La lezione è stata registrata ed è reperibile all'indirizzo:

https://unica.adobeconnect.com/pz0win53haou/ FONDAMENTI DI COSTRUZIONI MECCANICHE

Il programma

Analisi cinematica di corpi rigidi ed insiemi di corpi rigidi vincolati.

Equilibrio di un insieme isostatico di corpi rigidi.

Reazioni vincolari.

Azioni interne.

Geometria delle aree.

Definizione di Sforzi e deformazioni e prove standard sui materiali

Trazione, Flessione e Taglio nelle travi prismatiche.

Torsione di travi a sezione circolare.

Equazione della linea elastica.

Principio dei lavori virtuali. Calcolo di spostamenti e di reazioni iperstatiche.

Instabilità: teoria di Eulero.

RICHIAMI DI STATICA E GEOMETRIA ELEMENTARE

Nel corso di queste lezioni avremo a che fare con tre tipi di entità fisiche:

scalari, vettoriali, tensoriali.

I **tensori** li vedremo in seguito quando si parlerà della **deformazioni** dei corpi e degli **sforzi** che agiscono al loro interno.

Tra le grandezze scalari ricordo:

il tempo, la temperatura, la massa, il volume, il lavoro.

Tra quelle vettoriali:

lo spostamento, la velocità, l'accelerazione e quindi le forze ed i momenti.

I vettori sono caratterizzati da una direzione, un verso ed un modulo:

$$\vec{F} = \begin{cases} F_x \\ F_y \\ F_z \end{cases} \; ; \qquad |F| = \sqrt{F_x^2 + F_y^2 + F_z^2} \quad ; \qquad \vec{f} = \frac{\vec{F}}{|F|} \qquad ; \qquad |\vec{f}| = 1$$

La trasposta del vettore colonna \vec{F} è un vettore riga:

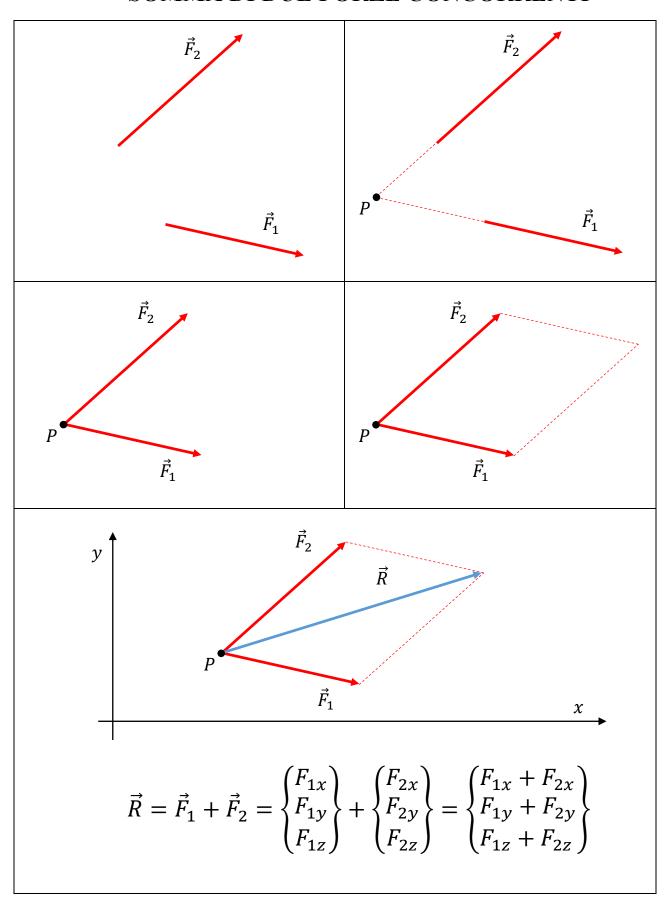
$$\left(\vec{F}\right)^T = \{F_x \quad F_y \quad F_z\}.$$

Il modulo del vettore si calcola nel modo seguente:

$$|F| = \sqrt{(\vec{F})^T \cdot \vec{F}} = \sqrt{\{F_x \quad F_y \quad F_z\} \begin{Bmatrix} F_x \\ F_y \\ F_z \end{Bmatrix}} = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

$$\vec{F} = \begin{Bmatrix} F_x \\ F_y \\ F_z \end{Bmatrix} = m \begin{Bmatrix} a_x \\ a_y \\ a_z \end{Bmatrix}$$

SOMMA DI DUE FORZE CONCORRENTI



PRODOTTO SCALARE DI DUE VETTORI

(PER ESEMPIO PER IL CALCOLO DEL LAVORO)

Dati:

$$\vec{F} = \begin{cases} F_{\mathcal{X}} \\ F_{\mathcal{Y}} \\ F_{\mathcal{Z}} \end{cases} \qquad \qquad \mathbf{e} \qquad \qquad \vec{S} = \begin{cases} S_{\mathcal{X}} \\ S_{\mathcal{Y}} \\ S_{\mathcal{Z}} \end{cases}$$

$$\mathcal{L} = \left(\vec{F}\right)^T \cdot \vec{s} = \{F_x \quad F_y \quad F_z\} \cdot \begin{cases} S_x \\ S_y \\ S_z \end{cases} = F_x S_x + F_y S_y + F_z S_z = |F||s|\cos(\alpha)$$

L è una quantità scalare

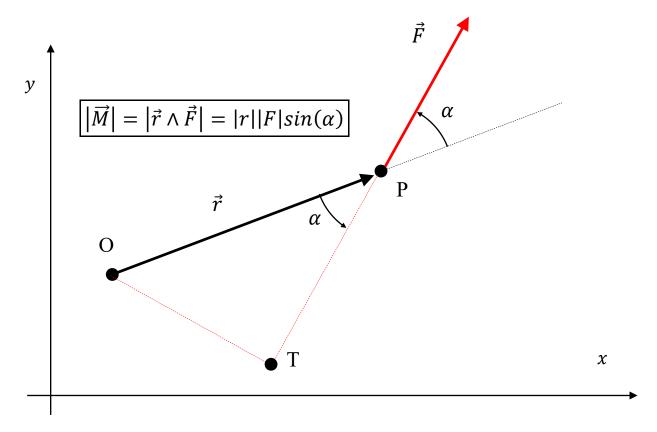
L'unità di misura del lavoro è il [Nm] o [Joule].

Quando $\alpha = \pm 90^{\circ}$, il lavoro è nullo.

$$\mathcal{L} = (\vec{F})^T \cdot \vec{s} = \mathcal{L}^T = (\vec{s})^T \cdot \vec{F} = \{S_x \quad S_y \quad S_z\} \cdot \begin{cases} F_x \\ F_y \\ F_z \end{cases}$$

Quindi l'ordine con il quale si esegue il prodotto non ha alcuna influenza sul risultato finale.

PRODOTTO VETTORIALE



Quando $\alpha = 0^{\circ}$ oppure $\alpha = 180^{\circ}$ il momento è nullo.

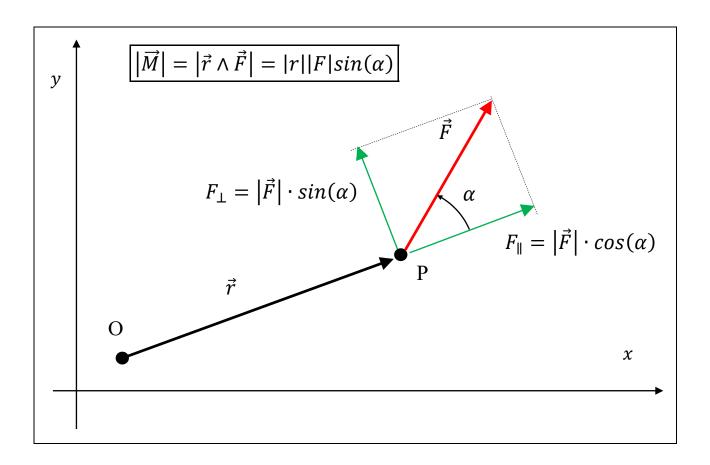
$$\vec{M} = \vec{r} \wedge \vec{F} = \begin{bmatrix} i & j & k \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{bmatrix} = (r_y F_z - r_z F_y)i + (r_z F_x - r_x F_z)j + (r_x F_y - r_y F_x)k = \begin{cases} r_y F_z - r_z F_y \\ r_z F_x - r_x F_z \\ r_x F_y - r_y F_x \end{cases} = \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix}$$

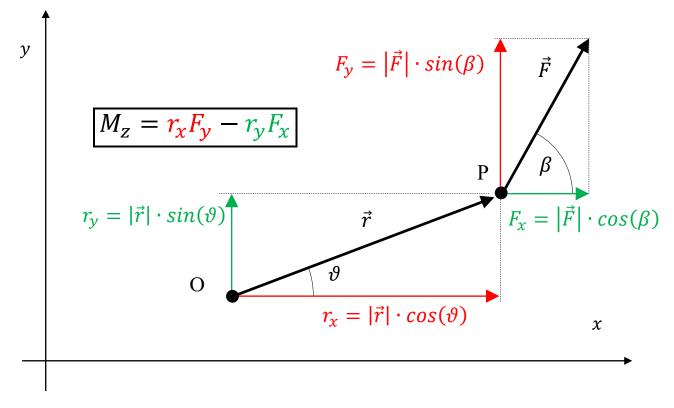
L'ordine con il quale si esegue il prodotto è importante

$$\vec{M} = \vec{r} \wedge \vec{F} = \begin{bmatrix} i & j & k \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{bmatrix} = - \begin{bmatrix} i & j & k \\ F_x & F_y & F_z \\ r_x & r_y & r_z \end{bmatrix} = -\vec{F} \wedge \vec{r}$$

$$\vec{M} = \vec{r} \wedge \vec{F} = \begin{bmatrix} i & j & k \\ r_x & r_y & 0 \\ F_x & F_y & 0 \end{bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ r_x F_y - r_y F_x \end{Bmatrix} = \begin{Bmatrix} M_x \\ M_y \\ M_z \end{Bmatrix}$$

L'unità di misura dei momenti è il [Nm].





SISTEMI DI FORZE STATICAMENTE EQUIVALENTI

La forza \vec{R} e la coppia \vec{M} sono <u>staticamente equivalenti</u> ad un dato sistema di forze $\vec{F}_1, \vec{F}_2, ..., \vec{F}_n$ quando valgono le relazioni:

$$\begin{cases} \vec{R} = \sum_{i=1}^{n} \vec{F}_{i} \\ \vec{M} = \sum_{i=1}^{n} \vec{d}_{i} \wedge \vec{F}_{i} \end{cases}$$

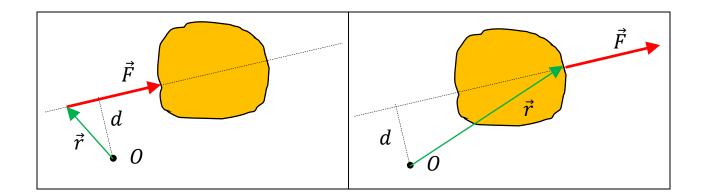
dove i vettori $\vec{d}_1, \vec{d}_2, ..., \vec{d}_n$ indicano la posizione di ogni forza rispetto ad un punto O qualsiasi.

Quando $\vec{R} \neq \{0\}$ allora:

$$\vec{M} = \vec{d} \wedge \vec{R}$$

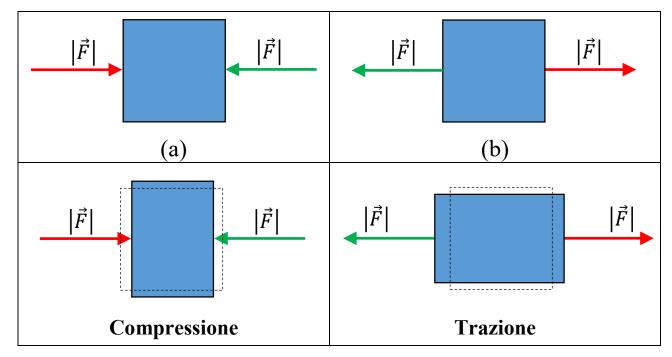
La forza \vec{R} si chiama **risultante** del sistema di forze $\vec{F}_1, \vec{F}_2, \dots, \vec{F}_n$. \vec{d} indica la posizione della risultante rispetto al punto O.

SPOSTAMENTO DI UNA FORZA LUNGO LA SUA LINEA D'AZIONE



La distanza d del punto O dalla retta d'azione della forza non cambia: I DUE SISTEMI SONO STATICAMENTE EQUIVALENTI.

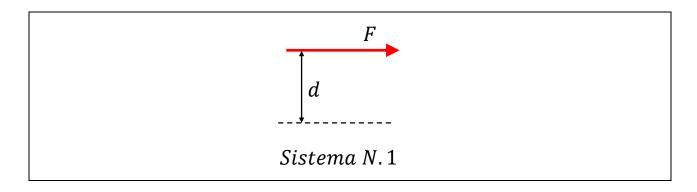
LA TRASLAZIONE DI UNA FORZA LUNGO LA SUA LINEA D'AZIONE NON MODIFICA IL SUO EFFETTO SUL CORPO RIGIDO.

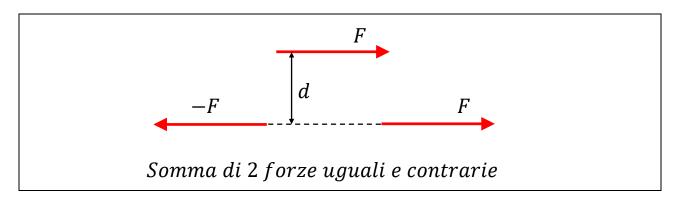


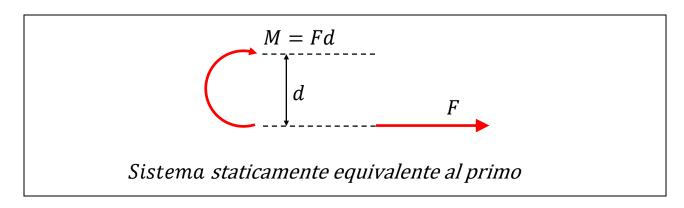
SPOSTAMENTO DI UNA FORZA PARALLELAMENTE A SE STESSA

Data una forza \vec{F} è possibile ottenere un sistema **staticamente equivalente** traslandola parallelamente a se stessa,

purché si aggiunga un momento di trasporto.

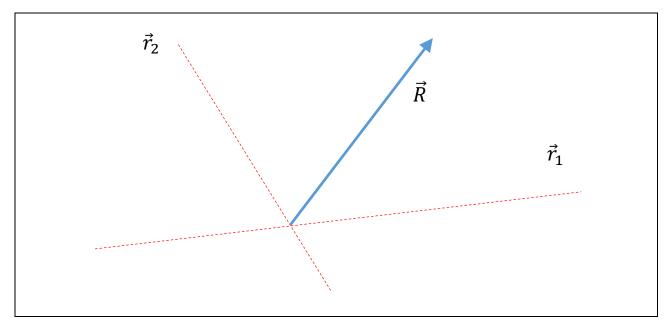






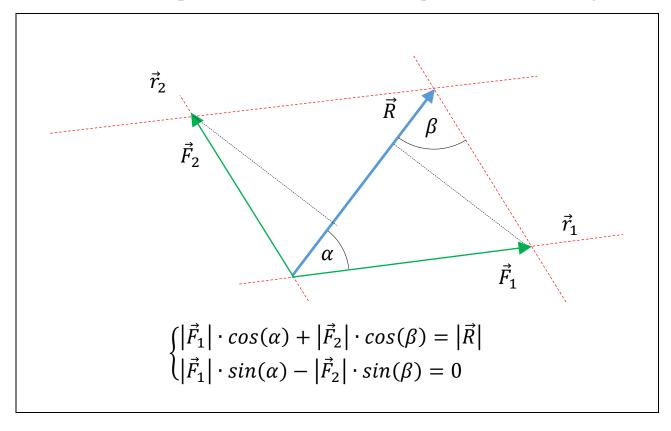
SCOMPOSIZIONE DI UNA FORZA IN DUE DIREZIONI DATE

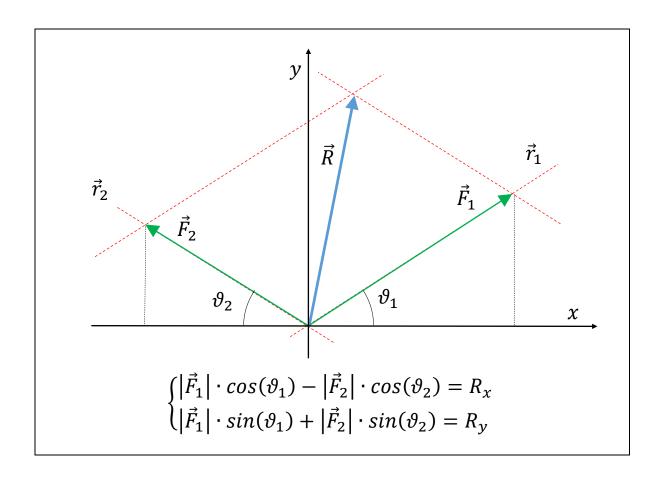
Le direzioni delle rette \vec{r}_1 ed \vec{r}_2 sono note



I moduli delle forze \vec{F}_1 ed \vec{F}_2 sono incognite.

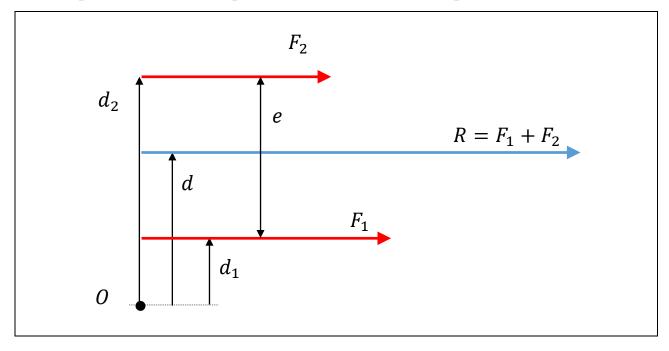
E' necessario impostare un sistema di due equazioni in due incognite.





SOMMA DI DUE FORZE PARALLELE

La somma si effettua nel modo consueto, ma è necessario stabilire dove applicare la risultate perché i due sistemi possano dirsi **staticamente equivalenti**.

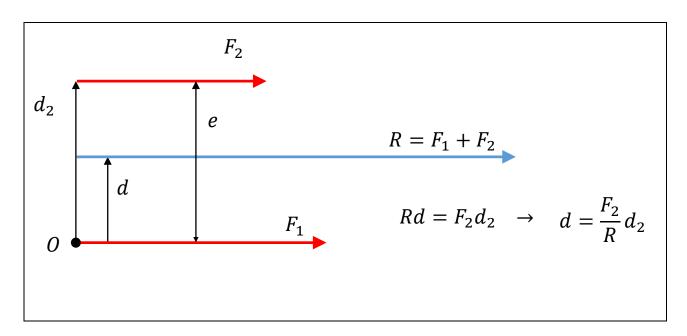


Perché la risultante \vec{R} sia **staticamente equivalente** alle forze \vec{F}_1 ed \vec{F}_2 è necessario che sia disposta correttamente.

$$M = Rd = d_1F_1 + d_2F_2$$

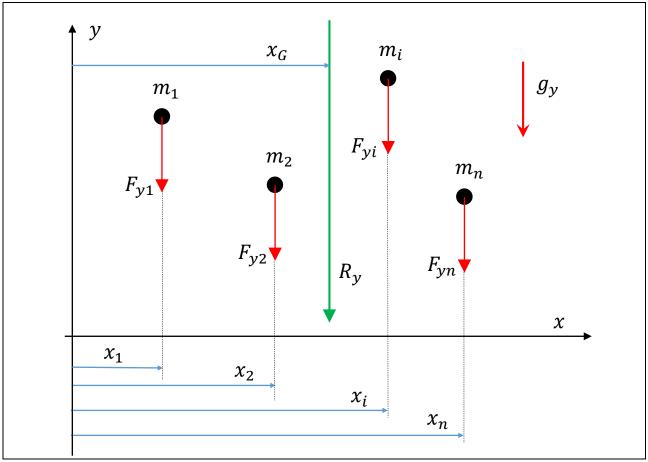
da cui:

$$d = \frac{d_1F_1 + (d_1 + e)F_2}{R} = \frac{d_1(F_1 + F_2) + eF_2}{R} = d_1 + \frac{eF_2}{R}$$



Lezioni del Prof. Filippo Bertolino

CALCOLO DEL BARICENTRO DI UN INSIEME DI MASSE CONCENTRATE

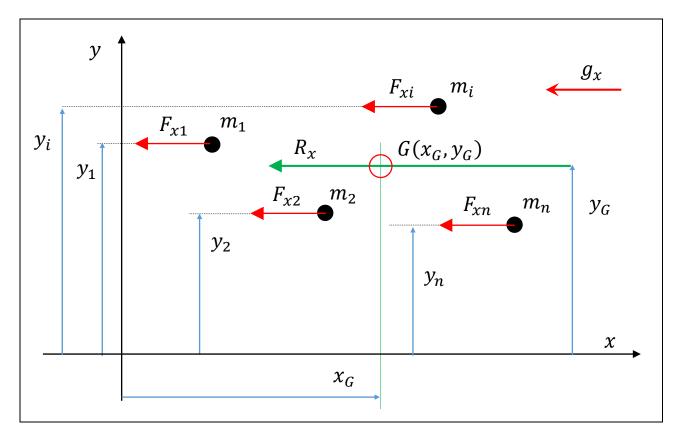


Il sistema delle n forze F_i può essere sostituito da una forza equivalente verticale di modulo:

$$R_y = \sum_{i=1}^n F_i = \sum_{i=1}^n g_y m_i = g_y \sum_{i=1}^n m_i$$

purché sia disposta in modo che: $M = R_y x_G = \sum_{i=1}^n x_i \cdot F_i$. Quindi:

$$x_G = \frac{\sum_{i=1}^n x_i \cdot F_i}{R_y} = \frac{g_y \sum_{i=1}^n x_i \cdot m_i}{g_y \sum_{i=1}^n m_i} = \frac{\sum_{i=1}^n x_i \cdot m_i}{\sum_{i=1}^n m_i}$$



Ruotando il campo gravitazionale di 90° si ottiene:

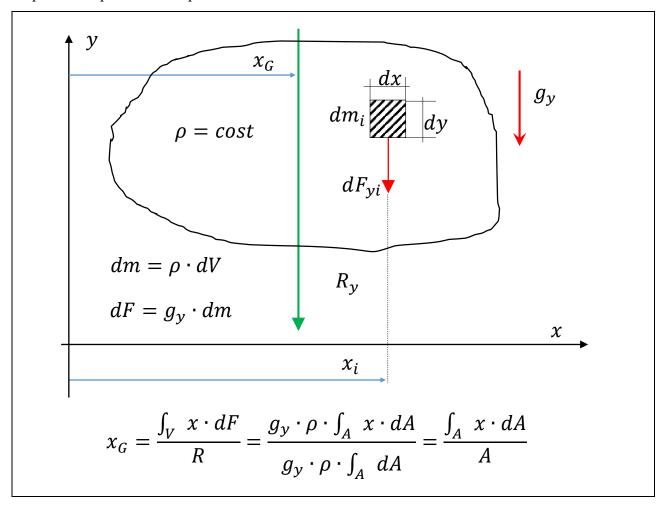
$$R_x = \sum_{i=1}^{n} F_i = \sum_{i=1}^{n} g_x m_i = g_x \sum_{i=1}^{n} m_i$$

da cui

$$y_G = \frac{\sum_{i=1}^n y_i \cdot F_i}{R_x} = \frac{g_x \sum_{i=1}^n y_i \cdot m_i}{g_x \sum_{i=1}^n m_i} = \frac{\sum_{i=1}^n y_i \cdot m_i}{\sum_{i=1}^n m_i}$$

CALCOLO DEL BARICENTRO DI UN'AREA

La procedura precedente si può facilmente estendere al calcolo del baricentro di un'area.



Ruotando il campo gravitazionale di 90° si ottiene:

$$y_G = \frac{\int_V y \cdot dF}{R} = \frac{g_x \cdot \rho \cdot \int_A y \cdot dA}{g_x \cdot \rho \cdot \int_A dA} = \frac{\int_A y \cdot dA}{A}$$

$$\begin{cases} S_x = \int_A y \cdot dA \\ S_y = \int_A x \cdot dA \end{cases}$$
 si chiamano "momenti statici"

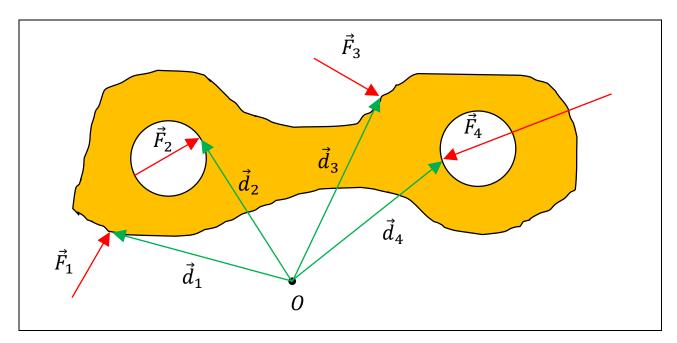
I MOMENTI STATICI BARICENTRICI SONO NULLI.

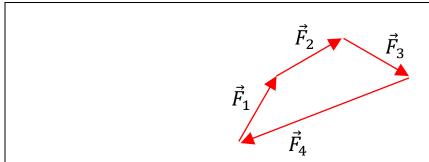
CONDIZIONI DI EQUILIBRIO DI UN CORPO

Perché un corpo risulti in equilibrio è necessario che siano soddisfatte le

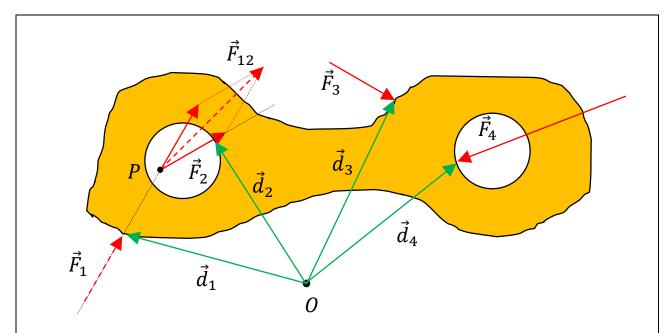
EQUAZIONI CARDINALI DELLA STATICA.

$$\sum_{i=1}^{n} \vec{F}_i = 0 \qquad ; \qquad \qquad \sum_{i=1}^{n} \vec{d}_i \wedge \vec{F}_i = \sum_{i=1}^{n} \vec{M}_i = 0$$



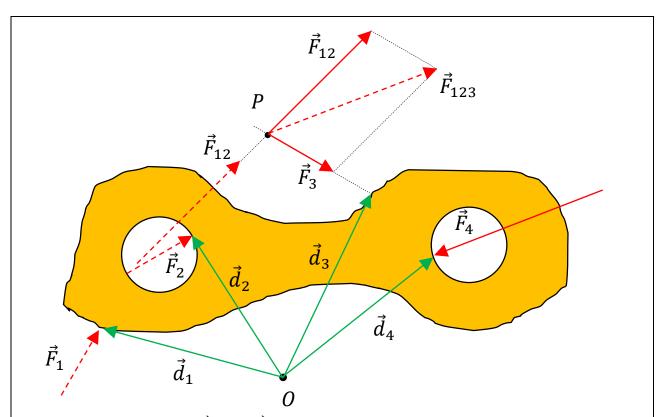


Per soddisfare l'equazione $\sum_{i=1}^{n} \vec{F}_i = 0$, il poligono delle forze deve risultare chiuso. Si tratta però di una **condizione necessaria ma non sufficiente**.



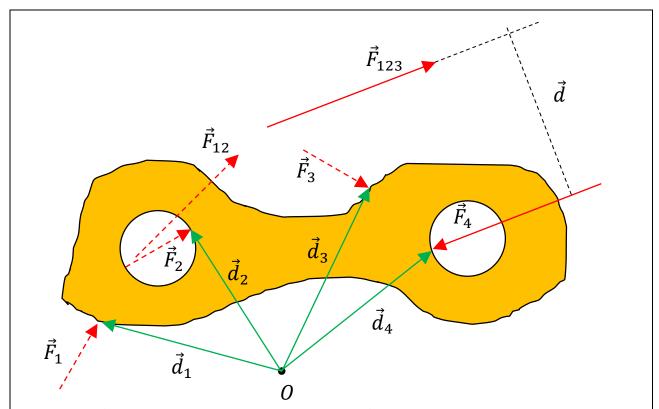
Si traslano le forze \vec{F}_1 e \vec{F}_2 sulle rispettive rette d'azione fino a farle incontrare nel punto P da cui parte la loro risultante:

$$\vec{F}_{12} = \vec{F}_1 + \vec{F}_2$$



Si traslano le forze \vec{F}_{12} e \vec{F}_3 sulle rispettive rette d'azione fino a farle incontrare nel punto P da cui parte la loro risultante:

$$\vec{F}_{123} = \vec{F}_{12} + \vec{F}_{3}$$



La forza \vec{F}_{123} risulta parallela alla forza \vec{F}_4 ; la loro somma è nulla quindi:

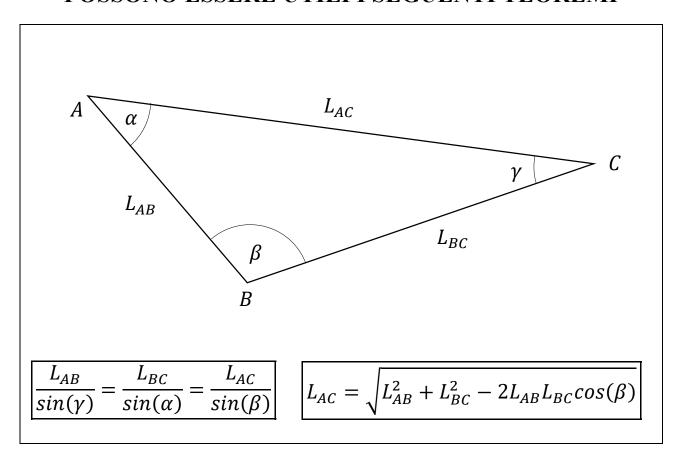
$$\sum_{i=1}^{4} \vec{F}_i = 0$$

Ma il sistema non è in equilibrio perché sull'oggetto agisce una coppia diversa da zero pari alla forza \vec{F}_4 per la sua distanza da \vec{F}_{123} .

$$\vec{M} = \sum_{i=1}^{4} \vec{d}_i \wedge \vec{F}_i \neq 0$$

Quando al sistema di forze si sottrae un sistema di forze equivalente il sistema risulta in equilibrio.

POSSONO ESSERE UTILI I SEGUENTI TEOREMI



CALCOLO DEL PUNTO MEDIO DI UN SEGMENTO

