of values that each index may take on.
Note also that you can add tensors with any number of covariant and con-
travariant indices, as long as the tensors being added have the same number of
each type of index.

To see that the result of adding two tensors fits the definition of a tensor, con-
sider how the tensor components Ai

j and Bi
j transform to another coordinate

system:

A
′k
l =

∂x
′k

∂xi

∂x j

∂xl ′ Ai
j ,

B
′k
l =

∂x
′k

∂xi

∂x j

∂xl ′ B
i
j .

(5.9)

Hence

A
′k
l + B

′k
l =

∂x
′k

∂xi

∂x j

∂x ′l
Ai

j +
∂x
′k

∂xi

∂x j

∂x ′l
Bi

j

= ∂x
′k

∂xi

∂x j

∂x ′l
(Ai

j + Bi
j ).
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If you compare this last expression to the expression for the transformation of
the tensor components Ci

j to the primed coordinate system

C
′k
l =

∂x
′k

∂xi

∂x j

∂x ′l
Ci

j ,

you’ll see that the addition of Ai
j and Bi

j does produce an object Ci
j that meets

the transformation requirements for a tensor.
Subtraction of tensors is equally straightforward; you simply subtract the

corresponding components rather than adding them:

Ci j = Ai j − Bi j ,

Ci j = Ai j − Bi j ,

Ci
j = Ai

j − Bi
j ,

(5.10)

and the result of tensor subtraction is also a tensor, as you can see in the
problems at the end of this chapter.

5.4 Tensor multiplication

As described in Chapter 2, there are several different ways to multiply vectors –
the scalar (dot) product and vector (cross) product both take two vectors as
inputs and produce a result that depends on the magnitudes and directions of
those two vectors. Not mentioned in that chapter was another form of vector
product called the “outer” product between a column vector ( �A) and a row
vector ( �B), which operates like this:

�A ⊗ �B =
⎛
⎝ A1

A2

A3

⎞
⎠ (B1 B2 B3) =

⎛
⎝ A1 B1 A1 B2 A1 B3

A2 B1 A2 B2 A2 B3

A3 B1 A3 B2 A3 B3

⎞
⎠ .

Note that the outer product of two rank-1 tensors (vectors) is a rank-2 tensor,
formed simply by multiplying the individual components of the two vectors.
The outer product is indicated with the ⊗ symbol in some texts; others just
write the two vectors or tensors next to one another, such as Ai B j = Ci j .

The outer-product operation may also be performed on higher-order tensors:

Ai
j Bk

lm = Cik
jlm .

In this case, the outer product of a rank-2 tensor and a rank-3 tensor is a rank-5
tensor. This illustrates the fact that the covariant rank of the outer-product ten-
sor is the sum of the covariant ranks of the input tensors, and the contravariant
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rank of the outer-product tensor is the sum of the contravariant ranks of the
input tensors.

The result of the outer-product operation is easily shown to be a tensor by

considering how tensors ��A, ��B, and ��C transform from the unprimed to the

primed coordinate system. The transform of tensors ��A and ��B is given by

A
′n
o =

∂x
′n

∂xi

∂x j

∂x ′o
Ai

j ,

B
′ p
qr = ∂x

′ p

∂xk

∂xl

∂x ′q
∂xm

∂x ′r
Bk

lm .

Multiplying these expressions gives

A
′n
o B
′ p
qr = ∂x

′n

∂xi

∂x j

∂x ′o
Ai

j
∂x
′ p

∂xk

∂xl

∂x ′q
∂xm

∂x ′r
Bk

lm

= ∂x
′n

∂xi

∂x j

∂x ′o
∂x
′ p

∂xk

∂xl

∂x ′q
∂xm

∂x ′r
Ai

j Bk
lm .

So if Ai
j Bk

lm = Cik
jlm and A

′n
o B

′ p
qr = C

′np
oqr , then

C
′np
oqr = ∂x

′n

∂xi

∂x j

∂x ′o
∂x
′ p

∂xk

∂xl

∂x ′q
∂xm

∂x ′r
Cik

jlm, (5.11)

and the result of the outer product operation does indeed meet the transforma-
tion requirements for a tensor.

Another way to multiply tensors is called the “inner product,” which you can
think of as a generalization of the scalar or dot product discussed in Section 2.1.
As described in that section, the dot product between two vectors produces a
scalar result, so you might expect the inner product between two tensors to
produce a tensor of lower rank. That’s exactly right, but to understand how it
happens, you first need to understand the process of tensor contraction.

To contract a tensor, simply set one contravariant index equal to a covariant
index (or vice versa) and then sum over the repeated index. This leads to a
tensor with a rank that is two less than the rank of the tensor with which you
started.

To see how this works in practice, consider the rank-4 tensor Ci j
kl . To contract

this tensor in the second and third indices, set the index k equal to the index j ,
resulting in

Ci j
jl = Ci1

1l + Ci2
2l + Ci3

3l = Di
l ,

assuming that the indices j and k run from 1 to 3. Note that the rank is reduced
by two because you made one index the same as another (reducing the rank
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by one) and then you summed over that index (reducing the rank by one
more). Note also that contraction produces another tensor only when the two
indices that are made equal are in different positions (one superscript and one
subscript).

The reason for this becomes clear if you consider the contraction of the
tensor that resulted from the outer-product operation in Eq. 5.11. Contracting
this tensor in the first and fourth indices by setting q equal to n gives

C
′np
onr = ∂x

′n

∂xi

∂x j

∂x ′o
∂x
′ p

∂xk

∂xl

∂x ′n
∂xm

∂x ′r
Cik

jlm

= ∂x
′n

∂xi

∂xl

∂x ′n
∂x j

∂x ′o
∂x
′ p

∂xk

∂xm

∂x ′r
Cik

jlm

= ∂xl

∂xi

∂x j

∂x ′o
∂x
′ p

∂xk

∂xm

∂x ′r
Cik

jlm .

But the derivative ∂xl

∂xi involves only coordinates in the same (unprimed) sys-
tem, and coordinates within the same system must be independent of one
another. Hence this derivative must equal zero unless l = i , in which case
it must equal one. This is most easily expressed using the Kronecker Delta
function, defined by

δi
j =

{ 1 i = j
0 i �= j

.

Thus

C
′np
onr = δi

l
∂x j

∂x ′o
∂x
′ p

∂xk

∂xm

∂x ′r
Cik

jlm

= ∂x j

∂x ′o
∂x
′ p

∂xk

∂xm

∂x ′r
Cik

jim,

which is a tensor of rank 3, as expected. But note that this reduction from 5
to 3 in rank required that two of the partial derivatives combine to produce
the delta function, which then invoked the summation process. That derivative
combination only works if one of the contracted indices is a superscript and
the other a subscript.

In this last example, the contraction was performed on a tensor that was the
result of an outer product. That two-step process (outer-product multiplication
followed by contraction) is called the “inner product” of two tensors. So if you
start with two vectors (tensors of rank 1), form their outer product (producing
a tensor of rank 2), and then contract the result, you end up with a tensor
of rank zero – a scalar. This illustrates why the inner-product process can be
considered to be a generalization of the dot product between two vectors.
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5.5 Metric tensor

As you think about contravariant and covariant components of vectors and
tensors, you should not lose sight of the fact that these components exist only
when you’ve selected a coordinate system. And why do you need a coordinate
system? Because coordinate systems “arithmetize” space – that is, they give
you a way of applying the rules of arithmetic to objects that exist in the space
in which you’re working. That space may be the three-dimension space of
everyday experience, or the four-dimension spacetime of Einstein, or any other
space you can imagine. The coordinate system you apply may have straight
axes that intersect at right angles, or the axes may be curved and intersect at
any angle of your choosing.

However you choose to arithmetize a space, there is one tensor that allows
you to define fundamental quantities such as lengths and angles in a consistent
manner at different locations. That tensor, the one that “provides the metric”
for a given coordinate system in the space of interest, is called the fundamental
or metric tensor. The lower-case letter “g” has become the standard symbol for
the metric tensor, which you may see written as ��g or g. The metric tensor has
contravariant components gi j and covariant components gi j .

To understand the role of the metric tensor, consider two points separated
by an infinitesimal distance ds. If the vector d�r extends from one point to
the other, then the square of the differential length element may be written as
ds2 = d�r ◦ d�r . The vector d�r may be written using contravariant components
and coordinate basis vectors (�ei ) as

d�r = �ei dxi ,

or using covariant components and dual basis vectors (�ei ) as

d�r = �e i dxi .

Since ds2 involves the dot product of d�r with itself, you have the option of
using the contravariant components dxi on both sides of the dot:

ds2 = d�r ◦ d�r = �ei dxi ◦ �e j dx j

= (�ei ◦ �e j )dxi dx j

= gi j dxi dx j ,

where gi j represents the covariant components of the metric tensor. Alter-
natively, you may use the covariant components dxi on both sides of
the dot:
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ds2 = d�r ◦ d�r = �e i dxi ◦ �e j dx j

= (�e i ◦ �e j )dxi dx j

= gi j dxi dx j ,

where gi j represents contravariant components of the metric tensor. A third
option is to use contravariant components on one side of the dot and covariant
components on the other:

ds2 = �ei dxi ◦ �e j dx j

= (�ei ◦ �e j )dxi dx j

= dxi dx j .

Note that in this case no metric tensor is needed, since the definition of dual
basis vectors ensures that �ei ◦ �e j equals one if i = j and zero if i �= j .

Whether ds2 is written as gi j dxi dx j , gi j dxi dx j , or dxi dx j , you can be
sure of one thing: the distance between two points must be the same no matter
which coordinate system you employ, whether you use contravariant, covari-
ant, or mixed components. Hence it must be the job of the metric tensor ��g
and its components gi j and gi j to turn the product of incremental coordinate
changes expressed in either contravariant or covariant components into the
invariant distance between points. This is the rationale behind the statement
that the metric tensor “provides the geometry” of the space.

The geometry of vectors entails use of lengths and angles, so it’s useful
to understand the role of the metric tensor in defining the length of a vector
such as �A and the angle between two vectors �A and �B. Just as the incremental
distance ds can be found by dotting the separation vector d�r into itself, the
length of vector �A can be found from �A ◦ �A. And there’s more than one way
to do that.

One option is to use only the contravariant components of �A:

| �A| =
√ �A ◦ �A = √Ai �ei ◦ A j �e j

=
√
(�ei ◦ �e j )Ai A j =

√
gi j Ai A j .

Another option is to use only covariant components:

| �A| =
√ �A ◦ �A = √Ai �e i ◦ A j �e j

=
√
(�e i ◦ �e j )Ai A j =

√
gi j Ai A j .

And the final option is to use mixed components:
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| �A| =
√ �A ◦ �A = √Ai �ei ◦ A j �e j

=
√
(�ei ◦ �e j )Ai A j =

√
Ai A j .

As in the case of d�r , the metric tensor ensures that the length of vector �A is
invariant.

To understand the role of the metric tensor in providing a consistent defini-
tion of angles, consider the dot product �A◦ �B. Once again, there are alternative
ways of writing this product, and this means that the angle between �A and �B
can be written in the following equivalent ways:

cos θ = �A ◦ �B| �A|| �B|
= gi j Ai B j√

gi j Ai A j
√

gi j Bi B j

= Ai B j√
Ai Ai

√
Bi Bi

= gi j Ai B j√
gi j Ai A j

√
gi j Bi B j

.

This explains why you’re likely to run into the statement that the metric tensor
“provides a dot product” for a space – if you know how to find the dot product,
you can define lengths and angles.

To see the tensor nature of the metric tensor, consider the transformation of
the contravariant components of the incremental separation vector d�r :

dx
′i = ∂x

′i

∂x j
dx j .

This means that the square of the incremental length (ds2) becomes:

ds2 =
[
∂x
′1

∂x1

∂x
′1

∂x1
+ ∂x

′2

∂x1

∂x
′2

∂x1
+ ∂x

′3

∂x1

∂x
′3

∂x1

]
dx1dx1

+
[
∂x
′1

∂x2

∂x
′1

∂x2
+ ∂x

′2

∂x2

∂x
′2

∂x2
+ ∂x

′3

∂x2

∂x
′3

∂x2

]
dx2dx2

+
[
∂x
′1

∂x3

∂x
′1

∂x3
+ ∂x

′2

∂x3

∂x
′2

∂x3
+ ∂x

′3

∂x3

∂x
′3

∂x3

]
dx3dx3

+
[
∂x
′1

∂x1

∂x
′1

∂x2
+ ∂x

′2

∂x1

∂x
′2

∂x2
+ ∂x

′3

∂x1

∂x
′3

∂x2

]
dx1dx2
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+
[
∂x
′1

∂x2

∂x
′1

∂x1
+ ∂x

′2

∂x2

∂x
′2

∂x1
+ ∂x

′3

∂x2

∂x
′3

∂x1

]
dx2dx1

+
[
∂x
′1

∂x1

∂x
′1

∂x3
+ ∂x

′2

∂x1

∂x
′2

∂x3
+ ∂x

′3

∂x1

∂x
′3

∂x3

]
dx1dx3

+
[
∂x
′1

∂x3

∂x
′1

∂x1
+ ∂x

′2

∂x3

∂x
′2

∂x1
+ ∂x

′3

∂x3

∂x
′3

∂x1

]
dx3dx1

+
[
∂x
′1

∂x2

∂x
′1

∂x3
+ ∂x

′2

∂x2

∂x
′2

∂x3
+ ∂x

′3

∂x2

∂x
′3

∂x3

]
dx2dx3

+
[
∂x
′1

∂x3

∂x
′1

∂x2
+ ∂x

′2

∂x3

∂x
′2

∂x2
+ ∂x

′3

∂x3

∂x
′3

∂x2

]
dx3dx2. (5.12)

This daunting expression becomes far more tractable if you realize that each
bracketed term involves the sum of the partial derivatives of each of the trans-
formed coordinates (x

′1, x
′2, and x

′3) taken with respect to two of the original
coordinates (x1, x2, and x3). More specifically, each of the three terms within
each bracket is a product of the components of the basis vectors tangent to the

original axes (recall that ∂x
′1

∂xi , ∂x
′2

∂xi , and ∂x
′3

∂xi are the components in the trans-
formed coordinate system of the basis vector tangent to the i th original axis).

If you assign the bracketed terms to the variable g with two subscripts
denoting the axes with respect to which the derivatives are taken, you will
have

g11 =
[
∂x
′1

∂x1

∂x
′1

∂x1
+ ∂x

′2

∂x1

∂x
′2

∂x1
+ ∂x

′3

∂x1

∂x
′3

∂x1

]
,

g22 =
[
∂x
′1

∂x2

∂x
′1

∂x2
+ ∂x

′2

∂x2

∂x
′2

∂x2
+ ∂x

′3

∂x2

∂x
′3

∂x2

]
,

g33 =
[
∂x
′1

∂x3

∂x
′1

∂x3
+ ∂x

′2

∂x3

∂x
′2

∂x3
+ ∂x

′3

∂x3

∂x
′3

∂x3

]
,

g12 =
[
∂x
′1

∂x1

∂x
′1

∂x2
+ ∂x

′2

∂x1

∂x
′2

∂x2
+ ∂x

′3

∂x1

∂x
′3

∂x2

]
,

g13 =
[
∂x
′1

∂x1

∂x
′1

∂x3
+ ∂x

′2

∂x1

∂x
′2

∂x3
+ ∂x

′3

∂x1

∂x
′3

∂x3

]
,

g23 =
[
∂x
′1

∂x2

∂x
′1

∂x3
+ ∂x

′2

∂x2

∂x
′2

∂x3
+ ∂x

′3

∂x2

∂x
′3

∂x3

]
,
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and since the order of multiplication is irrelevant, g21 = g12, g31 = g13, and
g32 = g23. Substituting these into Eq. 5.12, the expression for ds2 becomes

ds2 = g11dx1dx1 + g22dx2dx2 + g33dx3dx3 + g12dx1dx2 + g21dx2dx1

+ g13dx1dx3 + g31dx3dx1 + g23dx2dx3 + g32dx3dx2.

This can be further simplified using index notation and the summation
convention:

ds2 = gi j dxi dx j . (5.13)

The gi j term in this equation meets all the requirements of a second-rank
tensor, but it’s not just any tensor. Because it relates the coordinate differentials
in various directions to a quantity that is invariant across all coordinate trans-
formations, it’s no wonder that this tensor is called the metric or fundamental
tensor.

To understand what’s so fundamental about this tensor, recall that the partial
derivatives that make up the elements of gi j also represent the components of
the basis vectors tangent to the original coordinate axes:

�e1 =
(
∂x
′1

∂x1
,
∂x
′2

∂x1
,
∂x
′3

∂x1

)
,

�e2 =
(
∂x
′1

∂x2
,
∂x
′2

∂x2
,
∂x
′3

∂x2

)
, (5.14)

�e3 =
(
∂x
′1

∂x3
,
∂x
′2

∂x3
,
∂x
′3

∂x3

)
.

And since

gi j =
[
∂x
′1

∂xi

∂x
′1

∂x j
+ ∂x

′2

∂xi

∂x
′2

∂x j
+ ∂x

′3

∂xi

∂x
′3

∂x j

]
, (5.15)

another way to represent the metric tensor is gi j = �ei ◦ �e j (the inner product
of the basis vectors tangent to the coordinate axes). Since the inner product
involves the projection of one vector onto the direction of another and scales
as the length of those two vectors, the elements of gi j specify the relationships
between the coordinate axes. Those relationships are determined by the shape
of the coordinate space.

The nature of the metric tensor can be readily understood by considering a
transformation from spherical polar (r, θ, φ) to Cartesian (x, y, z) coordinates.
In this case
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x
′1 = x = rsin(θ)cos(φ) = x1sin(x2)cos(x3),

x
′2 = y = rsin(θ)sin(φ) = x1sin(x2)sin(x3),

x
′3 = z = rcos(θ) = x1cos(x2),

(5.16)

and the partial derivatives appearing in the elements of the metric tensor are

∂x
′1

∂x1
= sin(x2)cos(x3) = sin(θ)cos(φ),

∂x
′1

∂x2
= x1cos(x2)cos(x3) = rcos(θ)cos(φ),

∂x
′2

∂x1
= sin(x2)sin(x3) = sin(θ)sin(φ),

∂x
′2

∂x2
= x1cos(x2)sin(x3) = rcos(θ)sin(φ),

∂x
′3

∂x1
= cos(x2) = cos(θ),

∂x
′3

∂x2
= −x1sin(x2) = −rsin(θ),

and

∂x
′1

∂x3
= −x1sin(x2)sin(x3) = −rsin(θ)sin(φ),

∂x
′2

∂x3
= x1sin(x2)cos(x3) = rsin(θ)cos(φ),

∂x
′3

∂x3
= 0.

Inserting these values into the expression for gi j (Eq. 5.15) gives the
diagonal terms:3

g11 =
[
∂x
′1

∂x1

∂x
′1

∂x1
+ ∂x

′2

∂x1

∂x
′2

∂x1
+ ∂x

′3

∂x1

∂x
′3

∂x1

]
= 1,

g22 =
[
∂x
′1

∂x2

∂x
′1

∂x2
+ ∂x

′2

∂x2

∂x
′2

∂x2
+ ∂x

′3

∂x2

∂x
′3

∂x2

]
= r2,

g33 =
[
∂x
′1

∂x3

∂x
′1

∂x3
+ ∂x

′2

∂x3

∂x
′2

∂x3
+ ∂x

′3

∂x3

∂x
′3

∂x3

]
= r2sin2(θ).

3 If you don’t see how to get these results, you can find more detail in the problems at the end of
this chapter and in the on-line solutions.
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The off-diagonal terms are

g12 =
[
∂x
′1

∂x1

∂x
′1

∂x2
+ ∂x

′2

∂x1

∂x
′2

∂x2
+ ∂x

′3

∂x1

∂x
′3

∂x2

]
= 0,

g13 =
[
∂x
′1

∂x1

∂x
′1

∂x3
+ ∂x

′2

∂x1

∂x
′2

∂x3
+ ∂x

′3

∂x1

∂x
′3

∂x3

]
= 0,

g23 =
[
∂x
′1

∂x2

∂x
′1

∂x3
+ ∂x

′2

∂x2

∂x
′2

∂x3
+ ∂x

′3

∂x2

∂x
′3

∂x3

]
= 0.

Thus the metric tensor for spherical polar coordinates is

gi j =
⎡
⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤
⎦ =

⎡
⎣ 1 0 0

0 r2 0
0 0 r2sin2(θ)

⎤
⎦ . (5.17)

A careful look at the metric tensor can tell you something about the coordinate
system you’re dealing with. For example, the fact that all off-diagonal elements
are zero in this case tells you that spherical polar coordinate axes, while curved,
are orthogonal (that is, the lines of increasing r , θ , and φ intersect at right
angles). Furthermore, by inserting these values into Eq. 5.13, you’ll have

ds2 = dr2 + r2dθ2 + r2sin2θdφ2. (5.18)

This expression makes it clear that the elements of the metric tensor tell you
how to turn an incremental change in r , θ , or φ into a change in distance. For
example, the factor of one in front of the dr2 term means that a change in r
is already a distance. But a change in zenith angle (θ ) must be multiplied by a
factor of r to turn it into a distance. And the distance corresponding to a change
in the azimuthal angle φ depends on both the zenith angle (hence the sin(θ)
term in g33) as well as the distance from the origin (hence the r term in g33).

Other coordinate systems require other factors to convert each change in a
coordinate value to a distance, and those factors always appear in the metric
tensor for that system. For orthogonal coordinate systems, the square roots of
the diagonal elements of the metric tensor (

√
g11,
√

g22, and
√

g33) are called
the “scale factors” (h1, h2, and h3) of the coordinate system. Thus the scale
factors for spherical polar coordinates are h1 = √g11 = 1, h2 = √g22 = r ,
and h3 = √g33 = r sin θ .

Once you’re familiar with the metric tensor and scale factors, you can easily
find the differential operators gradient, divergence, curl, and Laplacian in any
orthogonal coordinate system (curvilinear or rectangular). For example, the
gradient is given by
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�∇φ = 1

h1

∂φ

∂x1
ê1 + 1

h2

∂φ

∂x2
ê2 + 1

h3

∂φ

∂x3
ê3,

and the divergence may be written as

�∇ ◦ �A = 1

h1h2h3

[
∂

∂x1
(h2h3 A1)+ ∂

∂x2
(h1h3 A2)+ ∂

∂x3
(h1h2 A3)

]
.

The curl is given by

�∇ × �A = 1

h1h2h3

∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3
∂

∂x1
∂

∂x2
∂

∂x3

h1 A1 h2 A2 h3 A3

∣∣∣∣∣∣ ,
which expands to

�∇ × �A = 1

h1h2h3

[(
∂h3 A3

∂x2
− ∂h2 A2

∂x3

)
h1ê1

+
(
∂h1 A1

∂x3
− ∂h3 A3

∂x1

)
h2ê2 +

(
∂h2 A2

∂x1
− ∂h1 A1

∂x2

)
h3ê3

]
.

The Laplacian can be found as

∇2φ= 1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂φ

∂x1

)
+ ∂

∂x2

(
h1h3

h2

∂φ

∂x2

)
+ ∂

∂x3

(
h1h2

h3

∂φ

∂x3

)]
.

If you’d like to see some examples of how these expressions can be used, check
out the problems at the end of this chapter and the on-line solutions.4

5.6 Index raising and lowering

One of the many useful functions of the metric tensor is to convert between the
covariant and contravariant components of other tensors. Imagine that you’re
given the contravariant components and original basis vectors of a tensor and
you wish to determine the covariant components. One approach is to use the
techniques described in Chapter 4 (finding the dual basis vectors, performing
parallel and perpendicular projections, and the like), but with the metric tensor,
you have another option. You can use relations such as

gi j A j = Ai (5.19)

to convert a contravariant index to a covariant one (thus “lowering” an index).
Furthermore, if you wish to convert a covariant index to a contravariant index,

4 You can find the derivation of these extremely handy equations in Boas’ Mathematical
Methods in the Physical Sciences, John Wiley and Sons, 2006.
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you can use the inverse of gi j (which is just gi j ) to perform operations like
this:

gi j Bi = B j . (5.20)

And this same process works for higher-order tensors:

gi j Aik = A j
k ,

Ci
jk = g jsCis

k ,

T i jk = gil T jk
l .

(5.21)

5.7 Tensor derivatives and Christoffel symbols

In many applications, it’s important to know how a vector field changes as
you move from one location to another. For vectors expressed using Cartesian
coordinates, taking the derivative of a vector is quite straightforward: you sim-
ply take the derivative of each of the vector’s components. You can do that
because the Cartesian basis vectors (ı̂ , ĵ , and k̂) are everywhere constant in
both magnitude and direction. That means you don’t need to worry about the
derivatives of the basis vectors. But as you’ve seen for spherical polar coordi-
nates, the basis vectors (r̂ , θ̂ , and φ̂) point in different directions as you move
around the space, which means that when you take a spatial derivative of a
vector expressed in these coordinates, you must also consider the derivatives
of the basis vectors.

Thus if you have a vector �A expressed in general coordinates x1, x2, x3 with
covariant basis vectors �e1, �e2, and �e3 as

�A = A1 �e1 + A2 �e2 + A3 �e3,

the derivative of �A with respect to coordinate x1 is

∂ �A
∂x1
= ∂(A1 �e1 + A2 �e2 + A3 �e3)

∂x1

= ∂(Ai �ei )

∂x1

= ∂Ai

∂x1
�e1 + Ai ∂ �ei

∂x1
.

It’s the second term in this equation that complicates the process of taking a
derivative in coordinate systems in which the magnitude and/or direction of
the basis vectors change as you move around the space. And as you might
expect, similar terms appear when you take the derivatives of �A with respect
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to the other coordinates. So if you want to evaluate the changes in vector fields
expressed in non-orthonormal coordinates, you have to account for possible
changes in the basis vectors. Properly accounting for those changes means that
the result of the defferentiation process will retain the tensor characteristics of
the original object.

Fortunately, there’s a way to account for any change in the basis vectors and
to ensure that the derivative of a tensor is another tensor. That process, called
the “covariant derivative,” is described in the next section of this chapter. But
the process of covariant differentiation will make a lot more sense to you if
you’ve first learned the meaning of the Christoffel symbols described in this
section.

To understand Christoffel symbols, you should begin by realizing that the
derivative of a basis vector will be another vector. Like any vector, that vector
can be described as the weighted combination of the basis vectors at the point
under consideration. Each Christoffel symbol, written as an uppercase Greek
gamma (�), simply represents the weighting coefficient for one of the basis
vectors. Hence the defining relationship for Christoffel symbols5 is

�k
i j �ek = ∂�ei

∂x j
, (5.22)

in which the index i specifies the basis vector for which the derivative is being
taken, the index j denotes the coordinate being varied to induce this change
in the i th basis vector, and the index k identifies the direction in which this
component of the derivative points, as shown in Figure 5.1.

This Christoffel symbol gives
you the magnitude of one
component of the
derivative vector

Tells you which basis vector
points in the direction of this
component of the derivative
vector

Tells you which basis
vector’s change is
being considered

Tells you which coordinate
is being varied to cause a
change in the basis vector

Γk
ij

Figure 5.1 Explanation of Christoffel symbol indices.

5 The Christoffel symbols written as �k
i j are Christoffel symbols of the second kind; another

form of Christoffel symbol (the “first kind”) is described in most General Relativity texts.
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has zero
magnitude

caused by a
change in θ

rθΓr =0

in the er
direction

The change
in er

1
r

varies inversely
with distance

caused by a
change in θ

The change
in er

Γθ =

in the eθ
direction

rθ

Figure 5.2 Example of Christoffel symbol indices.

Hence if you find two Christoffel symbols such as �r
rθ = 0 and �θrθ = 1

r ,
you know that

∂�er

∂θ
= 0�er + 1

r
�eθ ,

which is further explained in Figure 5.2.
As this example illustrates, Christoffel symbols are really quite simple to

understand once you know the code of their indices. Best of all, the values of
these useful symbols are easy to determine if you know the elements of the
metric tensor for the coordinate system in which you’re working. It will take
a bit of algebra to get to the relationship between Christoffel symbols and the
metric tensor, but the result makes the trip worthwhile.

A good way to start is to form the dot product of the basis vector �e l with
both sides of Eq. 5.22:

�k
i j �ek ◦ �e l = �e l ◦ ∂�ei

∂x j
.

Remembering that �ek ◦ �e l = δl
k , this becomes

�k
i jδ

l
k = �e l ◦ ∂�ei

∂x j
,

�l
i j = �e l ◦ ∂�ei

∂x j
.

Since the term ∂�ei
∂x j is the same as

∂�e j

∂xi , this may be written as

�l
i j =

1

2
�e l ◦ ∂�ei

∂x j
+ 1

2
�e l ◦ ∂�e j

∂xi
,
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which seems rather pointless until you add nothing to it. Nothing, that is, in the
following form:

�l
i j =

1

2
�e l ◦ ∂�ei

∂x j
+
(

1

2
gkl ∂�ek

∂x j
◦ �ei − 1

2
gkl ∂�e j

∂xk
◦ �ei

)

+ 1

2
�e l ◦ ∂�e j

∂xi
+
(

1

2
gkl ∂�ek

∂xi
◦ �e j − 1

2
gkl ∂�ei

∂xk
◦ �e j

)
.

Note that the terms in parentheses on each line add to zero, so you haven’t
changed the quantity on the right side of the equation by adding these terms.
It may look like things are getting worse, but the situation will become more
clear once you’ve accomplished a few more bits of manipulation. The first bit
is to realize that �e l = gkl �ek , so the Christoffel symbol becomes

�l
i j =

1

2
gkl �ek ◦ ∂�ei

∂x j
+
(

1

2
gkl ∂�ek

∂x j
◦ �ei − 1

2
gkl ∂�e j

∂xk
◦ �ei

)

+ 1

2
gkl �ek ◦ ∂�e j

∂xi
+
(

1

2
gkl ∂�ek

∂xi
◦ �e j − 1

2
gkl ∂�ei

∂xk
◦ �e j

)
.

Now it’s just a matter pulling out the common factor of 1
2 gkl and grouping the

terms by their sign:

�l
i j =

1

2
gkl

[(
�ek ◦ ∂�ei

∂x j
+ ∂�ek

∂x j
◦ �ei

)
+
(
�ek ◦ ∂�e j

∂xi
+ ∂�ek

∂xi
◦ �e j

)

−
(
∂�e j

∂xk
◦ �ei + ∂�ei

∂xk
◦ �e j

)]
,

which may be further simplified if you recognize that

�ek ◦ ∂�ei

∂x j
+ ∂�ek

∂x j
◦ �ei = ∂(�ek ◦ �ei )

∂x j
,

�ek ◦ ∂�e j

∂xi
+ ∂�ek

∂xi
◦ �e j = ∂(�e j ◦ �ek)

∂xi
,

�ei ◦ ∂�e j

∂xk
+ ∂�ei

∂xk
◦ �e j = ∂(�ei ◦ �e j )

∂xk
.

So

�l
i j =

1

2
gkl

[
∂(�ek ◦ �ei )

∂x j
+ ∂(�e j ◦ �ek)

∂xi
− ∂(�ei ◦ �e j )

∂xk

]
.

But you know from the definition of the elements of the metric tensor that
�ei ◦ �ek = gik and that �ei ◦ �e j = gi j , which means you can write

�l
i j =

1

2
gkl

[
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

]
. (5.23)
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With this expression, finding the Christoffel symbols for any coordinate sys-
tem for which you know the metric tensor is quite straightforward. And why
is that worth doing? Simply because using the Christoffel symbols, you can
take a derivative of vectors and tensors that accounts for changes in the basis
vectors as well as changes in the components. This preserves the most impor-
tant property of a tensor: invariance across coordinate systems. Such covariant
derivatives are the subject of the next section, but before getting to that, you
might want to consider an example of the Christoffel symbols for a familiar
coordinate system.

Consider the cylindrical coordinates (r , φ, and z) described in Section 1.5.
In this system, the square of the differential length element is related to the
coordinate differentials by ds2 = dr2 + r2dφ2 + dz2. Hence the covariant
metric tensor may be represented by

gi j =
⎡
⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤
⎦ =

⎡
⎣ 1 0 0

0 r2 0
0 0 1

⎤
⎦ ,

which suggests that most of the Christoffel symbols will be zero in this case.
You can verify that by taking the derivatives indicated in Eq. 5.23, beginning
with l = 1, i = 1, and j = 1 (and don’t forget that the summation convention
means that you must sum over k):

�1
11 =

1

2
g11

[
∂g11

∂x1
+ ∂g11

∂x1
− ∂g11

∂x1

]

+ 1

2
g21

[
∂g12

∂x1
+ ∂g12

∂x1
− ∂g11

∂x2

]

+ 1

2
g31

[
∂g13

∂x1
+ ∂g13

∂x1
− ∂g11

∂x3

]
,

and then using the relations x1 = r , x2 = φ, and x3 = z:

�1
11 =

1

2
(1)

[
∂(1)

∂r
+ ∂(1)

∂r
− ∂(1)

∂r

]

+ 1

2
(0)

[
∂(0)

∂r
+ ∂(0)

∂r
− ∂(1)

∂φ

]

+ 1

2
(0)

[
∂(0)

∂r
+ ∂(0)

∂r
− ∂(1)

∂z

]
= 0.

OK, that one was pretty boring, as are most of the others in this case. But have
a go at the Christoffel symbol for l = 1, i = 2, and j = 2:
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�1
22 =

1

2
g11

[
∂g21

∂x2
+ ∂g21

∂x2
− ∂g22

∂x1

]

+ 1

2
g21

[
∂g22

∂x2
+ ∂g22

∂x2
− ∂g22

∂x2

]

+ 1

2
g32

[
∂g23

∂x2
+ ∂g23

∂x2
− ∂g22

∂x3

]
,

which is:

�1
22 =

1

2
(1)

[
∂(0)

∂φ
+ ∂(0)

∂φ
− ∂r2

∂r

]

+ 1

2
(0)

[
∂r2

∂φ
+ ∂r2

∂φ
− ∂r2

∂φ

]

+ 1

2
(0)

[
∂(0)

∂φ
+ ∂(0)

∂φ
− ∂r2

∂z

]
,

or

�1
22 =

1

2
(1)[0+ 0− 2r ] + 0+ 0 = −r.

Now you’re getting somewhere. And exactly where is that? Just remember
the meaning of a Christoffel symbol, and you’ll see that this result means that
the change in the covariant �φ basis vector as you move in the φ direction has
a component in the −�r direction that increases directly with distance from the
origin.

A similar analysis shows that �2
12 = �2

21 = 1/r , which are the only other
non-zero Christoffel symbols for the cylindrical coordinate system.6 If you
don’t see how to get that result, take a look at the problems at the end of this
chapter and the on-line solutions.

5.8 Covariant differentiation

With Christoffel symbols in hand, you have a way of differentiating a vector or
higher-order tensor that includes the effect of changes (if any) in the magnitude
and direction of the basis vectors used to expand that vector or tensor. This type
of derivative is called the “covariant” derivative, and it finds application not
only in the Euclidean space in which many engineering and physics problems
are worked, but also in the curved Riemanian space of General Relativity.

In Euclidean space, two vectors at different locations may be compared and
combined by dragging one of the vectors to the location of the other without
6 Note that the symmetry of the metric tensor means that Christoffel symbols of this type are

symmetric in the two lower indices.



154 Higher-rank tensors

changing its magnitude or its direction. If the vector is expanded using Carte-
sian coordinates, such “parallel transport” is accomplished simply by keeping
each of its components the same (because the Cartesian basis vectors have the
same magnitude and direction everywhere). But if the vector is expressed in
non-Cartesian coordinates, the length and direction of the basis vectors may be
different at the two locations. In such cases, the covariant derivative provides
a means of parallel-transporting one of the vectors to the location of the other.

The situation is more complicated for curved spaces. You can find the details
of the use of the covariant derivative in curved spaces in Chapter 6, but for
now you can understand the role of the covariant derivative by considering a
two-dimensional spherical surface embedded in a three-dimensional Euclidean
space. Imagine a series of tangent planes just touching the sphere at each loca-
tion, and picture a vector lying in one of those tangent planes. If that vector is
moved to a different location on the sphere while holding its direction constant
(as viewed in the larger three-dimensional space), it will not lie in the tangent
plane at the new location (you can think of the vector as “sticking out” of
the two-dimensional space of the sphere). In such cases, the covariant deriva-
tive serves to project the derivative of the vector into the tangent space of the
sphere.

You should also note that the covariant differentiation process produces
a result that retains the properties of a tensor, which means that the result
transforms between coordinate systems according to the rules of tensor
transformation.

To understand how the process of covariant differentiation works, consider
the vector �A = A1 �e1 + A2 �e2 + A3 �e3 and its derivatives

∂ �A
∂x j
= ∂(A1 �e1 + A2 �e2 + A3 �e3)

∂x j

= ∂(Ai �ei )

∂x j

= ∂Ai

∂x j
�ei + Ai ∂ �ei

∂x j
.

Now replace the partial derivative in the second term with the Christoffel-
symbol definition (Eq. 5.22):

∂ �A
∂x j
= ∂Ai

∂x j
�ei + Ai (�k

i j �ek).

Since the indices i and k in the second term are both dummy indices by the
summation rule, you can switch them and then extract the common factor that
is now the basis vector �ei :
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∂ �A
∂x j
= ∂Ai

∂x j
�ei + Ak(�i

k j �ei )

=
(
∂Ai

∂x j
+ Ak�i

k j

)
�ei .

The covariant derivative is defined as the combination of the two terms inside
the parentheses. Common notation for the covariant derivative is to use a semi-
colon (;) in front of the index with respect to which the covariant derivative is
being taken ( j in this case). Thus you’re likely to see the components of the
covariant derivative defined as

Ai
; j ≡

∂Ai

∂x j
+ Ak�i

k j . (5.24)

A similar analysis leads to the covariant derivative of a vector expanded
using covariant coefficients:

Ai; j ≡ ∂Ai

∂x j
− Ak�

k
i j . (5.25)

Note that the term involving Christoffel symbols is subtracted in this case.
To make the meaning of Eqs. 5.24 and 5.25 more explicit, consider the

covariant derivative of vector �A with respect to φ in cylindrical coordinates
(so x1 = r , x2 = φ, and x3 = z). Setting j = 2 in Eq. 5.24 (since we’re
interested in the covariant derivative with respect to φ),

Ar
;φ =

∂Ar

∂φ
+ Ar�r

rφ + Aφ�r
φφ + Az�r

zφ

= ∂Ar

∂φ
+ 0+ Aφ(−r)+ 0,

which says that a change in the r -component of vector �A caused by a change
in φ is caused both by a change in Ar with φ and by a change in the basis
vectors which causes a portion of �A that was originally in the φ-direction to
now point in the −r -direction. Likewise, for the change in Aφ as the value of
φ is changed,

Aφ;φ =
∂Aφ

∂φ
+ Aφ�φrφ + Ar�

φ
φφ + Az�

φ
zφ

= ∂Aφ

∂φ
+ Ar

(
1

r

)
+ 0+ 0.

Thus
∂ �A
∂φ
=
(
∂Ar

∂φ
− r Aφ

)
�er +

(
∂Aφ

∂φ
+ 1

r
Ar
)
�eφ.

The process of covariant differentiation can also be applied to higher-
order tensors. As you might expect, this simply requires the addition of a
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Christoffel-symbol term for each contravariant index, and the subtraction of
a Christoffel-symbol term for each covariant index. Hence

Ai j
;k =

∂Ai j

∂xk
+ Al j�i

lk + Ail�
j
lk,

Bi j ;k = ∂Bi j

∂xk
− Bl j�

l
ik − Bil�

l
jk,

Ci
j ;k =

∂Ci
j

∂xk
+ Cl

j�
i
lk − Ci

l�
l
jk .

5.9 Vectors and one-forms

If you look up the subject of tensors in recently published physics texts, espe-
cially those dealing with General Relativity, you may be surprised to find little
mention of contravariant and covariant components in favor of terms such as
“covectors” and “one-forms.” Have you wasted your time struggling to under-
stand complicated concepts and terminology that have now become obsolete?
I obviously don’t think so, or I wouldn’t have devoted so many pages to the
developments of the last two chapters. Instead, I believe there’s value in seeing
the “traditional” presentation as well as the “modern” approach, because the
differences arise from perspective rather than from the core concepts. But those
different perspectives do lead to very different terminology, and the purpose of
this section is to provide a short introduction to that terminology.

The first thing to understand is that the traditional approach tends to treat
contravariant and covariant components as representations of the same object,
whereas in the modern approach objects are classified either as “vectors” or
as “one-forms” (also called “covectors”). In the modern terminology, vectors
transform as contravariant quantities, and one-forms transform as covariant
quantities. Quantities with dimension of length in the numerator (such as
velocity, with units that include “meters per”) fit naturally into the vector
category; quantities with dimension of length in denominator (such as the gra-
dient of a scalar field, with units that include “per meter”) fit naturally into the
one-form category.

In illustrations involving vectors and one-forms, vectors are represented as
arrows and one-forms are represented as small sections of surfaces, as shown
in Figure 5.3. As indicated in the figure, for vectors the angle of the arrow
shows direction and the length of the arrow shows the magnitude. For one-
forms, surfaces are aligned normal to the direction and the spacing between
surfaces is inversely proportional to the magnitude. This means that vectors
with greater magnitude are represented by longer arrows, while one-forms of
greater magnitude are represented by closer spacing.
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x

y

z

One-form with
small magnitude

One-form with
large magnitude

Vector with
large magnitude

Vector with
small magnitude

Figure 5.3 Representation of vectors as arrows and one-forms as surfaces.

As in the traditional approach, vectors (which utilize contravariant com-
ponents) expand using original basis vectors, while one-forms (which utilize
covariant components) expand using basis one-forms, which are equivalent to
dual basis vectors in the traditional approach. That correspondence means that
the product of a vector and a one-form is an invariant (a scalar), just as the
multiplication of a contravariant and a covariant quantity produces a scalar
without requiring the metric tensor. One very nice graphical interpretation
of such products is that the resulting scalar is represented by the number of
one-form surfaces through which the arrow of a vector passes.

Authors using the modern approach often place strong emphasis on vectors
and one-forms as operators (or rules), so you’re likely to encounter statements
that vectors “take” one-forms and produce scalars, just as one-forms “take”
vectors and produce scalars. Likewise, a higher-order tensor takes multiple
vectors and/or one-forms and produces a scalar. From this perspective, the met-
ric tensor is an operator that takes two vectors or two one-forms and produces
their dot product, and the components of the metric tensor may be found by
feeding it basis vectors or one-forms.

5.10 Chapter 5 problems

5.1 Show that the process of subtracting one tensor from another results in a
quantity that is also a tensor.



158 Higher-rank tensors

5.2 Find the elements of the metric tensor for spherical coordinates by
forming the dot products of the relevant basis vectors.

5.3 Show how the derivatives given after Eq. 5.16 lead to the elements of the
metric tensor for spherical polar coordinates (Eq. 5.17).

5.4 Use the scale factors for spherical polar coordinates to verify the expres-
sions given in Chapter 2 for the gradient, divergence, curl, and Laplacian
in spherical coordinates.

5.5 Show that for cylindrical coordinates (r, φ, z) the Christoffel symbols
�2

12 and �2
21 are equal to 1/r .

5.6 Find gi j , the inverse of the spherical metric tensor gi j .
5.7 Use gi j to raise the indices of the vector Ai = (1, r2sinθ, sin2θ).
5.8 On the two-dimensional surface of a sphere of radius R, the square of

the differential length element is given by ds2 = R2dθ2 + R2sin2θdφ2.
Find the metric tensor gi j and its inverse gi j for this case.

5.9 What are the Christoffel symbols for the 2-D spherical surface of
Problem 5.8?

5.10 Show that the covariant derivative of the metric tensor equals zero.
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Tensor applications

This chapter provides examples of how to apply the tensor concepts contained
in Chapters 4 and 5, just as Chapter 3 provided examples of how to apply
the vector concepts presented in Chapters 1 and 2. As in Chapter 3, the intent
for this chapter is to include more detail about a small number of selected
applications than can be included in the chapters in which tensor concepts are
first presented.

The examples in this chapter come from the fields of Mechanics, Elec-
tromagnetics, and General Relativity. Of course, there’s no way to compre-
hensively cover any significant portion of those fields in one chapter; these
examples were chosen only to serve as representatives of the types of tensor
application you’re likely to encounter in those fields.

6.1 The inertia tensor

A very useful way to think of mass is this: mass is the characteristic of matter
that resists acceleration. This means that it takes a force to change the velocity
of any object with mass. You may find it helpful to think of moment of inertia
as the rotational analog of mass. That is, moment of inertia is the characteristic
of matter that resists angular acceleration, so it takes a torque to change the
angular velocity of an object.

Many students find that rotational motion is easier to understand by keeping
the relationships between translational and rotational quantities in mind. So
where translational motion dealt with position (x), velocity (�v), and accelera-
tion (�a), rotational motion has the analogous quantities of angle (θ ), angular
velocity ( �ω), and angular acceleration (�α). There are rotational analogs for
many other quantities; the translational quantities of force ( �F), mass (m), and
momentum ( �p) have the rotational equivalents of torque (�τ ), moment of inertia
(I ), and angular momentum ( �L).

159
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As you may also recall, several of the equations relating various translational
quantities have direct parallels in rotational motion. So the rotational equiva-
lent of Newton’s Second Law ( �F = m�a) is �τ = I �α.1 And whereas translational
momentum is related to mass and velocity by �p = m�v, you probably learned
that angular momentum is related to moment of inertia and angular velocity by
Lz = Iω.

When first presenting these relationships, most texts restrict the motion to
planar rotation of a single particle to keep things simple. So when you think of
the relationship between linear and angular velocity, you may think of some-
thing like v = ωr . And if Lz = mvr , then Lz = mr2ω. Taking mr2 as the
moment of inertia (I ) of a single particle, this becomes Lz = Iω. But the v
and the ω in those equations can’t really be velocities, since they’re written
as scalars rather than vectors, and that z subscript on the angular momentum
seems to be trying to tell you something.

It is. It’s telling you that you’re using an equation for one component of the
angular momentum (the z-component in this case), and this pertains to a single
particle moving about the origin in the xy plane. So these equations aren’t
wrong, they just have limited application. Specifically, they apply to cases of
planar motion about the z-axis.

The more-general relationship between the vectors that represent velocity,
angular velocity, and position is this:

�v = �ω × �r , (6.1)

in which the cross represents the vector cross product described in Chapter 2.
And the equations relating angular momentum to linear momentum, linear
velocity, and mass are

�L = �r × �p
= �r × (m�v)
= m�r × �v.

(6.2)

Before delving more deeply into these equations, you should consider the
implications of the (planar-motion) equation that says that the moment of
inertia of a single particle is Iparticle = mr2. One important idea in this
equation is that the moment of inertia of a particle depends not only on its
mass, but also on the location of that mass – specifically, the distance (r ) of
the mass from the axis of rotation. Thus the moment of inertia of an extended
object made up of many particles must depend not only on the object’s mass,

1 Or, if you prefer the more-general form of Newton’s Second Law ( �F = d �p
dt ), the analogous

rotational relationship is �τ = d �L
dt .
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but on the distribution of that mass. That’s true in the case of general motion
as well as planar rotation.

If you think of the rotational analog to the translational equation �p = m�v,
you may be tempted to write an equation such as �L = I �ω. But that equation
would indicate that the angular momentum �L must be in the same direction as
the angular velocity �ω, since multiplication by a scalar can change the length
but not the direction of a vector (unless the scalar is negative, in which case
the direction of the vector is reversed). For general motion, the situation is
more complex, as you can see by applying Eq. 6.2 to a single particle cir-
cling about the axis shown in Figure 6.1. In this figure, the particle “m” is
circling around the z-axis, so the angular velocity ( �ω) points straight up, paral-
lel to the z-axis. In this view, you’re looking down the x-axis toward the origin
of the coordinate system, which is well below the plane of the particle’s path.
The particle is initially at the position shown on the left side of the figure,
and its velocity vector is coming out of the page. Since the vector angular
momentum is given by �L = m�r × �v, you can find the direction of the angular
momentum at this initial instant by using your right hand to form the cross
product between �r and �v, as described in Section 2.2. If you do this properly,
you should see that �L initially points up and to the right, as shown by �Linitial

in the figure. At a later time, after the particle has completed one-half revolu-
tion about the z-axis, its velocity vector is into the page, as shown in the right

y

z

ω

mm

rlater

Velocity vlater
is into page

 Llater = mrlater × vlatermrinitial × vinitial  =  Linitial

Velocity vinitial
is out of page

rinitial

Figure 6.1 Single point mass moving around an axis.



162 Tensor applications

portion of the figure. At that later instant, the cross product between �r and �v
means that the direction of the angular momentum vector �L is up and to the
left, as shown by �Llater .

So not only is the angular-momentum vector �L not parallel to the angular-
velocity vector �ω, the direction of the �L is changing as the particle moves
around the axis, while the direction of �ω remains fixed along the z-axis.

Under these circumstances, you clearly cannot use a scalar value for the
moment of inertia to relate the angular momentum to the angular velocity
through an equation such as �L = I �ω. A scalar moment of inertia simply isn’t
capable of relating a vector in one direction to a different vector in another
direction. But if you’ve followed the developments of Chapters 4 and 5, you’re
already familiar with a type of object that is capable of taking in a vector (such
as �ω) and producing another vector (such as �L) that points in a different direc-
tion. That object is a tensor. So although you may have initially learned about
the moment of inertia as a scalar value in the case of planar motion about
the origin, you should now understand why more-general problems require a
more-powerful approach, and that involves the representation of inertia as a
tensor rather than a scalar.

You may be thinking that simply by adding another particle of equal mass
at the same distance on the other side of the z-axis, you could produce an
additional bit of angular momentum that would add to the angular momentum
of the original mass. In that case, the total angular momentum would indeed
point straight up the z-axis, in exactly the same direction as the angular veloc-
ity. So you may suspect that the relationship between the angular momentum
and the angular velocity (and hence the nature of the inertia tensor) depends on
the symmetry of the object. That suspicion is correct, as you’ll see when you
examine the components of the inertia tensor.

You can begin to understand the components of the inertia tensor by first
writing the tensor equation relating angular momentum to angular velocity:

�L = ��I �ω, (6.3)

and then using the definition of angular momentum:

�L = �r × �p
= �r × (m�v)
= m�r × �v
= m�r × ( �ω × �r).

The triple vector product in this expression can be simplified using the “BAC
minus CAB” rule described in Section 2.4, giving
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�L = m[ �ω(�r ◦ �r)− �r(�r ◦ �ω)].
This is a usable expression for the angular momentum of a single particle,

and you can modify it for use with multiple masses simply by summing (or for
a continuous object by integrating) over all the masses. Thus the expression
you’ll most often encounter will probably look something like this:

�L =
∑

i

mi [ �ω(�ri ◦ �ri )− �ri (�ri ◦ �ω)], (6.4)

where the index i denotes each element of mass of the object.
To see the moment of inertia in this expression, first expand the position

vector as �ri = xi ı̂ + yi ĵ + zi k̂ and the angular velocity vector as �ω = ωx ı̂ +
ωy ĵ+ωz k̂ (note that the angular velocity �ω is the same for every mass element
in a rigid body, so it’s not necessary to write �ωi ). Thus the expression for
angular momentum is

�L =
∑

i

mi [ �ω(xi ı̂ + yi ĵ + zi k̂) ◦ (xi ı̂ + yi ĵ + zi k̂)

− �ri (xi ı̂ + yi ĵ + zi k̂) ◦ (ωx ı̂ + ωy ĵ + ωz k̂)],
and performing the dot products gives

�L =
∑

i

mi [ �ω(x2
i + y2

i + z2
i )− �ri (xiωx + yiωy + ziωz)].

Since the x-component of �ω is ωx and the x-component of �ri is xi , the x-
component of the angular momentum can be written

Lx =
∑

i

mi [ωx (x
2
i + y2

i + z2
i )− xi (xiωx + yiωy + ziωz)]

=
∑

i

mi [ωx x2
i + ωx y2

i + ωx z2
i − x2

i ωx − xi yiωy − xi ziωz]

=
∑

i

mi [ωx (y
2
i + z2

i )− xi yiωy − xi ziωz].

The y- and z-components come out as

L y =
∑

i

mi [ωy(x
2
i + z2

i )− yi xiωx − yi ziωz],

Lz =
∑

i

mi [ωz(x
2
i + y2

i )− zi xiωx − zi yiωy].

These three equations for the components of angular momentum ( �L) may be
written as a single matrix equation:
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⎝Lx

L y

Lz

⎞
⎠ =

⎛
⎝
∑

i mi (y2
i + z2

i ) −
∑

i mi xi yi −∑i mi xi zi

−∑i mi yi xi
∑

i mi (x2
i + z2

i ) −
∑

i mi yi zi

−∑i mi zi xi −∑i mi zi yi
∑

i mi (x2
i + y2

i )

⎞
⎠
⎛
⎝ωx

ωy

ωz

⎞
⎠ .

(6.5)

The elements of the center matrix represent the components of the inertia ten-

sor ( ��I ). Note that the dimensions of each element are mass times distance
squared (SI units of kg m2), just as in the case of scalar moment of inertia.

In some texts, you’ll find the elements of the inertia tensor written as
something like

Iab = mi (δabr2
i − rarb),

which are the same elements as shown in Eq. 6.5.
The diagonal elements of the inertia tensor are called “moments of inertia”

and the off-diagonal elements are called “products of inertia.” To understand
the physical meaning of each of these elements, recall that the moment of
inertia characterizes an object’s tendency to resist angular acceleration. That
resistance depends not only on the object’s mass, but on the distribution of that
mass relative to the axis of rotation.

Each term Iab tells you how much angular momentum in the a-direction
is produced by rotation about the b-axis. So I11 = Ixx tells you how much
angular momentum the object produces in the x-direction due to rotation about
the x-axis. And I23 = Iyz tells you how much angular momentum the object
produces in the y-direction due to rotation about the z-axis.

How those off-diagonal terms come about is explained below, but you
should first take a look at the diagonal terms. In the expression for Ixx , for
each element of mass (mi ), the element’s mass is multiplied by the square of
the distance from the x-axis (y2

i + z2
i ). So this is just the three-dimensional ver-

sion of the equation you may have learned for planar rotation that says that the
moment of inertia of a particle is I = mr2, where r is the particle’s distance
from the axis of rotation. Looking down the diagonal of the inertia tensor, you
see the contribution to the x-component of angular momentum due to rotation
about the x-axis, the contribution to the y-component of angular momentum
due to rotation about the y-axis, and the contribution to the z-component of
angular momentum due to rotation about the z-axis. The bottom line is that dis-
tributions of mass that are symmetric about each axis contribute to the diagonal
terms of the moment of inertia matrix.

The off-diagonal elements of the inertia tensor are somewhat different. In
Iyz , for each element of mass (mi ), the element’s mass is multiplied by the
product of the element’s y- and z-coordinates (yi zi ). As explained above, this
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determines the contribution to the y-component of angular momentum due to
rotation about the z-axis. And when does rotation about the z-axis produce a
y-component of angular momentum? When there’s an asymmetric distribution
of mass about the z-axis, for example as shown with the single particle in Fig-
ure 6.1. Likewise, the Ixy term determines the contribution to the x-component
of angular momentum due to rotation about the y-axis. Such contributions
come from mass distributions that are asymmetric about the y-axis. Hence
distributions of mass that are asymmetric about a given axis contribute to the
off-diagonal terms of the moment of inertia matrix.

To see how this works, consider the five point masses on the corners and top
of a pyramid as shown in Figure 6.2. To determine the inertia tensor for this
configuration of masses, you simply have to plug the mass and coordinates of
each of the masses into Equation 6.5. If the mass of each of the five masses is
the same and equal to “m” and the height of the pyramid is equal to the length
of each of the bottom sides (with a value of 2a as shown in Figure 6.2), the Ixx

term is simply

Ixx = m1(y
2
1 + z2

1)+ m2(y
2
2 + z2

2)+ m3(y
2
3 + z2

3)+ m4(y
2
4 + z2

4)

+ m5(y
2
5 + z2

5)

= m1(a
2 + 02)+ m2(a

2 + 02)+ m3[(−a)2 + 02] + m4[(−a)2 + 02]
+ m5(0

2 + (2a)2)

= 8ma2,

y

x

z

m1
(a,a,0)

m2

m3
(–a,–a,0)

m4
(a,–a,0)

m5 (0,0,2a)

a

2a

a

a

a

(–a,a,0)

Figure 6.2 Five point masses arrayed as a pyramid.
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and you should obtain the same result for the other diagonal elements Iyy and
Izz . Moving on to the off-diagonal elements, the Ixy term is

Ixy = −m1x1 y1 − m2x2 y2 − m3x3 y3 − m4x4 y4 − m5x5 y5

= −m1(a)(a)− m2(−a)(a)− m3(−a)(−a)− m4(a)(−a)− m5(0)(0)

= −m(2a2 − 2a2) = 0,

which is the same as all other off-diagonal elements. Thus the matrix repre-
senting the inertia tensor for the configuration shown in Figure 6.2 is

��I =
⎛
⎝ 8ma2 0 0

0 8ma2 0
0 0 8ma2

⎞
⎠ .

There’s a great deal of information in the components of this inertia tensor.
The fact that the off-diagonal elements are all zero means that the selected x-,
y-, and z-axes are “principal axes” for this object and choice of origin, and
the moments of inertia are “principal moments” of the object. When an object
rotates about one of the principal axes, the angular momentum vector and the
angular velocity vector are parallel. This is an indication of the object’s sym-
metry. In this case, the fact that all three principal moments are equal means
that this object qualifies as a “spherical top” (in Mechanics, “top” refers to any
rigid rotating object). And for a spherical top, any three mutually orthogonal
axes are principal axes.

If the height of mass m5 above the plane of the other four masses is increased
to twice its original height (so that its z-coordinate becomes 4a instead of 2a),
the greater distance from the x- and y-axes increases the moment of inertia
about those axes, so that the inertia tensor becomes

��I =
⎛
⎝ 20ma2 0 0

0 20ma2 0
0 0 8ma2

⎞
⎠ .

Of course, the distance of m5 from the z-axis remains zero irrespective of its
height, so this mass is not contributing to the component Izz in either case, and
that component remains the same. Now that only two of the principal moments
of inertia are equal, the object is no longer a spherical top, and has become a
“symmetric top” (and if all three principal moments were different, the object
is called an “asymmetric top”). One final bit of terminology: if one of the
principal moments of an object is zero and the other two are equal to one
another, the object is called a “rotor.”

Another way to change the inertia tensor of this object is to fiddle with the
masses of the particles. If, for example, you double the mass of m5 from its
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original value of m to 2m, while leaving the other four masses the same, the
inertia tensor becomes

��I =
⎛
⎝ 12ma2 0 0

0 12ma2 0
0 0 8ma2

⎞
⎠ .

As expected, there’s no change in the Izz component since m5 doesn’t
contribute to that moment.

Now consider what will happen to the inertia tensor if you rotate the coor-
dinate axes. Remember, the inertia tensor is determined for a given location of
the origin and a given orientation of the coordinate axes, so it seems reasonable
to expect a change in the components if the coordinate axes are rotated.

To test this, imagine rotating the coordinate axes counter-clockwise about
the x-axis, as shown in Figure 6.3. In this figure, you’re looking down the
x-axis toward the origin, so the y- and z-axes appear tilted (they’re labeled
y′ and z′ to distinguish them from the original y- and z-axes). In this case,
the rotation angle is approximately 30◦. Figure 6.3(a) shows that the axes
have rotated while the masses remained in their original positions, while Fig-
ure 6.3(b) shows the view you would get if you tilted your head to make the
z′-axis vertical and y′-axis horizontal.

What effect might this have on the inertia tensor? To determine that, you’ll
need to know the coordinates of each of the masses in the new (rotated) coordi-
nate system (that is, you need to know x ′, y′, and z′ for each mass). Fortunately,
Chapter 4 should have given you some idea of how to do that by using a rota-
tion matrix to convert between the original and rotated coordinates. In this
case, that rotation matrix is given by

y′

z′

m1

m2

m3
m4

m5

2a

a a

y′

z′

m1

m2

m3

m4

m5

2a

a

a

(a) (b)

Figure 6.3 Coordinate axes rotated 30◦ anti-clockwise around x-axis.
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⎝ x ′

y′
z′

⎞
⎠ =

⎛
⎝ 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ . (6.6)

If you go back to the original masses (all five masses equal to mass m)
and original height of m5 (which is 2a above the xy plane) and then apply this
rotation, you should find the following values for the components of the matrix
representing the inertia tensor:

��I =
⎛
⎝ 8ma2 0 0

0 8ma2 0
0 0 8ma2

⎞
⎠ .

If you’re suprised to find that there’s no change from the original inertia ten-
sor (the one without the rotation), remember that the symmetry of this object
makes it a spherical top, which means that any set of three orthogonal axes will
be principal axes. So tilting the axes should not have caused any change in the
inertia tensor.

That sounds reasonable enough, but if you compare the location of the
masses in Figure 6.3 to the single-mass case shown in Figure 6.1, doesn’t it
also seem reasonable to expect that m5 will produce a component of angular
momentum in the −y-direction (as the single mass did in Figure 6.1)?

Yes, it does. And, in fact, mass m5 does indeed produce a component of
angular momentum in the −y-direction. To demonstrate that, just set the other
four masses to zero and calculate the inertia tensor for m5 alone (don’t forget
that the coordinate axes are rotated). You should get

��I =
⎛
⎝ 4ma2 0 0

0 3ma2 −1.73ma2

0 −1.73ma2 ma2

⎞
⎠ .

So there it is: Iyz (which represents the y-component of angular momentum
produced by rotation around the z-axis) is clearly not zero. But why did you
get zero for all the off-diagonal elements when you first calculated the inertia
tensor for the pyramid with tilted coordinate axes? The answer is that the other
four masses also have something to say about the inertia tensor. To isolate their
contribution to Iyz , try setting the mass of m5 to zero and leaving the other four
masses equal to m. The inertia tensor should then be

��I =
⎛
⎝ 4ma2 0 0

0 5ma2 1.73ma2

0 1.73ma2 7ma2

⎞
⎠ .
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y′

z′

m1

r1

m4

m5

r5

r4Velocity v4 is
out of page

L4 = m4r4× v4

Velocity v1 is
into page

Velocity v5 is
into page

L1 = m1r1× v1

L5= m5r5× v5

Figure 6.4 Angular momentum vectors for masses in plane of page.

And there’s the answer: the other four masses contribute exactly as much
angular momentum in the positive y-direction as m5 contributes to the negative
y-direction, as illustrated in Figure 6.4. And remember from Chapter 5 that
you can add tensors by adding their components. So when you add the inertia
tensor for m5 to the inertia tensor for the other four masses, you get the (nicely
diagonal) inertia tensor for the five-mass pyramid.

To demonstrate the balance between m5 and the other four masses, you may
find it interesting to again move m5 up the z-axis to twice its original height
and then perform the 30 degree rotation of the coordinate axes. In this case,
you should find the inertia tensor to be

��I =
⎛
⎝ 20ma2 0 0

0 17ma2 −5.2ma2

0 −5.2ma2 11ma2

⎞
⎠ ,

and clearly the Iyz terms from m5 and the other four masses no longer
cancel.

You can determine the inertia tensor for any orientation of the coordinate
axes by applying rotations about multiple axes. If you wish, for example, to
rotate first about the x-axis by angle θ1 and then about the y-axis by angle θ2,
you can combine the rotation matrices as
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⎝ x ′

y′
z′

⎞
⎠ =

⎛
⎝ cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎞
⎠
⎛
⎝ 1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ ,
(6.7)

which in the case of two 30 degree rotations (first about the x-axis and then
about the y-axis) gives a combined rotation matrix of⎛

⎝ x ′
y′
z′

⎞
⎠ =

⎛
⎝ 0.866 −0.25 4.33

0 0.866 0.5
−0.5 −0.433 0.75

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ . (6.8)

If you leave m5 at height 4a and then apply this rotation to the coordinates,
the inertia tensor becomes

��I =
⎛
⎝ 17.8ma2 2.6ma2 3.9ma2

2.6ma2 17ma2 −4.5ma2

3.9ma2 −4.5ma2 13.3ma2

⎞
⎠ . (6.9)

You can perform a quick check on your calculation by verifying that the
coordinate-axis rotation has changed neither the trace nor the determinant of
the matrix.2

Instead of finding the new coordinates of each mass in the rotated system,
an alternative approach allows you to find the inertia tensor for rotated coordi-
nates directly. That approach is to apply a “similarity transform” to the original
inertia tensor. Here’s how that works: the angular momentum is related to
the inertia tensor and angular velocity in the original (unrotated) coordinate
system as

�L = ��I �ω,
and you rotate the coordinates by applying a rotation matrix R (which may be
the product of several rotation matrices). You can therefore write

�L ′ = R �L = R( ��I �ω).
And since the product of any matrix and its inverse is just the identity matrix,
you can insert the term R−1 R in front of �ω:

�L ′ = R �L = R ��I (R−1 R) �ω
= (R ��I R−1)R �ω.

But R �ω is just �ω′, so

�L ′ = (R ��I R−1) �ω′.
2 The matrix review on the book’s website explains how to do these calculations.
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Thus the expression (R ��I R−1) relates angular momentum to angular veloc-
ity in the rotated coordinate system, which means that this expression is the
inertia tensor in that system. So instead of calculating the new coordinates for
each mass and plugging them into the equation for the inertia tensor, you can
instead simply apply the rotation matrix and its inverse to the matrix represent-
ing the inertia tensor directly (but remember that the sequence matters when
you’re doing matrix multiplication).

Using this approach, the process looks like this:

��I ′ =
⎛
⎝ 0.866 −0.25 4.33

0 0.866 0.5
−0.5 −0.433 0.75

⎞
⎠
⎛
⎝ 20ma2 0 0

0 20ma2 0
0 0 8ma2

⎞
⎠

×
⎛
⎝ 0.866 −0.25 4.33

0 0.866 0.5
−0.5 −0.433 0.75

⎞
⎠
−1

=
⎛
⎝ 17.8ma2 2.6ma2 3.9ma2

2.6ma2 17ma2 −4.5ma2

3.9ma2 −4.5ma2 13.3ma2

⎞
⎠ ,

which is identical to the result obtained by inserting the rotated coordinates
into the inertia tensor.

If you’ve studied matrix algebra, you may be wondering about the possibil-
ity of finding the principal axes and principal moments by manipulating the
matrix representing the inertia tensor into a diagonal form. That is certainly
possible, and you can read about doing that using eigenvectors and eigenvalues
on this book’s website.

And if you’re able by visual inspection to determine the angles of rotation
needed to align the axes with the symmetries of the object, you can use the
similarity transform approach to diagonalize the inertia matrix. You can see
how that works by looking at the problems at the end of this chapter and the
on-line solutions.

6.2 The electromagnetic field tensor

One of the defining characteristics of our modern world is the availabil-
ity of broadband communication channels which allow near-instantaneous
transfer of information over great distances without the need for physical con-
nection. The technology used in this communication descends directly from
the equations synthesized by Scotsman James Clerk Maxwell in the 1860s,
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now called “Maxwell’s Equations.” In view of the impact of electromagnetic
telecommunications on our lives, it’s not surprising that in 2004 the readers of
Physics World voted Maxwell’s Equations to be the “greatest equations” ever
developed.

The four vector equations that have come to be called Maxwell’s Equations
are Gauss’s Law for electric fields, Gauss’s Law for magnetic fields, Faraday’s
Law, and the Ampere–Maxwell Law, each of which may be written in inte-
gral or differential form. The integral forms describe the behavior of electric
and magnetic fields over surfaces or around paths, while the differential forms
apply to specific locations. The differential forms are most relevant to the vec-
tor and tensor operations discussed in this book, involving the scalar product,
divergence, curl, and partial derivatives discussed in Chapter 2. They’re also
closely related to the subject of this section, the electromagnetic field-strength
tensor.

The differential forms of Maxwell’s Equations are usually written as

Gauss’s Law for electric fields: �∇ ◦ �E = ρ

ε0
,

Gauss’s Law for magnetic fields: �∇ ◦ �B = 0,

Faraday’s Law: �∇ × �E = −∂ �B
∂t
,

Ampere–Maxwell Law: �∇ × �B = μ0 �J + μ0ε0
∂ �E
∂t
.

In order to understand the electromagnetic tensor, you may find it helpful to
briefly review the meaning of each of these equations.3

�∇ ◦ �E = ρ
ε0

Gauss’s Law for electric fields states that the divergence ( �∇◦) of the electric
field ( �E) at any location is proportional to the electric charge density (ρ) at
that location. That’s because electrostatic field lines begin on positive charge
and end on negative charge (hence the field lines tend to diverge away from
locations of positive charge and converge toward locations of negative charge).

�∇ ◦ �B = 0

Gauss’s Law for magnetic fields tells you that the divergence ( �∇◦) of the
magnetic field ( �B) at any location must be zero. This is true because there
is apparently no isolated “magnetic charge” in the universe, so magnetic field
lines neither diverge nor converge.

3 Complete descriptions may be found in any introductory electromagnetics text.
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�∇ × �E = − ∂ �B
∂t

Faraday’s Law indicates that the curl ( �∇×) of the electric field ( �E) at any loca-
tion is equal to the negative of the time rate of change of the magnetic field at
that location. That’s because a changing magnetic field produces a circulating
electric field.

�∇ × �B = μ0 �J +μ0ε0
∂ �E
∂t

Ampere’s Law, as modified by Maxwell, tells you that the curl ( �∇×) of the
magnetic field ( �B) at any location is proportional to the electric current density
( �J ) plus the time rate of change of the electric field at that location. This is
the case because a circulating magnetic field is produced both by an electric
current and by a changing electric field.

Note that Maxwell’s Equations relate the spatial behavior of fields to the
sources of those fields. Those sources are electric charge (with density ρ)
appearing in Gauss’s Law for electric fields, electric current (with density �J )
appearing in the Ampere–Maxwell Law, changing magnetic field (with time

derivative ∂ �B
∂t ) appearing in Faraday’s Law, and changing electric field (with

time derivative ∂ �E
∂t ) appearing in the Ampere–Maxwell Law.

One additional equation is needed to fully characterize electromagnetic
interactions. That equation is called the “continuity equation,” usually written
like this:

∂ρ

∂t
= −�∇ ◦ �J ,

where ρ is the density of electric charge and �J is the current density.
The continuity equation tells you that the time rate of change of the density

of electric charge ( ∂ρ
∂t ) equals the negative of the divergence of the electric

current density ( �∇◦ �J ). That’s because negative divergence means convergence,
and if the convergence of the current density �J is positive at a point, then more
positive charge must be arriving at that location than is being carried away. If
that’s happening, then the density of positive charge at that point must increase
(meaning that ∂ρ

∂t will be positive in this case).
As valuable as Maxwell’s Equations are individually, the real power of these

equations is realized by combining them together to produce the wave equa-
tion. Taking the curl of both sides of Faraday’s Law and inserting the curl of �B
from the Ampere–Maxwell Law results in the equation

∇2 �E = μ0ε0
∂2 �E
∂t2

, (6.10)
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where ∇2() = �∇ ◦ �∇() is the vector form of the Laplacian operator.4 This
equation applies to regions in which the charge density (ρ) and the current
density ( �J ) are both zero.

You can find a similar equation for the magnetic field by taking the curl of
both sides of the Ampere–Maxwell Law and then inserting the curl of �E from
Faraday’s Law. This gives

∇2 �B = μ0ε0
∂2 �B
∂t2

. (6.11)

It’s instructive to compare Eqs. 6.10 and 6.11 to the general equation for a
propagating wave:

∇2 �A = 1

v2

∂2 �A
∂t2

, (6.12)

where v is the speed of propagation of the wave. Note the 1/v2 term, which
leads to the conclusion that the velocity of an electromagnetic wave depends
only on the electric permittivity (ε0) and magnetic permeability (μ0) of free
space (specifically, μ0ε0 = 1/v2, or v = 1/

√
μoε0 = 3 × 108 m/s). Most

importantly, that velocity is completely independent of the motion of the
observer. It was this feature of electromagnetic waves that put Albert Einstein
onto the path that eventually led to the Theory of Special Relativity.

To arrive at the Theory of Special Relativity, Einstein held fast to two
postulates. Those postulates are:

1) The laws of physics must be the same in all inertial (that is, non-
accelerating) frames of reference.

2) The speed of light in a vacuum is constant and does not depend on the
motion of the source or observer.

Steadfast faithfulness to these postulates even in the face of counter-intuitive
conclusions allowed Einstein to see that distances in space and intervals of time
are not absolute but depend on the relative motion of the observer. Additionally,
space and time are not separate but are linked together into four-dimensional
spacetime, and it is the four-dimensional spacetime interval that is invariant
across all inertial reference frames.

To understand Einstein’s approach, consider the two Cartesian reference
frames shown in Figure 6.5. As indicated by the arrow in the figure, the primed
reference frame is moving with velocity �v in the positive x-direction. Using the
traditional Galilean approach, the coordinate (x , y, and z) and time (t) values

4 If you’d like to see the details of the derivation of the electromagnetic-wave equation, you’ll
find them in the on-line solutions to the problems at the end of this chapter.
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x

y

z

x′

y′

z′

v

Figure 6.5 Primed reference frame moving along x-axis with velocity �v.

for a point measured in both the unprimed and primed coordinate systems are
related by these equations:

t ′ = t,

x ′ = x − vt,

y′ = y,

z′ = z,

since the primed frame is moving only in the x-direction.5

Einstein realized that the second postulate of Special Relativity (the con-
stancy of the speed of light) is inconsistent with the Galilean transform shown
above, and that consistent results are obtained only when a different transform
is used between the unprimed and primed coordinate systems. That transform
must hold the space–time interval invariant across inertial reference frames.
But what exactly is the space–time interval (that is, how should you combine
the space terms and the time term)?

The answer to that question can be understood by imagining a pulse of light
radiating spherically outward from a certain location. Calling the speed of
light c, an observer in the unprimed coordinate system will find the square
of the distance covered by a wavefront of the light wave in time t to be

5 These equations assume that the origins of the two coordinate systems coincide at time t = 0.
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x2 + y2 + z2 = ct2. Likewise, an observer in the primed coordinate system
will write this as x ′2 + y′2 + z′2 = ct ′2. But by the second postulate of special
relativity, the speed of light must be the same for all observers. So

ct2 − x2 − y2 − z2 = ct ′2 − x ′2 − y′2 − z′2,

which indicates that the sign of the time term must be opposite to the sign of
the spatial terms if the speed of light is to be the same for all observers. Of
course, the negative sign could equally well be attached to the time term (as
long as the spatial terms were made positive), and you’ll find some texts using
that convention.

The combination of one time and three spatial coordinates into a single
“four-vector” is best expressed using index notation:

x0 = ct,

x1 = x,

x2 = y,

x3 = z,

in which the speed of light (c) is used in the time term to ensure that all four
coordinates have dimensions of length.

Using this notation, the space–time interval (ds) can be written as

(ds)2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

This interval is the space–time equivalent of distance (ds2 = dx2+dy2+dz2)
in three-dimensional space.

Transformations that preserve the invariance of the space–time interval
across inertial reference frames are called “Lorentz transforms” after the Dutch
physicist Hendrik Lorentz. For motion in +x-direction with speed v, the
Lorentz transformation is

x ′0 = γ (x0 − βx1),

x ′1 = γ (x1 − βx0),

x ′2 = x2,

x ′3 = x3,

where

β = |v|
c
,

and
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γ = 1√
1− v2

c2

= 1√
1− β2

.

This form of the space–time interval can be written using the metric tensor
gαβ :

(ds)2 = gαβdxαdxβ,

in which the tensor gαβ corresponds to the Minkowski metric for flat space-
time. In matrix form, that metric is

��g =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

As you may recall if you’ve studied modern physics, the invariance of
the space–time interval under Lorentz tranformation leads to several interest-
ing results for observers in different inertial reference frames. Those results
include:

(1) Length contraction: An observer in a given reference frame measures
lengths in a moving reference frame to be contracted along the direction
of motion.

(2) Time dilation: An observer in a given reference frame measures time in a
moving reference frame to run more slowly.

(3) Relativity of simultaneity: An observer in a given reference frame will
not agree with an observer in a moving reference frame as to whether two
events are simultaneous.

Writing physical laws in a form that clearly fits within the framework of
Special Relativity has several benefits: such “manifestly covariant” laws have
the same form in all inertial reference frames, and the quantities involved
transform between reference frames in predictable ways. Any covariant the-
ory of electromagnetism must incorporate the experimental fact that quantity
of charge is a scalar (invariant between reference frames), and that Maxwell’s
Equations and the Lorentz force law are true in all inertial reference frames.
This requires a tensor version of the electromagnetic field equations and a
four-vector version of the Lorentz force law, which can be accomplished by
expressing the electric charge density ρ and current density �J as a four-vector
called the “four-current”:

�J = (cρ, Jx , Jy, Jz).
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With the four-current in hand, a tensor version of Maxwell’s Equations
can be achieved by combining the components of the electric and magnetic
field into an “electromagnetic field tensor.” The matrix representing the
contravariant version of this tensor is6

Fαβ =

⎛
⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞
⎟⎟⎠ . (6.13)

The covariant version of this tensor can be found by lowering the indices
using the metric tensor. The result is

Fαβ =

⎛
⎜⎜⎝

0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

⎞
⎟⎟⎠ . (6.14)

Another useful tensor is the dual contravariant electromagnetic field tensor

Fαβ =

⎛
⎜⎜⎝

0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0

⎞
⎟⎟⎠ . (6.15)

One benefit of these tensor expressions is that all of Maxwell’s Equations
may now be expressed using just two tensor equations. Those two equations
are:

∂Fαβ

∂xα
= μ0 Jβ, (6.16)

and

∂Fαβ

∂xα
= 0. (6.17)

Where are Maxwell’s Equations in these expressions? Well, to find Gauss’s
Law for electric fields, take β = 0 in Eq. 6.16:

∂Fα0

∂xα
= μ0 J 0.

6 You should be aware that there are almost as many versions of this matrix as there are authors;
this book’s website has an explanation of the reasons for the differences between the versions
found in several popular texts.
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Inserting the values from the electromagnetic field-strength tensor of Eq. 6.13
and summing over the dummy index α gives

∂(0)

∂(ct)
+ ∂(Ex/c)

∂x
+ ∂(Ey/c)

∂y
+ ∂(Ez/c)

∂z
= μ0(cρ).

Thus
∂(Ex )

∂x
+ ∂(Ey)

∂y
+ ∂(Ez)

∂z
= μ0(c

2ρ),

and, since c2 = 1/(ε0μ0),

∂(Ex )

∂x
+ ∂(Ey)

∂y
+ ∂(Ez)

∂z
= μ0

ε0μ0
ρ,

or

�∇ ◦ �E = ρ

ε0
,

which is Gauss’s Law for electric fields.
To get the Ampere–Maxwell Law, look at the equations that result from

setting β equal to 1, 2, and 3 in Eq. 6.16:

∂Fα1

∂xα
= μ0 J 1,

∂Fα2

∂xα
= μ0 J 2,

∂Fα3

∂xα
= μ0 J 3.

As above, just insert the values from the electromagnetic field-strength tensor
of Eq. 6.13 and sum over the dummy index α:

∂(−Ex/c)

∂(ct)
+ ∂(0)

∂x
+ ∂(Bz)

∂y
+ ∂(−By)

∂z
= μ0(Jx ),

∂(−Ey/c)

∂(ct)
+ ∂(−Bz)

∂x
+ ∂(0)

∂y
+ ∂(Bx )

∂z
= μ0(Jy),

∂(−Ez/c)

∂(ct)
+ ∂(By)

∂x
+ ∂(−Bx )

∂y
+ ∂(0)

∂z
= μ0(Jz).

Hence

∂(Bz)

∂y
− ∂(By)

∂z
= μ0(Jx )+ 1

c2

∂(Ex )

∂t
,

∂(Bx )

∂z
− ∂(Bz)

∂x
= μ0(Jy)+ 1

c2

∂(Ey)

∂t
,

∂(By)

∂x
− ∂(Bx )

∂y
= μ0(Jz)+ 1

c2

∂(Ez)

∂t
.
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Recognizing the partial derivatives of the magnetic field as the components of
the curl of �B, this is

�∇ × �B = μ0 �J + μ0ε0
∂ �E
∂t
,

the Ampere–Maxwell Law.
The other two Maxwell Equations (Gauss’s Law for magnetic fields and

Faraday’s Law) may be obtained in a similar fashion using the dual electro-
magnetic field-strength tensor (Eq. 6.15). For example, to find Gauss’s Law
for magnetic fields, take β = 0 in Eq. 6.17:

∂Fα0

∂xα
= 0.

Inserting the values from the dual electromagnetic field-strength tensor of
Eq. 6.15 and summing over the dummy index α gives

∂(0)

∂(ct)
+ ∂(Bx )

∂x
+ ∂(By)

∂y
+ ∂(Bz)

∂z
= 0,

which is

�∇ ◦ �B = 0,

Gauss’s Law for magnetic fields.
And to get Faraday’s Law, look at the equations that result from setting β

equal to 1, 2, and 3 in Eq. 6.17:

∂Fα1

∂xα
= 0,

∂Fα2

∂xα
= 0,

∂Fα3

∂xα
= 0.

As before, just insert the values from the dual electromagnetic field-strength
tensor of Eq. 6.15 and sum over the dummy index α:

∂(−Bx )

∂(ct)
+ ∂(0)

∂x
+ ∂(−Ez/c)

∂y
+ ∂(Ey/c)

∂z
= 0,

∂(−By)

∂(ct)
+ ∂(Ez/c)

∂x
+ ∂(0)

∂y
+ ∂(−Ex/c)

∂z
= 0,

∂(−Bz)

∂(ct)
+ ∂(−Ey/c)

∂x
+ ∂(Ex/c)

∂y
+ ∂(0)

∂z
= 0.
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So
∂(Ey)

∂z
− ∂(Ez)

∂y
= ∂(Bx )

∂t
,

∂(Ez)

∂x
− ∂(Ex )

∂z
= ∂(By)

∂t
,

∂(Ex )

∂y
− ∂(Ey)

∂x
= ∂(Bz)

∂t
.

Recognizing the partial derivatives of the electric field as the components of
the curl of �E , this is Faraday’s Law:

�∇ × �E = −∂ �B
∂t
.

So the use of tensors allows you to write Maxwell’s Equations in a simpler
form. But the real power of tensors is to help you understand the behavior
of electric and magnetic fields when viewed from different reference frames.
Specifically, by transforming to a moving reference frame, it becomes clear
that electric and magnetic fields depend on the state of motion of the observer.

To see how that comes about, imagine an observer in a reference frame
moving along the positive x-axis at a constant speed v. You can investi-
gate the behavior of electric and magnetic fields as seen by this observer by
transforming the electromagnetic field tensor to the observer’s reference frame.

Recall the Lorentz transform matrix for motion along the x-axis with
speed v:

A =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (6.18)

So to transform to the primed coordinate system, use

��F ′ = A ��F AT ,

which is

��F ′ =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠.
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Multiplying the center matrix by the right matrix gives⎛
⎜⎜⎝

(−Ex/c)(−γβ) (−Ex/c)(γ ) −Ey/c −Ez/c
(Ex/c)(γ ) (Ex/c)(−γβ) −Bz By

(Ey/c)(γ )+ (Bz)(−γβ) (Ey/c)(−γβ)+ (Bz)(γ ) 0 −Bx

(Ez/c)(γ )+ (−By)(−γβ) (Ez/c)(−γβ)+ (By)(−γ ) Bx 0

⎞
⎟⎟⎠ ,

which, when multiplied by the left array, gives⎛
⎜⎜⎝
(Ex/c)γ 2β − (Ex/c)γ 2β −(Ex/c)γ 2 + (Ex/c)γ 2β2

(Ex/c)γ 2 − (Ex/c)γ 2β2 0
(Ey/c)γ − (Bz)γβ −(Ey/c)γβ + (Bz)γ

(Ez/c)γ + (By)γβ −(Ez/c)γβ − (By)γ

−(Ey/c)γ + (Bz)γβ −(Ez/c)γ − (By)γβ

(Ey/c)γβ − (Bz)γ (Ez/c)γβ + (By)γ

0 −Bx

Bx 0

⎞
⎟⎟⎠ .

Thus

��F ′ =

⎛
⎜⎜⎝

0 −Ex/c
Ex/c 0

γ (Ey/c − βBz) γ (Bz − βEy/c)
γ (Ez/c + βBy) −γ (By + βEz/c)

γ (Ey/c − βBz) −γ (Ez/c + βBy)

−γ (Bz − βEy/c) γ (By + βEz/c)
0 −Bx

Bx 0

⎞
⎟⎟⎠ .

Comparing this to Eq. 6.13, the components of the electric field in the new
(primed) coordinate system can be related to the components of the electric
field in the original (unprimed) coordinate system by

E ′x = Ex ,

E ′y = cγ (Ey/c − βBz),

E ′z = cγ (Ez/c + βBy),

(6.19)

and the magnetic field components in the new (primed) system are

B ′x = Bx ,

B ′y = γ (By + βEz/c),

B ′z = γ (Bz − βEy/c).

(6.20)
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This is a profound result, since it indicates that the existence of electric and
magnetic fields depends on the motion of the observer.

To understand the implications of these results, consider the case in which
Ex = Ey = Ez = 0 but one or more components of �B are non-zero (this
occurs, for example, when a long, straight wire carries a steady electric cur-
rent). This means that an observer in the unprimed coordinate system sees
a magnetic field but no electric field. However, transforming to the primed
coordinate system, Eqs. 6.19 and 6.20 tell you that an observer in the primed
coordinate system sees both electric and magnetic fields (since in this case
E ′y = −cγβBz and E ′z = cγβBy). So does the magnetic field exist or not?
The answer depends on the motion of the observer.

Now consider a case in which Bx = By = Bz = 0 but one or more
components of �E are non-zero in the unprimed system (for example, an elec-
tric charge at rest in the unprimed system). For this case, an observer in the
primed system does see a magnetic field with components B ′y = γβEz/c and
B ′z = −γβEy/c (this makes sense, since the observer in the primed system
sees a moving electric charge, which is an electric current, and electric currents
produce magnetic fields). Cases such as these explain the reasoning behind the
statement that electric and magnetic fields “have no independent existence.”

The problems at the end of this chapter will give you an idea of the relative
magnitudes of fields seen by an observer at rest and a second observer moving
at a significant fraction of the speed of light.

6.3 The Riemann curvature tensor

In the decade after publishing his Theory of Special Relativity in 1905, Albert
Einstein turned his attention to what he called a “deficiency” in classical
mechanics: the lack of an explanation for the precise equality of inertial and
gravitational mass. An object’s inertial mass determines its resistance to accel-
eration, and its gravitational mass determines its response to a gravitational
field. The equality of these differently defined masses cannot be explained
by classical mechanics, and Einstein’s scientific instincts told him that the
resolution of this deficiency could be achieved by “an extension of the prin-
ciple of relativity to spaces of reference which are not in uniform motion
relative to one another.”7 He applied the word “General” to this extension of
his theory of relativity because this new theory would not be restricted to the
non-accelerating reference frames of Special Relativity.
7 A. Einstein, The Meaning of Relativity.
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Early in his work on the General Theory, Einstein constructed a Gedanken-
experiment (that is, a mental exercise) in which he imagined a group of objects
with different mass far away from the Earth and from all other masses – you
can think of this as a bunch of rocks far out in space. The behavior of these
objects is observed from two reference systems, one of which is called sys-
tem K and is “inertial” or non-accelerating with respect to the rocks. The other
system, called system K′, is in uniform acceleration with respect to the first.
For an observer in the K′ system, the objects all accelerate in the same direc-
tion (opposite to the direction of the acceleration of the K′ system) and at
the same rate (equal to the rate of acceleration of the K′ system). Seeing all
objects accelerating in the same direction and at the same rate, that observer
would be entirely justified in concluding that the acceleration of the objects
is produced by an external gravitational field and that the K′ system is at rest.
Einstein realized that both the K and the K′ systems are valid frames of refer-
ence, and he termed the complete equivalence of such systems the “principle
of equivalence.”

Einstein’s next step was to overlay the z′-axis of K′ system with the z-axis
of the K system and then to allow the K′ system to rotate about the z′-axis
with uniform angular speed (recall that a rotating object experiences centripetal
acceleration, so rotation makes K′ an accelerated system). If system K′ were
not rotating, the size of objects and rate of time flow measured in the K and K′
systems would be the same. But when system K′ is rotating, objects at rest in
K′ will be moving when measured in the K system and will therefore experi-
ence length contraction and time dilation, and the amount of contraction and
dilation will depend on the location of the objects (since objects farther from
the rotation axis will have higher velocity). Since the principle of equivalence
demands that an accelerated system and a system at rest in a gravitational field
are equivalent, Einstein was forced to conclude that length contraction and
time dilation could also be produced by gravity, or as he put it “the gravita-
tional field influences and even determines the metrical laws of the space–time
continuum.”

Those metrical laws are expressed using tensors, so the General Theory
of Relativity relies on tensor formulation of physical laws and on concepts
described in earlier chapters, such as the metric tensor, Christoffel symbols,
and covariant derivatives. The most important tensor in General Relativity is
the Riemann curvature tensor, sometimes called the Riemann–Christoffel ten-
sor after the nineteenth-century German mathematicians Bernhard Riemann
and Elwin Bruno Christoffel. The importance of this tensor stems from the
fact that non-zero components are the hallmark of curvature; the vanishing of
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the Riemann tensor is both a necessary and a sufficient condition for Euclidean
(flat) space.

Most texts use one of two ways to derive the Riemann curvature tensor:
parallel transport or the commutator of the covariant derivative. To understand
the parallel-transport approach, you should first understand that “parallel trans-
port” refers to a method of moving a vector around a space while keeping the
length and direction of the vector the same. In Cartesian flat space, making
sure the vector’s magnitude and direction don’t change is straightforward –
just move the vector around without allowing the x-, y-, or -z components to
change. If the components don’t change, then the length and the direction of
the vector don’t change, and this satisfies the requirements of parallel transport.

In curved spaced, the situation is more complex. For one thing, “pointing
in the same direction” becomes more difficult to define. Consider the two-
dimensional space that is the surface of the Earth (and pretend for the moment
that it’s perfectly smooth). Imagine a vector that is initially at the equator (say
a bit north of Quito, Ecuador) and is pointing due north, directly along the
meridian line. Now imagine transporting that vector toward the north pole,
all the while making sure it remains pointed exactly along the meridian line.
Remember, the entire space is the surface of the Earth, so the vector must
remain tangent to the surface (that is, locally horizontal) as you move it. If you
continue moving your vector along the meridian line and pass over the North
Pole and then “down” the other side of the Earth, you will eventually reach the
equator again somewhere near the middle of Indonesia. Your vector will still
be pointing along the meridian, but now it will be pointing south. So although
you’ve kept your vector pointing “in the same direction” (that is, along the
meridian) over the entire trip, it’s gone from pointing north to pointing south.

Now imagine making another trip, also starting with a north-pointing vector
at the equator near Quito, but this time moving along the equator instead of
over the North Pole. Once again, as you move you make sure that your vector
continues to point north (along the local meridian). After a long journey, you
arrive in the middle of Indonesia, but this time you find that your vector is
pointing north. Hence the direction of the vector at the end of the journey
depends on the path taken, even though you used parallel transport in each
case. And whenever the result of parallel transport is a change in the direction
of a vector, you can be sure you’re dealing with a curved space.

This raises a larger issue: it’s not possible to add, subtract, multiply, or in
any way compare vectors at different locations – you have to transport one of
the vectors to the location of the other before you can perform such operations.
That’s no problem in flat space, because you can parallel-transport a vector to
any other location simply by keeping its coefficients constant (ensuring that the
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vector’s length is constant and that it remains pointed in the same direction).
But while “pointed in the same direction” is easily defined at different locations
in flat space, you’ve just seen that this phrase is problematic in curved space.
Hence a more-general definition of parallel transport is required.

In that definition, “parallel transport” is defined as transport for which the
covariant derivative is zero. Remember that the covariant derivative is the com-
bination of two terms, the first of which is the usual partial derivative, and the
second of which involves a Christoffel symbol. As described in Section 5.7
in Chapter 5, the purpose of that second term is to account for changes in
the basis vectors. Holding the covariant derivative at zero while transporting a
vector around a small loop is one way to derive the Riemann tensor.8

The Riemann curvature tensor falls naturally out of the commutator of the
covariant derivative of a vector. In this usage, “commutator” refers to the dif-
ference that results from performing two operations first in one order and then
in the reverse order. So if one operator is denoted by A and another operator
by B, the commutator is defined as [AB] = AB−BA. Thus if the sequence of
the two operations has no impact on the result, the commutator has a value of
zero.

To get to the Riemann tensor, the operation of choice is covariant differenti-
ation. That’s because in a flat space the order of covariant differentiation makes
no difference, so the commutator must yield zero. Any non-zero result of
applying the commutator to covariant differentiation can therefore be attributed
to the curvature of the space.

To begin this process, take the covariant derivative of vector Vα first with
respect to xβ :

Vα;β = ∂Vα
∂xβ
− �σαβVσ . (6.21)

Now call this result Vαβ and take another covariant derivative (this time with
respect to xγ ):

Vαβ;γ = ∂Vαβ
∂xγ

− �ταγ Vτβ − �ηβγ Vαη. (6.22)

Substituting the expression from Eq. 6.21 into this equation gives

Vαβ;γ = ∂2Vα
∂xγ ∂xβ

− ∂�
σ
αβ

∂xγ
Vσ − �σαβ

∂Vσ
∂xγ

− �ταγ
(
∂Vτ
∂xβ
− �στβVσ

)

− �ηβγ
(
∂Vα
∂xη
− �σαηVσ

)
. (6.23)

8 You can find the details in Schutz, A First Course in General Relativity, Cambridge University
Press, 2009.
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It’s not easy to see the physical significance in this expression, but remember
how you got here: first by finding the incremental change in Vα as you take a
small step in the xβ -direction, and then finding the change in that quantity as
you take a small step in the xγ -direction. And now you’re going to compare the
result of these two operations with the result you get when you take the steps
in reverse order – from the same starting point, you’ll first find the incremental
change in Vα as you take a small step in the xγ -direction, after which you’ll
find the change in that quantity as you take a small step in the xβ -direction.

To take the covariant derivatives in the opposite order, differentiate first with
respect to xγ :

Vα;γ = ∂Vα
∂xγ
− �σαγ Vσ . (6.24)

Call this result Vαγ and take another covariant derivative (this time with respect
to xβ ):

Vαγ ;β = ∂Vαγ
∂xβ

− �ταβVτγ − �ηγβVαη. (6.25)

As before, you can substitute the expression from Eq. 6.24 into this equation
to get

Vαγ ;β = ∂2Vα
∂xβ∂xγ

− ∂�
σ
αγ

∂xβ
Vσ − �σαγ

∂Vσ
∂xβ

− �ταβ
(
∂Vτ
∂xγ
− �στγ Vσ

)

− �ηγβ
(
∂Vα
∂xη
− �σαηVσ

)
. (6.26)

In flat space, the order of covariant differentiation should make no differ-
ence, so Eq. 6.26 should be identical to Eq. 6.23. Any differences between
these equations can therefore be attributed to the curvature of the space.
Examining these two equations term by term, the first terms are equal:

∂2Vα
∂xγ ∂xβ

= ∂2Vα
∂xβ∂xγ

,

(these terms are equal because the order of normal partial derivatives does
not matter). Hence these terms cancel in the commutator. Now comparing the
second terms,

−∂�
σ
αβ

∂xγ
Vσ �= −

∂�σαγ

∂xβ
Vσ ,

so these terms do not cancel one another. Comparing the third term of Eq. 6.23
to the fourth term of Eq. 6.26, they’re found to be equal:
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−�σαβ
∂Vσ
∂xγ
= −�ταβ

∂Vτ
∂xγ

,

because the symbols used for dummy indices (σ and τ ) are irrelevant. The
fourth term of Eq. 6.23 equals the third term of Eq. 6.26:

−�ταγ
∂Vτ
∂xβ
= −�σαγ

∂Vσ
∂xβ

,

for the same reason. The fifth terms are not equal:

�ταγ �
σ
τβVσ �= �ταβ�στγ Vσ .

But the sixth terms are equal:

−�ηβγ
∂Vα
∂xη
= −�ηγβ

∂Vα
∂xη

,

because Christoffel symbols are symmetric in their lower indices. The seventh
terms are equal for the same reason:

�
η
βγ �

σ
αηVσ = �ηγβ�σαηVσ .

So when the commutator AB−BA is formed, most of the terms cancel out,
but the second and fifth terms remain after subtraction. Those terms are

Vαβ;γ − Vαγ ;β = −
∂�σαβ

∂xγ
Vσ +

∂�σαγ

∂xβ
Vσ + �ταγ �στβVσ − �ταβ�στγ Vσ

=
(
∂�σαγ

∂xβ
− ∂�

σ
αβ

∂xγ
+ �ταγ �στβ − �ταβ�στγ

)
Vσ .

(6.27)

The terms within the parentheses define the Riemann curvature tensor:

Rσαβγ ≡
∂�σαγ

∂xβ
− ∂�

σ
αβ

∂xγ
+ �ταγ �στβ − �ταβ�στγ . (6.28)

If you’re wondering why the curvature tensor involves the derivative of
Christoffel symbols, consider this: in any space, you can always define a coor-
dinate system for which the Christoffel symbols are all zero at some point. But
unless the space is flat, the Christoffel symbols will not be zero at all other
locations, which means that the partial derivatives of the Christoffel symbols
will not be zero. So a necessary and sufficient condition for flat space is that

Rσαβγ = 0. (6.29)

Another tensor related to the Riemann curvature tensor is the Ricci ten-
sor, which you can find by contracting the Riemann tensor along the σ and β
indices. In four dimensions, this is

Rαγ ≡ Rσασγ = R1
α1γ + R2

α2γ + R3
α3γ + R4

α4γ . (6.30)
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If you contract the Ricci tensor by raising one index and setting it equal to
the other, the result is the Ricci scalar. Again in four dimensions, this is

R ≡ gαγ Rαγ = Rγγ = R1
1 + R2

2 + R3
3 + R4

4 . (6.31)

Finally, the tensor known as the “Einstein tensor” can be written as a
combination of the Ricci tensor, the Ricci scalar, and the metric:

Gαγ ≡ Rαγ − 1

2
Rgαγ . (6.32)

This is the tensor that appears in Einstein’s field equation for General
Relativity, often written as

Gμν + �gμν = 8πG

c4
Tμν, (6.33)

where Tμν is the energy-momentum tensor and � is the “cosmological con-
stant” introduced by Einstein to maintain a static Universe. It is this equation
that gives rise to the first half of the concise statement of General Relativity:
“Matter tells spacetime how to curve, and spacetime tells matter how to move.”

To appreciate the full content of the Riemann tensor, consider a two-
dimensional space that is the surface of a sphere. The metric for such a
space is

ds2 = a2dθ2 + a2 sin2(θ)dφ2,

from which the components of the metric tensor may be found to be

gθθ = a2,

gθφ = gφθ = 0,

gφφ = a2 sin2(θ).

(6.34)

Inserting these values into the equation for Christoffel symbols gives

�l
i j =

1

2
gkl

[
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

]
.

Even in two dimensions, writing out all the terms of the Christoffel symbols
can be something of a chore:

�θθθ =
1

2

[
gθθ

∂gθθ
∂θ
+ gφθ

∂gθφ
∂θ
+ gθθ

∂gθθ
∂θ
+ gφθ

∂gθφ
∂θ
− gθθ

∂gθθ
∂θ
− gφθ

∂gθθ
∂φ

]
,

�θθφ =
1

2

[
gθθ

∂gθθ
∂φ
+ gφθ

∂gθφ
∂φ
+ gθθ

∂gφθ
∂θ
+ gφθ

∂gφφ
∂θ
− gθθ

∂gθφ
∂θ
− gφθ

∂gθφ
∂φ

]
,

�θφθ =
1

2

[
gθθ

∂gφθ
∂θ
+ gφθ

∂gφφ
∂θ
+ gθθ

∂gθθ
∂φ
+ gφθ

∂gθφ
∂φ
− gθθ

∂gφθ
∂θ
− gφθ

∂gφθ
∂φ

]
,

�
φ
θθ =

1

2

[
gθφ

∂gθθ
∂θ
+ gφφ

∂gθφ
∂θ
+ gθφ

∂gθθ
∂θ
+ gφφ

∂gθφ
∂θ
− gθφ

∂gθθ
∂θ
− gφφ

∂gθθ
∂φ

]
,
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�
φ
θφ =

1

2

[
gθφ

∂gθθ
∂φ
+ gφφ

∂gθφ
∂φ
+ gθφ

∂gφθ
∂θ
+ gφφ

∂gφφ
∂θ
− gθφ

∂gθφ
∂θ
− gφφ

∂gθφ
∂φ

]
,

�
φ
φθ =

1

2

[
gθφ

∂gφθ
∂θ
+ gφφ

∂gφφ
∂θ
+ gθφ

∂gθθ
∂φ
+ gφφ

∂gθφ
∂φ
− gθφ

∂gφθ
∂θ
− gφφ

∂gφθ
∂φ

]
,

�θφφ =
1

2

[
gθθ

∂gφθ
∂φ
+ gφθ

∂gφφ
∂φ
+ gθθ

∂gφθ
∂φ
+ gφθ

∂gφφ
∂φ
− gθθ

∂gφφ
∂θ
− gφθ

∂gφφ
∂φ

]
,

�
φ
φφ =

1

2

[
gθφ

∂gφθ
∂φ
+ gφφ

∂gφφ
∂φ
+ gθφ

∂gφθ
∂φ
+ gφφ

∂gφφ
∂φ
−gθφ

∂gφφ
∂θ
−gφφ

∂gφφ
∂φ

]
.

But given the metric tensor components shown in Eq. 6.34, all the partial
derivatives except those involving ∂gφφ

∂θ
are zero, as are any terms involving

gθφ or gφθ . That leaves only three non-zero Christoffel symbols, which are

�
φ
θφ =

(
1

2

)
gφφ

∂gφφ
∂θ

=
(

1

2

)
1

a2 sin2(θ)
[2a2 sin(θ) cos(θ)] = cos(θ)

sin(θ)
= cot(θ),

�
φ
φθ =

(
1

2

)
gφφ

∂gφφ
∂θ

= cot(θ),

�θφφ =
(

1

2

)
− gθθ

∂gφφ
∂θ

= −
(

1

2

)
1

a2
[2a2 sin(θ) cos(θ)] = − sin(θ) cos(θ).

With the Christoffel symbols for the spherical surface in hand, the components
of the Riemann curvature tensor may be found using

Rσαβγ ≡
∂�σαγ

∂xβ
− ∂�

σ
αβ

∂xγ
+ �ταγ �στβ − �ταβ�στγ .

As in most tensor equations, the full content of this tensor can only be appre-
ciated by writing out the components. Not only must you allow each of the
indices σ , α, β, and γ to represent both θ and φ, you must also allow the
dummy index τ to represent both θ and φ and then sum those terms. Hence
in two-dimensional space, the last two terms of the Riemann tensor equation
(those involving the products of the Christoffel symbols) become four terms,
making a total of six terms for each set of indices. The first eight components
of the Riemann tensor can be found by setting σ equal to θ and letting the other
indices represent both θ and φ:

Rθθθθ =
∂�θθθ

∂θ
− ∂�

θ
θθ

∂θ
+ �θθθ�θθθ + �φθθ�θφθ − �θθθ�θθθ − �φθθ�θφθ ,

Rθθθφ =
∂�θθφ

∂θ
− ∂�

θ
θθ

∂φ
+ �θθφ�θθθ + �φθφ�θφθ − �θθθ�θθφ − �φθθ�θφφ,
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Rθθφθ =
∂�θθθ

∂φ
− ∂�

θ
θφ

∂θ
+ �θθθ�θθφ + �φθθ�θφφ − �θθφ�θθθ − �φθφ�θφθ ,

Rθφθθ =
∂�θφθ

∂θ
− ∂�

θ
φθ

∂φ
+ �θφθ�θθθ + �φφθ�θφθ − �θφθ�θθθ − �φφθ�θφθ ,

Rθθφφ =
∂�θθφ

∂φ
− ∂�

θ
θφ

∂φ
+ �θθφ�θθφ + �φθφ�θφφ − �θθφ�θθφ − �φθφ�θφφ,

Rθφθφ =
∂�θφφ

∂θ
− ∂�

θ
φθ

∂φ
+ �θφφ�θθθ + �φφφ�θφθ − �θφθ�θθφ − �φφθ�θφφ,

Rθφφθ =
∂�θφθ

∂φ
− ∂�

θ
φφ

∂θ
+ �θφθ�θθφ + �φφθ�θφφ − �θφφ�θθθ − �φφφ�θφθ ,

Rθφφφ =
∂�θφφ

∂φ
− ∂�

θ
φφ

∂φ
+ �θφφ�θθφ + �φφφ�θφφ − �θφφ�θθφ − �φφφ�θφφ.

Inserting the Christoffel symbols found above, you can see that the non-zero
components are

Rθφθφ =
∂�θφφ

∂θ
− �φφθ�θφφ,

Rθφφθ = −
∂�θφφ

∂θ
+ �φφθ�θφφ.

And since

∂�θφφ

∂θ
= sin2(θ)− cos2(θ),

and

�
φ
φθ�

θ
φφ = − cos2(θ),

this means the surviving terms from the σ = θ group are

Rθφθφ = [sin2(θ)− cos2(θ)] − [− cos2(θ)] = sin2(θ),

Rθφφθ = −[sin2(θ)− cos2(θ)] + [− cos2(θ)] = − sin2(θ).

Now allowing σ to equal φ, the other eight terms are

Rφθθθ =
∂�

φ
θθ

∂θ
− ∂�

φ
θθ

∂θ
+ �θθθ�φθθ + �φθθ�φφθ − �θθθ�φθθ − �φθθ�φφθ ,

Rφθθφ =
∂�

φ
θφ

∂θ
− ∂�

φ
θθ

∂φ
+ �θθφ�φθθ + �φθφ�φφθ − �θθθ�φθφ − �φθθ�φφφ,

Rφθφθ =
∂�

φ
θθ

∂φ
− ∂�

φ
θφ

∂θ
+ �θθθ�φθφ + �φθθ�φφφ − �θθφ�φθθ − �φθφ�φφθ ,
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Rφφθθ =
∂�

φ
φθ

∂θ
− ∂�

φ
φθ

∂θ
+ �θφθ�φθθ + �φφθ�φφθ − �θφθ�φθθ − �φφθ�φφθ ,

Rφθφφ =
∂�

φ
θφ

∂φ
− ∂�

φ
θφ

∂φ
+ �θθφ�φθφ + �φθφ�φφφ − �θφθ�φθφ − �φθφ�φφφ,

Rφφθφ =
∂�

φ
φφ

∂θ
− ∂�

φ
φθ

∂φ
+ �θφφ�φθθ + �φφφ�φφθ − �θφθ�φθφ − �φφθ�φφφ,

Rφφφθ =
∂�

φ
φθ

∂φ
− ∂�

φ
φφ

∂θ
+ �θφθ�φθφ + �φφθ�φφφ − �θφφ�φθθ − �φφφ�φφθ ,

Rφφφφ =
∂�

φ
φφ

∂φ
− ∂�

φ
φφ

∂φ
+ �θφφ�φθφ + �φφφ�φφφ − �θφφ�φθφ − �φφφ�φφφ.

Again inserting the Christoffel symbols, the non-zero terms are found to be

Rφθθφ =
∂�

φ
θφ

∂θ
+ �φθφ�φφθ ,

Rφθφθ = −
∂�

φ
θφ

∂θ
− �φθφ�φφθ .

And since

∂�
φ
θφ

∂θ
= − sin(θ)

sin(θ)
− cos2(θ)

sin2(θ)
= −[1+ cot2(θ)],

and

�
φ
θφ�

φ
φθ = cot2(θ),

the surviving terms are

Rφθθφ = −[1+ cot2(θ)] + cot2(θ) = −1,

Rφθφθ = [1+ cot2(θ)] − cot2(θ) = 1.

As expected, a two-dimensional space with the metric of a sphere (ds2 =
a2dθ2 + a2 sin2(θ)dφ2) has non-zero components of the Riemann curvature
tensor, confirming that this space is non-Euclidean.

You can see how to use these results to find the Ricci tensor and the Ricci
scalar in the on-line solutions to the problems at the end of this chapter.

6.4 Chapter 6 problems

6.1 Find the inertia tensor for a cubical arrangement of eight identical masses
with the origin of coordinates at one of the corners and the coordinate
axes along the edges of the cube.



6.4 Chapter 6 problems 193

6.2 How would the moment of inertia tensor of Problem 6.1 change if one of
the eight masses is removed?

6.3 Find the moment of inertia tensor for the arrangement of masses of Prob-
lem 6.2 if the coordinate system is rotated by 20 degrees about one of
the coordinate axes (do this by finding the locations of the masses in the
rotated coordinate system).

6.4 Use the similarity-transform approach to verify the moment of inertia
tensor you found in Problem 6.3.

6.5 Show how the vector wave equation results from taking the curl of both
sides of Faraday’s Law and inserting the curl of the magnetic field from
the Ampere–Maxwell Law.

6.6 If an observer in one coordinate system measures an electric field of
5 volts per meter in the z-direction and zero magnetic field, what electric
and magnetic fields would be measured by a second observer moving at
1/4 the speed of light along the x-axis?

6.7 If an observer in one coordinate system measures a magnetic field of 1.5
tesla in the z-direction and zero electric field, what electric and magnetic
fields would be measured by a second observer moving at 1/4 the speed
of light along the x-axis?

6.8 Show that �E ◦ �B is invariant under Lorentz transformation.
6.9 The differential line element in 2-D Euclidean space may be expressed

in polar coordinates as ds2 = dr2 + r2dθ2. Show that the Riemann
curvature tensor equals zero in this case, as it must for any flat space.

6.10 Find the Ricci tensor and scalar for the 2-sphere of Section 6.3.
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electric field, 81
electric force, 83
electric potential, 88
electromagnetic field tensor, 171, 178
electromagnetic wave equation, 174
electrostatic field, 83
equipotential surfaces, 88
Euclidean space, 185
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Faraday’s Law, 173
field

definition, 81
electric, 81
electrostatic, 46, 83
irrotational, 52, 88
magnetic, 89
magnetostatic, 89
scalar, 44
vector, 44

field lines, 83
four-current, 177
four-dimensional spacetime, 174
four-vector, 176
free vectors, 2
free-body diagram, 63
friction, 69
frictional force, 70

Galilean transformation, 175
Gauss’s Law

for electric fields, 87, 172
for magnetic fields, 90, 172

General Relativity, 183
gradient, 44

inclined plane, 62
index notation, 122
index raising and lowering, 147
inertia tensor, 159, 164
inertial reference frame, 184
inner product, 138
inverse transformation, 105
irrotational fields, 52, 88

kinetic friction, 70
Kronecker Delta function, 139

Laplace, Pierre-Simon, 54
Laplace’s Equation, 89
Laplacian, 54

as difference from surrounding points, 57
as divergence of gradient, 54
as peak finder, 57

length contraction, 177
linearly independent vectors, 21
Lorentz, Hendrik, 176
Lorentz transform, 176
Lorentz transformation matrix, 181

magnetic field, 89

magnetic force, 91
magnetostatic field, 89
manifest covariance, 177
Maxwell, James Clerk, 46, 81, 171
Maxwell’s Equations, 172

tensor form, 178
metric tensor, 140

notation, 140
Minkowski metric, 177
moment of inertia

for a single particle, 160
moments of inertia, 164

nabla, 43
Newton, Isaac, 67
Newton’s Second Law, 63
non-Cartesian coordinate systems

cylindrical coordinates, 17
polar coordinates, 15
spherical coordinates, 19

non-Cartesian coordinates
unit vectors, 14

non-orthogonal coordinate systems, 110
normal force, 63

one-forms, 156
operator, 44
operator equation, 43
ordinary derivatives, 35
orthogonal transformation, 110
outer product, 137

parallel projection, 111
parallel transport, 154, 185
parameterized curve, 42
partial derivatives, 35

as basis vectors, 23
as slope, 37
chain rule, 41
higher-order, 40
mixed, 40
notation, 35

passive transformation, 105
perpendicular projection, 112
Poisson’s Equation, 88
polar coordinates, 15

unit vectors, 16
principal axes, 166
principal moments, 166
principle of equivalence, 184
products of inertia, 164
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Pythagorean theorem, 10

radial acceleration, 72
reciprocal basis vectors, 114
relativity of simultaneity, 177
Ricci scalar, 189
Ricci tensor, 188
Riemann, Bernhard, 184
Riemann curvature tensor, 183
right-hand rule, 28
rotor, 166
row vectors, 4

scalar, 4
definition, 4, 133
field, 44
Ricci, 189

scalar product, 25
scalar triple product, 30
scale factors, 146
similarity transform, 170
sliding vectors, 3
space–time interval, 176
Special Relativity, 174
spherical coordinates, 19

unit vectors, 19
spherical top, 166
static friction, 70
summation convention, 123
symmetric top, 166

tangential acceleration, 72
tensor, 4

addition and subtraction, 135
definition, 5, 134
derivatives, 148
Einstein, 189
electromagnetic field, 171, 178
higher-rank, 132
inertia, 159, 164
inner product, 138
metric, 140
multiplication, 137
notation, 134
rank, 5
Ricci, 188
Riemann curvature, 183

test charge, 82

time dilation, 177
top, 166
transformation

basis-vector, 105
coordinate-system, 97
direct or active, 108
equation, 102
inverse or passive, 105
matrix, 102
orthogonal, 110

triple scalar product, 30, 116
triple vector product, 32

unit vectors
Cartesian, 5
non-Cartesian, 14

vector, 1
addition, 11

graphical, 12
using components, 13

as an ordered set, 3
as derivative, 41
basis, 2
bound, 2
column, 4
components, 4, 7

covariant and contravariant, 97, 105
definition, 1, 133
field, 44
free, 2
graphical depiction, 1
linearly independent, 21
multiplication by a scalar, 11
notation, 1
outer product, 137
row, 4
sliding, 3
unit

Cartesian, 5
non-Cartesian, 14

vector components, 4, 7
as projections onto coordinate axes, 8

vector field, 3
versors, 6

weighted linear combination, 101
work, 25
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