
© Copyright Imagination Technologies 2016 Module 7 p.1

These slides are partially taken from the on-line course shown below. Please refer to the reported link

for more information. Please integrate the information about different communication mechanisms and

protocols with further research, clear and complete documents can be easily found in literature.

© Copyright Imagination Technologies 2016 Module 7 p.2

Section 1:
Communication Concepts

© Copyright Imagination Technologies 2016 Module 7 p.3

Overview of Embedded System Communications
How far does the message go?

On-Chip

On-board

In-System External

Image courtesy of AVX, Inc.

Image courtesy of Emerson Electric, Inc.

© Copyright Imagination Technologies 2016 Module 7 p.4

Communication Scenarios

 On-chip

 Speed most important, minor area constraints

 Typical solution: use parallel buses to send

data 8, 16 or 32 bits at a time.

 On-board, board-to-board

 More signals -> more pins on IC package ($$)

-> larger, heavier board ($$)

 If too slow, use parallel bus or wider serial

bus, or raise clock speed

 Typical solutions: serial buses to send data

one bit at a time. SPI, I2S, I2C, UART

Different constraints for different system sizes

© Copyright Imagination Technologies 2016 Module 7 p.5

Communication Scenarios

 External – box-to-box, or system-to-system

 More signals -> larger cable ($$) -> heavier, larger system

 Going outside the box makes communications more

vulnerable to noise

 Add error control: detection, acknowledgment, correction

 Typical wired solutions: serial buses to send data one bit at

a time.

 USB (Universal Serial Bus), I2C, UART, CAN, FlexRay

 If fast communications are important, use more bits or raise

clock speed

 Ethernet, USB 1.2/2.0, USB 3.0

 If portability is important, use wireless transmission

 WiFi (802.11), LTE (cellphone network), 802.15.4

Different constraints for different system sizes

Image courtesy of AVX, Inc.

Image courtesy of Emerson Electric, Inc.

© Copyright Imagination Technologies 2016 Module 7 p.6

PIC32MZ EF Peripherals for Communication

 SPI

 SQI

 UART

 Hi-Speed USB with

On-The-Go

 I2C

 CAN

 Ethernet

© Copyright Imagination Technologies 2016 Module 7 p.7

© Copyright Imagination Technologies 2016 Module 7 p.8

Protocol Stack Concepts

 Helpful to group these rules into layers in

a stack

 Example: Open System Interconnection

(OSI) model

1. Physical layer: Defines how 1s and 0s

are represented. Voltage, current,

electromagnetic field, light. Amplitude,

duration, etc.

2. Data Link layer: Has two layers

 Media Access Control layer: How nodes share

the communication medium. When does a node

get to talk on the wire?

 Logical Link Control layer: How data is

framed how receiver is synchronized (when does

the data start?), and how errors are detected

3. Network layer: How to route data

between nodes, including addressing,

handling data too large to fit into one

packet, congestion control, and error

handling

4. Transport layer: How to provide

complete, correct data transfer between

nodes (called hosts)

5. Session layer: How to provide

connections between application programs

on different nodes

6. Presentation layer: Translates data (e.g.

encryption and decryption)

7. Application layer: Consists of application

programs

 OSI model defined for large networks of

computing systems (e.g. Internet), not

targeted to embedded systems

 Protocols for embedded systems often

merge or omit layers/features if not

needed

All nodes must follow the same or compatible rules

Application

Presentation

Session

Transport

Network

Data Link

Physical

© Copyright Imagination Technologies 2016 Module 7 p.9

Communication Basics

 Communication systems

usually serialize data

 Don’t send all the bits at

once

 Why?

 Reduce number of data

signals needed (1, 2, or 4

vs. 8, 32)

 Reduces package or

connector size, weight

 Simplifies circuit design

Start with the foundation – the physical layer

MCU

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Parallel data bus

Serial data bus

MCU

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

MCU

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

© Copyright Imagination Technologies 2016 Module 7 p.10

When is the Data Valid?

 Two approaches

 Synchronous: Transmitter sends a control signal

to tell receiver when to sample data

 Asynchronous: Receiver has to determine when

data is valid

 Parallel communications typically use synchronous

communication

 Already have multiple signals for data (8, 16, 32)

 Can usually afford an extra signal or two (e.g.

Write Enable (Wr), Read Enable(Rd))

 Serial communications

 Goal is to reduce number of signals, so

synchronous is less attractive because of extra

signals

When should receiver sample the data? Data link layer

What does this bit stream mean?

0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0?

0 1 1 1 0 1 0 1 1 0 0?

0 1 1 0 1 0 1 0?
0

1
Data

© Copyright Imagination Technologies 2016 Module 7 p.11

Sampling Data

 Synchronous

 Use separate clock signal to define bit times

 Example: Sample data on clock’s rising edge

 Asynchronous

 Infer bit times based on fixed delays from

reference event

 Example

 Reference event is leading edge of start bit (0 to 1

transition)

 Sample input data at n+1/2 bit times after

beginning of start bit

0 1 1 0 1 0 1 0 0

What does this bit stream mean?

0

1

0

1

Clock

Data

Data

Start

Bit

S 1 0 1 0 1 0 0

© Copyright Imagination Technologies 2016 Module 7 p.12

Tools for Serial Communications Development

 Tedious and slow to debug serial protocols with

just an oscilloscope

 Instead use a logic analyzer to decode bus

traffic

 Worth its weight in gold!

 Saelae 8-Channel Logic Analyzer

 $150 (www.saelae.com)

 Plugs into PC’s USB port

 Decodes SPI, asynchronous serial, I2C, 1-Wire,

CAN, etc.

http://www.saelae.com/

© Copyright Imagination Technologies 2016 Module 7 p.13

Section 2:
Serial Peripheral Interconnect (SPI)

© Copyright Imagination Technologies 2016 Module 7 p.14

SPI Basics

 “Ring of shift registers” which

exchange data

 Master device generates

clock signal (SCKx) which…

 Shifts data from master to

slave one bit at a time

 Shifts data from slave to

master one bit at a time

 Optional Slave Select signal

(SSx)

 Used to identify which slave

is being accessed

 SPI defines parts of physical

and data link layers

© Copyright Imagination Technologies 2016 Module 7 p.15

SPI Data Transmission

 Clock signal SCKx

 Generated by master

 Defines communication timing

 SCKx generated by SPI module’s baud rate

generator by dividing down a reference clock

 Data signal

 Generated by master on data output pin SDOx

 D7 (most-significant bit) sent first

 Sampled by slave when clock rises*

 * Other versions of SPI use falling clock edge

SPI Data Format for OLED Controller (SSD1306, Solomon Systech)

Clock edge tells receiver when to sample the data line

© Copyright Imagination Technologies 2016 Module 7 p.16

SQI – Serial Quad Interface

 Similar to SPI but supports wider data (2, 4 bits),

so is faster

 Used for communications with Flash, EEPROM

storage devices

 Can be configured to operate as SPI (single data

lane)

© Copyright Imagination Technologies 2016 Module 7 p.17

Asynchronous Communication

© Copyright Imagination Technologies 2016 Module 7 p.18

Asynchronous Serial Basics

 Similar to SPI, but no external

clock signal used

 Peripheral is called a UART

 Universal = configurable

 Asynchronous = no clock

signal used for communication

 Receiver/Transmitter =

contains both receiver and

transmitter

 Defines parts of physical and

data link layers

IC 1

UART

RX Shift

Register

TX Shift

Register

TX Data

Buffer

RX Data

Buffer

B
a
u
d
 R

a
te

G
e
n
e
ra

to
r

IC 2

UART

RX Shift

Register

TX Shift

Register

TX Data

Buffer

RX Data

Buffer

B
a

u
d
 R

a
te

G
e
n
e
ra

to
r

© Copyright Imagination Technologies 2016 Module 7 p.19

Reminder: Sampling Data

 Synchronous

 Use separate clock signal to define bit times

 Example: Sample data on clock’s rising edge

 Asynchronous

 Infer bit times based on fixed delays from

reference event

 Example

 Reference event is leading edge of start bit (0 to 1

transition)

 Sample input data at n+1/2 bit times after

beginning of start bit

0 1 1 0 1 0 1 0 0

What does this bit stream mean?

0

1

0

1

Clock

Data

Data

Start

Bit

S 1 0 1 0 1 0 0

© Copyright Imagination Technologies 2016 Module 7 p.20

Send Message

Framing

 Transmitter in Idle state:

 Send another stop bit (1)

 Transmitter in Send Message state
 Send Start bit (0),

 Send data bits, starting with LSB

 Send Stop bit (1)

Transmitter inserts framing information to signal data start and end

0

1
Idle Message Idle

stop stop start d0 d1 d2 d3 d4 d5 d6 d7 stop stop stop stop

Idle, send
stop bit (1)

Send
start bit

(0)

Send 8
data bits

Send
stop bit

(1)

Repeat if no

message to send

Message

to send

Message

sent

© Copyright Imagination Technologies 2016 Module 7 p.21

Major Asynchronous Communication Options

 May have 1 or 2 stop bits

 May have 7, 8 or 9 data bits

 Transmitter may add parity bit for error detection

 Using Even Parity? Set parity bit to make total

number of 1s even.

 Using Odd Parity? Make total number of 1s odd.

 Receiver calculates parity based on received data bits

and parity bit (not start or stop bits)

 If parity doesn’t match specification (even or odd), then

signal an error

 Can detect an odd number of bit errors, but not an

even number

Data # of 1’s Parity bit for…

Hex Binary Even

Parity

Odd

Parity

00 0000 0000 0 0 1

3f 0111 1111 7 1 0

a5 1010 0101 4 0 1

16 0001 0110 3 1 0

Idle Message Idle

stop stop start d0 d1 d2 d3 d4 d5 d6 d7 parity stop stop stop

© Copyright Imagination Technologies 2016 Module 7 p.22

UART Modules on PIC32MZ EF

 PIC32MZ EF contains six UART

modules, U1-U6

 Each module contains

 Baud rate generator for setting

communication speed

 IrDA support for serial infrared

communication

 Hardware flow control to let one

UART ask another UART to pause

transmitting

 Receiver

 Transmitter

© Copyright Imagination Technologies 2016 Module 7 p.23

On the Xilinx boards
Check the uartlite datasheet

© Copyright Imagination Technologies 2016 Module 7 p.24

Polled Data Transmission

 Problem: UART runs much slower than CPU!

 CPU: up to 200 million instructions per second

 UART: maybe 20 thousand bytes per second

 Might still be sending previous character

when we want to send next one

 Need to avoid overwriting data in TX data

buffer

 Must wait until TX data buffer has space

available (is not full) before writing to it

UART4_putc Function Sends One Character

© Copyright Imagination Technologies 2016 Module 7 p.25

Polled Data Transmission – String of Characters

 Input s is pointer to the first character of the

string (H)

 Use a loop to send all characters

 End of string marked by null character (\0

value)

 *s != ‘\0’: Check to see if s is pointing to \0

 if so, then skip loop body

 if not, execute loop body and try to repeat

 Use pointer s to step through all characters in

string

 s++: ++ advances s to point to next character

 Loop stops when s reaches end of string \0

UART4_puts Function Sends a String

H e l l o ! \0

s

© Copyright Imagination Technologies 2016 Module 7 p.26

Polled Data Reception

 Reading the received data buffer before the

data has arrived gives us old data

 Still have to worry about speed difference

between UART and CPU

 Solution: wait for status flag URXDA to

become 1

 UART sets URXDA to 1 when new data arrives

 Then read UxRXREG to get that data

 Reading UxRXREG makes UART update the

URXDA flag, clearing it to 0 if no more data is

in RX data buffer

 RX data buffer has space for eight elements

UART4_getc Function Reads One Character

© Copyright Imagination Technologies 2016 Module 7 p.27

Section 7:
Advanced Communication Concepts

and Example Protocols

© Copyright Imagination Technologies 2016 Module 7 p.28

Review: Protocol Stack Concepts

 Helpful to group these rules into layers in

a stack

 Example: Open System Interconnection

(OSI) model

1. Physical layer: Defines how 1s and 0s

are represented. Voltage, current,

electromagnetic field, light. Amplitude,

duration, etc.

2. Data Link layer: Has two layers

 Media Access Control layer: How nodes share

the communication medium. When does a node

get to talk on the wire?

 Logical Link Control layer: How data is

framed how receiver is synchronized (when does

the data start?), and how errors are detected

3. Network layer: How to route data

between nodes, including addressing,

handling data too large to fit into one

packet, congestion control, and error

handling

4. Transport layer: How to provide

complete, correct data transfer between

nodes (called hosts)

5. Session layer: How to provide

connections between application programs

on different nodes

6. Presentation layer: Translates data (e.g.

encryption and decryption)

7. Application layer: Consists of application

programs

 OSI model defined for large networks of

computing systems (e.g. Internet), not

targeted to embedded systems

 Protocols for embedded systems often

merge or omit layers/features if not

needed

All nodes must follow the same or compatible rules

Application

Presentation

Session

Transport

Network

Data Link

Physical

© Copyright Imagination Technologies 2016 Module 7 p.29

Key Concepts

 How do we detect data transmission errors?

 What’s in a message besides data?

 How can we make the communication system scale up to large sizes easily?

 How can we increase the communication speed?

 How can we transmit data wirelessly?

© Copyright Imagination Technologies 2016 Module 7 p.30

How Do We Detect Errors?

 Approach

 Transmitter sends extra error-detection

information along with data

 Receiver recalculates the error-detection

information based on received data,

 Receiver compares recalculated version

with received version

 If these don’t match, then the message was

corrupted and should be discarded

 Examples:

 Parity: There is an odd number of ones in

this message

 Checksum: If you add up all the bytes in this

message, the sum ends in 0x38

 CRC: If you process all the bytes in this

message this way (e.g. by shifting and

exclusive-oring them together), the result

ends in 0x68

 Acknowledgements

 Receiver must acknowledge each message,

else transmitter will resend it

start d0 d1 d2 d3 d4 d5 d6 d7 parity stop

© Copyright Imagination Technologies 2016 Module 7 p.31

What’s in a Message Besides Data?

 Message holds data and other information

 Data: May multiple bytes per message

 Other information

 Framing information: When message starts, stops

 Error detection information: Parity or CRC

 Acknowledgement: Received correctly?

 More (discussed soon): Device address, operation

(read, write), data length, etc.

 Example: I2C (Inter-integrated circuit bus)

 Start condition

 Device address

 Read or write command

 Acknowledgement(s) from slave

 Multiple bytes of data

There’s more than just data

Data 1 Data 2Device
Address

Example of I2C message

© Copyright Imagination Technologies 2016 Module 7 p.32

How Can we Make Scaling Up Easier?

 Dedicated communication links

 Each pair of communicating

devices has a dedicated set of

wires and a pair of communication

modules

 Problem

 We need many ports and sets of

wires to talk with multiple devices

 Doesn’t work well for systems with

many devices

 Instead, can multiple devices

share same the communication

signals and wires?

Supporting many communication devices

MCU

Device
4

Device
3

Device
1

Device
2

SPI Module

SPI Module

S
P

I
M

o
d
u

le

S
P

I
M

o
d
u

le
S

P
I

M
o
d
u
le

S
P

I
M

o
d
u

le

S
P

I
M

o
d
u
le

S
P

I
M

o
d
u

le

© Copyright Imagination Technologies 2016 Module 7 p.33

Sharing: Who Gets to Talk When?

 Now each node needs just one

communication interface

 All nodes share the bus

(communication medium)

 Need a media access control

method

 Determines which node talks when

 Categories

 Master/Slave: master tells each node when

it can talk

 Multiple access: no master needed, nodes

decide on their own when to talk

Data link layer and media access control

MCU

S
P

I
M

o
d
u
le Device

4

S
P

I
M

o
d
u
le

Device
1

S
P

I
M

o
d
u
le

Device
2

S
P

I
M

o
d
u
le

Device
3

S
P

I
M

o
d
u
le

© Copyright Imagination Technologies 2016 Module 7 p.34

Master/Slave with Select Signals

 Multiple SPI slave devices can share

clock and data lines

 Master only needs one SPI module

 Select slave by asserting its slave

select line (SS1, SS2, SS3)

 Only one slave select line will be

active at a time

Master

SCKx

SDOx

SDIx

SS1

Slave 1

Slave 2

Slave 3

SS2

SS3

S
P

I
M

o
d
u
le

S
P

I
M

o
d
u
le

S
P

I
M

o
d
u
le

SPI Module

© Copyright Imagination Technologies 2016 Module 7 p.35

Master/Slave with Address in Message

 Use data line for both address and data

 Master sends slave device address

 Data is sent by master (if write

operation) or slave (if read operation)

 Slave device only processes messages

with its own address, ignores other

messages

 Typically also have broadcast address to

send data to all slaves

Data 1 Data 2Device
Address

Example of I2C message

© Copyright Imagination Technologies 2016 Module 7 p.36

Example Protocol: Ethernet

 Key features

 10 Mbps/100 Mbps/1 Gbps/10 Gbps data rates

 48 bit (6 byte) addresses for source, destination

 Broadcast, multicast, and unicast message addressing

 46 to 1500 bytes of data per message

 32-bit CRC (frame check sequence) for error detection

 Improvements

 Standard Ethernet: Devices share the media (wires) by connecting

to a hub.

 Switched Ethernet: Devices don’t share the media. Switch (not

hub) has an Ethernet controller and dedicated media for each

device.

 Raises throughput and eliminates collisions

IEEE 802.3

© Copyright Imagination Technologies 2016 Module 7 p.37

Example Protocol: CAN

 Key features

 Up to 1 Mbps bit rate

 11 or 29 bit addresses

 Up to 8 bytes of data per message

 15-bit CRC for error detection

 ACK field for receiver acknowledgements

 Remote transmit (read) request

 Easy to analyze responsiveness

 Highest priority message always wins

 Given set of all possible messages, can

calculate maximum time for any message to

get through

 Used in automotive and industrial control

networks

Controller Area Network

