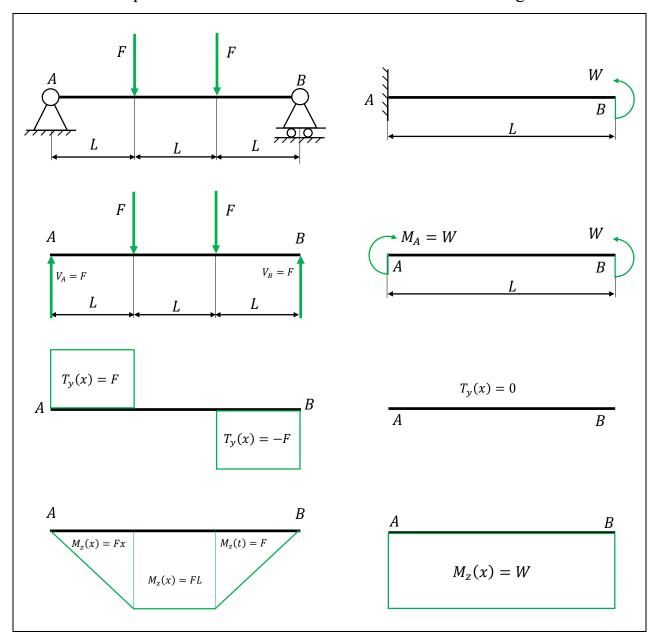

1

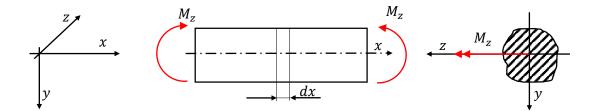
$\frac{\text{https://unica.adobeconnect.com/p87dy7hgrta7/}}{\text{https://unica.adobeconnect.com/pfs2j8phhkhd/}}\\ LA FLESSIONE$

Ci poniamo l'obiettivo di determinare la distribuzione degli sforzi prodotti dalla sola azione interna di momento flettente. In realtà insieme alle azioni di momento flettente normalmente si presentano anche il taglio o il momento torcente.

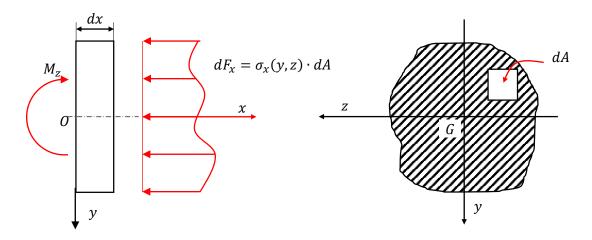

Quando si è parlato del metodo differenziale per il calcolo delle azioni interne è stata dimostrata la seguente equazione (i cui segni dipendono dalla disposizione del sistema di riferimento):

$$\frac{d^2M}{dx^2} = \frac{dT}{dx} = -q_{\perp}(x)$$

dove $q_{\perp}(x)$ rappresenta il carico distribuito lungo l'asse x della trave e ad esso perpendicolare. L'integrazione di questa equazione dimostra che, normalmente, il momento flettente si accompagna all'azione di taglio. Per esempio,


quando:
$$q_{\perp}(x) = mx + q_0$$
 allora
$$\begin{cases} T(x) = \frac{1}{2}mx^2 + q_0x + c_1 \\ M(x) = \frac{1}{6}mx^3 + q_0\frac{x^2}{2} + c_1x + c_2 \end{cases}$$
quando: $q_{\perp}(x) = q_0 = cost$ allora
$$\begin{cases} T(x) = q_0x + c_1 \\ M(x) = q_0\frac{x^2}{2} + c_1x + c_2 \end{cases}$$
quando: $q_{\perp}(x) = 0$ allora
$$\begin{cases} T(x) = c_1 \\ M(x) = c_1x + c_2 \end{cases}$$

In alcuni casi capita che il momento flettente sia costante e che il taglio sia assente.



Nella zona centrale della trave rappresentata a sinistra e su tutta la trave rappresentata a destra, il momento è costante ed il taglio è nullo. In quanto segue si studierà la distribuzione degli sforzi per questa particolare situazione; gli sforzi prodotti dalle azioni interne di taglio e di momento torcente verranno considerate inseguito.

Esaminiamo le sezioni dove le azioni interne N e T sono nulle e dove $M_z = cost \neq 0$.

Si ipotizza di estrarre dalla trave un prisma lungo dx: sulla sua faccia sinistra agisce il momento M_z mentre sulla sua faccia destra si riportano gli sforzi $\sigma_x(y,z)$ incogniti che lo devono mantenere in equilibrio.

Si ipotizza che la sezione trasversale sia di forma qualsiasi, cioè priva di assi di simmetria. In generale su un elemento infinitesimo di area dA giacente sul piano della sezione trasversale, agiscono gli sforzi σ_x , τ_{xy} e τ_{xz} , dove il primo indice stabilisce che lo sforzo agisce su una superficie che ha normale x ed il secondo precisa la direzione dello sforzo. In questo caso gli sforzi di taglio sono assenti.

Poiché si ipotizza che il materiale sia omogeneo e che sia valida la legge di Hooke $\sigma_x = E \varepsilon_x$, le equazioni di equilibrio assumono la seguente forma:

$$\begin{cases} \sum F_{x} = \int_{A} dF_{x} = \int_{A} \sigma_{x}(y,z) \cdot dA = \int_{A} \varepsilon_{x}(y,z) \cdot dA = 0 \\ \sum_{O} M_{y} = \int_{A} z \cdot dF_{x} = \int_{A} \sigma_{x}(y,z) \cdot z \cdot dA = \int_{A} \varepsilon_{x}(y,z) \cdot z \cdot dA = 0 \\ \sum_{O} M_{z} = \int_{A} y \cdot dF_{x} = \int_{A} \sigma_{x}(y,z) \cdot y \cdot dA = E \int_{A} \varepsilon_{x}(y,z) \cdot y \cdot dA = M_{z} \end{cases}$$

IL PROBLEMA E' STATICAMENTE INDETERMINATO

ovvero non disponiamo di un numero sufficiente di equazioni per poter determinare in modo univoco tutte le incognite.

SONO NECESSARIE DELLE IPOTESI CINEMATICHE.

Quelle proposte nella teoria di Eulero-Bernoulli sono le seguenti:

- In seguito all'applicazione del carico, le sezioni trasversali all'asse della trave, piane prima dell'applicazione del carico, ruotano ma rimangono piane;
- le sezioni trasversali all'asse della trave, rimangono perpendicolari all'asse della trave deformata;

In seguito all'applicazione del momento flettente, alcune fibre della trave parallele al suo asse *x* si allungano ed altre si contraggono; solo la fibra passante per il baricentro dell'area trasversale non subisce variazioni di lunghezza.

Osservando il seguente schema si ottiene che:

$$R \cdot d\theta = dx$$

$$m \qquad p \qquad m \qquad p$$

$$0 \qquad x, u \qquad y \qquad dx + du \qquad q$$

dove $d\vartheta$ è la rotazione rigida che ha subito una faccia delle trave rispetto a quella precedente disposta a distanza dx.

Dall'equazione precedente si ricava il raggio di curvatura della trave:

$$\frac{1}{R} = \frac{d\vartheta}{dx}$$

Prima dell'applicazione del carico tutte le fibre parallele all'asse della trave sono lunghe:

$$L_i = dx = R \cdot d\theta$$

Dopo l'applicazione del carico, le fibre cambiano la propria lunghezza in funzione della loro distanza dal centro di curvatura:

$$L_f(y) = (R + y) \cdot d\vartheta$$

Di conseguenza la fibra disposta a distanza y dall'asse della trave subisce la deformazione:

$$\varepsilon_x(y) = \frac{L_f(y) - L_i}{L_i} = \frac{(R+y) \cdot d\vartheta - R \cdot d\vartheta}{R \cdot d\vartheta} = \frac{y}{R}$$

Sostituiamo questa espressione nelle equazioni di equilibrio:

$$\begin{cases} \sum F_{x} = \int_{A} \varepsilon_{x}(y,z) \cdot dA = \frac{1}{R} \int_{A} y \cdot dA = \frac{S_{z}}{R} = 0 \\ \sum_{O} M_{y} = \int_{A} \varepsilon_{x}(y,z) \cdot z \cdot dA = \frac{1}{R} \int_{A} y \cdot z \cdot dA = \frac{I_{yz}}{R} = 0 \\ \sum_{O} M_{z} = E \int_{A} \varepsilon_{x}(y,z) \cdot y \cdot dA = \frac{E}{R} \int_{A} y^{2} \cdot dA = E \frac{I_{zz}}{R} = M_{z} \end{cases}$$

- La prima equazione afferma che l'asse z rispetto al quale è stato calcolato il momento statico S_z è baricentrico;
- La seconda equazione afferma che gli assi y e z devono essere principali d'inerzia (rispetto ai quali i momenti d'inerzia misti sono nulli);
- Dalla terza equazione di equilibrio, ricordando che:

$$\varepsilon_{\chi} = \frac{y}{R}$$
 e quindi $\frac{1}{R} = \frac{\varepsilon_{\chi}}{y}$

si ricava:

$$E\frac{I_{zz}}{R} = I_{zz}\frac{E\varepsilon_x}{y} = I_{zz}\frac{\sigma_x}{y} = M_z$$

da cui:

$$\sigma_x = \frac{M_z y}{I_{zz}}$$
 Formula di Navier

ATTENZIONE: l'equazione è valida purché gli assi y-z siano assi principali d'inerzia.

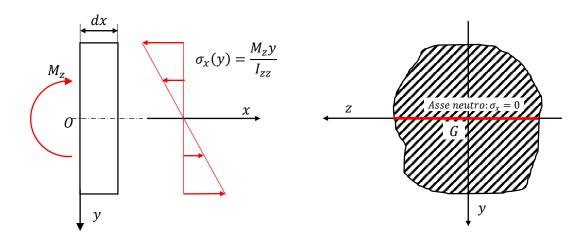
Dalle equazioni precedenti si ricava la curvatura locale (cioè alla coordinata x) della trave:

$$\frac{1}{R} = \frac{\varepsilon_x}{y} = \frac{M_Z}{EI_{ZZ}}$$
 Legge di Eulero-Bernoulli

Dalle equazioni precedenti si ricava:

$$d\theta = \frac{dx}{R} = \frac{M_z dx}{EI_{zz}}$$

Se il momento flettente è costante, se il materiale è omogeneo e se la sezione trasversale è costante, l'integrazione dell'equazione precedente sulla lunghezza *L* della trave fornisce, a meno di una costante d'integrazione da determinarsi con le condizioni al contorno, il seguente risultato:


$$\vartheta = \frac{M_z L}{E I_{zz}}$$

che si può scrivere nel modo seguente:

$$\left(\frac{EI_{zz}}{L}\right)\vartheta = M_z$$

La formula fornisce la rotazione che subisce la faccia terminale di una trave rispetto alla sua faccia iniziale, quando è sottoposta ad un momento flettente costante pari a M_z . Formalmente l'equazione è simile a quella delle molle: Ku = F; se ne deduce che la **rigidezza flessionale** di una trave prismatica ed omogenea vale:

$$K_M = \frac{EI_{zz}}{L}$$

IL LAVORO DI DEFORMAZIONE

Nel caso della flessione semplice, ipotizzando che il carico M_z cresca lentamente da zero al valore finale (in maniera quasi statica) attraverso una successione di stati di equilibrio, le due sezioni trasversali agli estremi della trave ruotano, una rispetto all'altra, della quantità ϑ . Un aumento infinitesimo del carico dM_z rispetto al valore di partenza M_z , provoca un incremento di rotazione $d\vartheta$. In questo intervallo il lavoro di M_z vale $M_z \cdot d\vartheta$. Integrando su tutta la storia di carico si ottiene:

$$\mathcal{L} = \frac{1}{2} M_Z \vartheta_f = \frac{1}{2} \frac{M_Z^2 L}{E I_{ZZ}}$$
 [Joule]

dove θ_f rappresenta la rotazione finale. Più in generale, se si considera un elemento infinitesimo di trave, l'energia elastica in esso immagazzinata vale:

$$\Psi = \frac{1}{2}\sigma_{x}\varepsilon_{x}$$

Ricordando che vale la legge di Hooke $\sigma_{\chi}=E\,\varepsilon_{\chi}$, si ottiene:

$$\sigma_{x} = \frac{M_{z}y}{I_{zz}}$$
 e $\varepsilon_{x} = \frac{M_{z}y}{EI_{zz}}$

La densità di energia elastica vale quindi:

$$\Psi = \frac{1}{2}\sigma_x \varepsilon_x = \frac{1}{2} \frac{M_z y}{I_{zz}} \cdot \frac{M_z y}{EI_{zz}} = \frac{1}{2} \frac{M_z^2 y^2}{EI_{zz}^2}$$

L'energia elastica complessiva accumulata nell'intero volume della trave si ottiene integrando la densità di energia elastica:

$$\mathcal{L} = \int_{vol} \frac{1}{2} \frac{M_z^2 y^2}{EI_{zz}^2} dvol$$

Il volume infinitesimo dvol si può esprimere come: $dvol = dA \cdot dx$ e poiché M_z , E e I_{zz} sono funzione di x ma non di y e z, l'integrale diventa:

$$\mathcal{L} = \int_{vol} \frac{1}{2} \frac{M_z^2 y^2}{EI_{zz}^2} dvol = \int_L \left(\frac{1}{2} \frac{M_z^2}{EI_{zz}^2} \int_A y^2 dA \right) \cdot dx$$

Poiché:

$$I_{zz} = \int_A y^2 dA$$

l'energia elastica complessiva vale:

$$\mathcal{L} = \int\limits_{L} \left(\frac{1}{2} \frac{M_z^2}{EI_{zz}} \right) \cdot dx$$

Se la trave è prismatica ed omogenea (cioè $EI_z = cost$) si può scrivere:

$$\mathcal{L} = \frac{1}{2EI_{zz}} \int_{I} M_z^2 \cdot dx$$

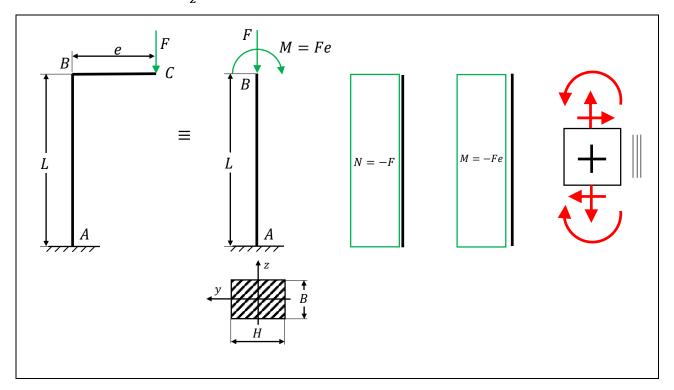
Nel caso in cui il momento flettente M_z si costante su tutta la trave si ritorna alla prima equazione:

$$\mathcal{L} = \frac{M_z^2 L}{2EI_{zz}}$$

CARICO ASSIALE ECCENTRICO

Quando una trave è soggetta sia a un momento flettente M_z che ad un'azione normale N, lo stato di sforzo si ottiene dalla somma degli sforzi provocati dalle singole azioni interne:

$$\sigma_{x} = \sigma_{N} + \sigma_{M} = \frac{N}{A} + \frac{M_{z}y}{I_{zz}}$$


Quando la sola azione interna è il momento flettente, l'asse neutro si trova in y=0. La presenza dell'azione normale N sposta l'asse neutro: la sua nuova posizione si calcola facilmente ricordando che, per definizione, esso rappresenta il luogo di punti in cui lo sforzo normale σ_x è nullo:

$$\sigma_x = \frac{N}{A} + \frac{M_z y}{I_{zz}} = 0$$
 da cui: $y = -\frac{N}{M_z} \frac{I_{zz}}{A}$

Esempio

Calcolare gli sforzi nella sezione A, dove è incastrata l'asta AB.

Si trasporta la forza F sul punto B e vi si aggiunge il momento $M_z = Fa$. Tutta l'asta AB è sottoposta contemporaneamente all'azione normale di compressione N = -F e al momento flettente $M_z = Fa$ che tende le fibre a sinistra della trave.

Lo stato di sforzo nella sezione d'incastro vale:

$$\sigma_{x} = \frac{N}{A} + \frac{M_{z}y}{I_{zz}} = -\frac{F}{A} - \frac{Fey}{I_{zz}} = -\frac{F}{BH} - \frac{Fey}{\frac{BH^{3}}{12}} = \frac{-F}{BH} \left(\frac{12e}{H^{2}}y + 1\right)$$

L'asse neutro, parallelo all'asse z, è il luogo di punti in cui si annulla lo sforzo:

$$\sigma_x = 0$$

da cui:

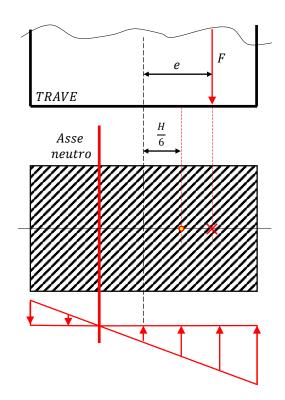
$$\frac{12e}{H^2}y + 1 = 0$$
 da cui $y = -\frac{H^2}{12e}$

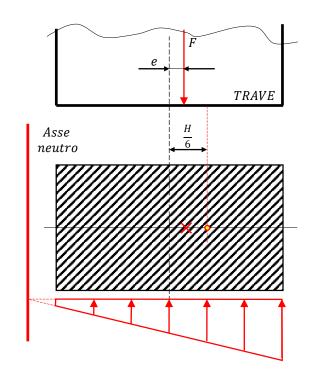
In funzione dei valori attribuiti alle quantità H ed e, l'asse neutro taglia o meno la sezione. Quando:

$$y = \frac{H}{2} = -\frac{H^2}{12e}$$

l'asse neutro passa per il lato corto a sinistra del baricentro: la sezione è tutta compressa e lo sforzo ha un andamento triangolare. Ciò capita quando l'eccentricità *e* del carico vale:

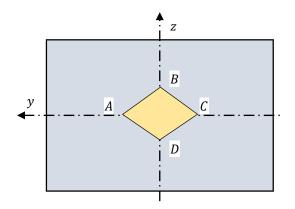
$$e = -\frac{H}{6}$$
Asse neutro
$$\sigma_x^{max}$$


Lo sforzo massimo si calcola facilmente:


$$F = \frac{H\sigma_x^{max}}{2}B$$
 da cui $\sigma_x^{max} = \frac{2F}{BH}$

Quando l'eccentricità *e* aumenta (in valore assoluto), la distanza dell'asse neutro dal baricentro della sezione diminuisce: una parte della sezione sarà tesa ed una parte compressa.

Quando l'eccentricità *e* diminuisce, la distanza dell'asse neutro dal baricentro della sezione aumenta: tutta la sezione sarà compressa da un carico trapezoidale.



Sulla sezione trasversale delle travi è possibile individuare un'area che prende il nome di "**nocciolo centrale d'inerzia**": se il piede del carico cade all'interno di tale area, la sezione risulta tutta compressa (se il carico è di compressione), ovvero l'asse neutro non taglia la sezione.

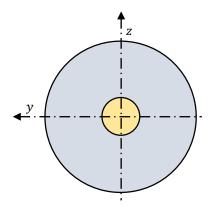
Se la sezione ha la forma di un rettangolo di lati B ed H, il nocciolo centrale d'inerzia è un quadrilatero, individuato dai seguenti 4 vertici:

$$A\left(\frac{H}{6},0\right); \quad B\left(0,\frac{B}{6}\right);$$
 $C\left(-\frac{H}{6},0\right); \quad D\left(0,-\frac{B}{6}\right)$

Se la sezione ha la forma di una circonferenza di raggio R, il nocciolo centrale d'inerzia è una circonferenza il cui raggio si calcola con la solita formula:

$$\sigma_x = \frac{N}{A} + \frac{M_z y}{I_{zz}} = -\frac{F}{A} - \frac{Fey}{I_{zz}} = 0$$

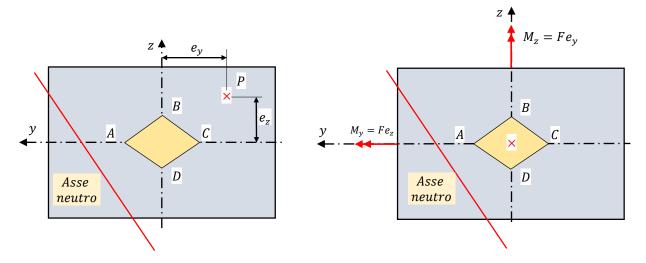
Poiché $A = \pi R^2$ e $I_{zz} = \frac{\pi R^4}{4}$ semplificando si ottiene:


$$y = -\frac{I_{zz}}{A}\frac{1}{e} = -\frac{\pi R^4}{4}\frac{1}{e} = -\frac{R^2}{4e}$$

L'asse neutro è tangente alla circonferenza quando y = R, da cui:

$$R = -\frac{R^2}{4e}$$

Quindi il raggio del nocciolo centrale d'inerzia vale:


$$e = \frac{R}{4}$$

Quando y è positivo allora e è negativo e viceversa.

LA FLESSIONE DEVIATA

Se nella pressoflessione il piede del carico non cade sull'asse y (che è anche asse di simmetria), ma in un punto qualsiasi P, si ha la nascita della così detta flessione deviata.

In questo caso è necessario trasportare la forza F sul baricentro della sezione ed aggiungere due momenti di trasporto: M_z trasportando la forza in direzione y ed M_y trasportando la forza in direzione z.

L'equazione generale per il calcolo degli sforzi $\sigma_x(y, z)$ diventa:

$$\sigma_x = \frac{N}{A} + \frac{M_z y}{I_{zz}} + \frac{M_y z}{I_{yy}}$$

Bisogna sempre fare molta attenzione ai segni: in questo caso una forza di compressione applicata nel punto P è equivalente ad una forza applicata nel baricentro della sezione più la somma di due momenti flettenti:

- 1) M_z comprime le fibre disposte a destra dell'asse z quindi quando viene moltiplicato per i valori positivi della coordinata y deve essere positivo;
- 2) M_y comprime le fibre disposte sopra l'asse y quindi quando viene moltiplicato per i valori positivi della coordinata z deve essere negativo;

Alle eccentricità verrà assegnato il loro valore assoluto, in quanto il loro segno ha già determinato il verso dei momenti flettenti.

$$\sigma_{x} = -\frac{F}{A} + \frac{(Fe_{y})y}{I_{zz}} - \frac{(Fe_{z})z}{I_{yy}}$$

Per trovare la posizione dell'asse neutro è sufficiente trovare il luogo di punti (y, z) che annullano la precedente equazione:

$$\sigma_x = -\frac{F}{A} + \frac{(Fe_y)y}{I_{zz}} - \frac{(Fe_z)z}{I_{yy}} = 0$$

da cui:

$$\left(\frac{e_{y}}{I_{zz}}\right)y + \left(-\frac{e_{z}}{I_{yy}}\right)z + \left(-\frac{1}{A}\right) = 0$$

che non è altro che l'equazione di una retta del tipo: ay + bz + c = 0

Possiamo esprimere l'equazione sia in funzione di y:

$$z = \left(\frac{l_{yy}}{l_{zz}}\right) \left(\frac{e_y}{e_z}\right) y - \left(\frac{l_{yy}}{A}\right) \frac{1}{e_z}$$

che in funzione di z:

$$y = \left(\frac{I_{zz}}{I_{yy}}\right) \left(\frac{e_z}{e_y}\right) z + \left(\frac{I_{zz}}{A}\right) \frac{1}{e_y}$$

Se $e_z = 0$ si ottiene:

$$y = \left(\frac{I_{zz}}{A}\right) \frac{1}{e_y} = \frac{r_z^2}{e_y}$$

dove $r_z = \sqrt{\frac{I_{zz}}{A}}$ è il raggio polare calcolato rispetto all'asse z.

In questa equazione è assente il segno negativo in quanto abbiamo assunto le eccentricità in valore assoluto. E' inteso però che il piede del carico si trovi a destra dell'asse z.

Nel caso di sezione di forma rettangolare (vedi schemi precedenti):

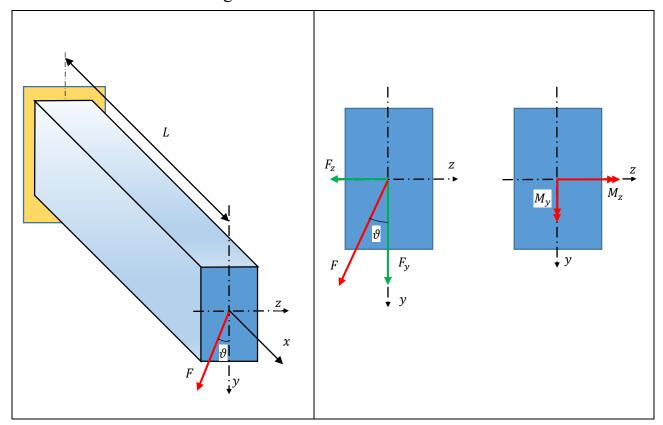
$$I_{yy} = \frac{HB^3}{12}$$
 ; $I_{zz} = \frac{BH^3}{12}$

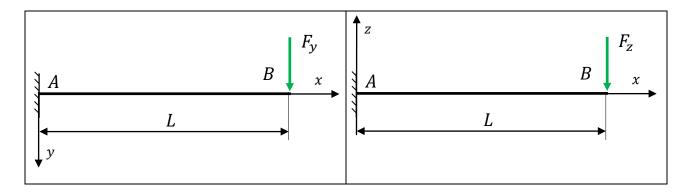
e di conseguenza:

$$y = \left(\frac{l_{zz}}{l_{yy}}\right) \left(\frac{e_z}{e_y}\right) z + \left(\frac{l_{zz}}{A}\right) \frac{1}{e_y} = \left(\frac{H}{B}\right)^2 \left(\frac{e_z}{e_y}\right) z + \left(\frac{H^2}{12}\right) \frac{1}{e_y}$$

Se $e_z = 0$ si ottiene:

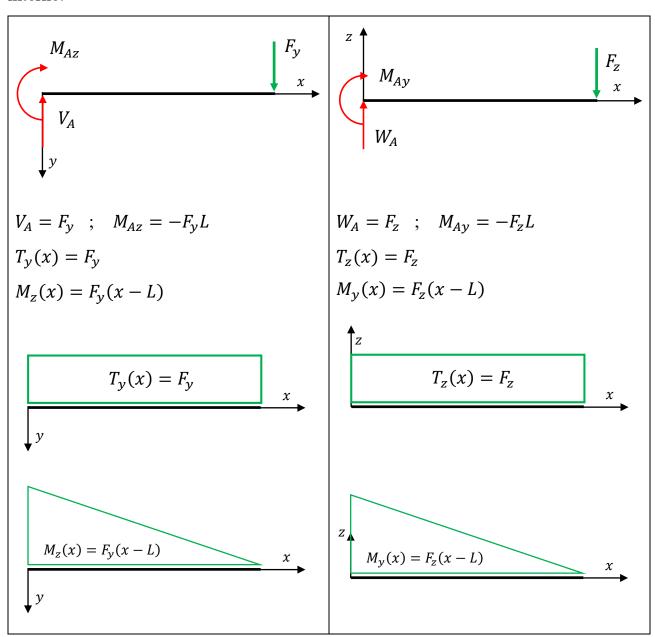
$$y = \left(\frac{H^2}{12}\right) \frac{1}{e_y}$$


In questo caso l'asse neutro risulta parallelo all'asse z; quando $y = \frac{H}{2}$, l'asse neutro passa per il bordo sinistro del rettangolo e ciò capita quando l'eccentricità vale:


$$e = \frac{H}{6}$$

dalla parte delle y negative.

Si consideri la mensola rappresentata in figura sottoposta ad un carico concentrato, trasversale all'asse ed applicato in punta. Il carico F è inclinato dell'angolo ϑ rispetto all'asse verticale.


E' possibile scomporre la forza in due componenti, una verticale $F_y = F \cdot cos(\theta)$, e una orizzontale $F_z = F \cdot sin(\theta)$. Ognuna di queste forze darà origine ad un momento flettente e ad un'azione di taglio.

Posta l'origine degli assi all'incastro, si ottengono le seguenti equazioni delle azioni interne:

Nel punto A, all'incastro, le azioni interne raggiungono il valore massimo.

Gli sforzi σ_x prodotti dalla flessione in direzione dell'asse della trave valgono:

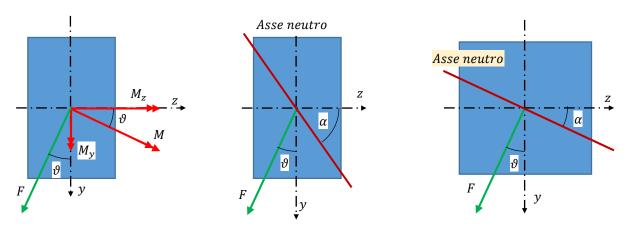
$$\sigma_x = \frac{M_z y}{I_{zz}} + \frac{M_y z}{I_{yy}}$$

Controllo dei segni:

- 1) il momento flettente M_z tende le fibre dal lato delle y negative;
- 2) il momento flettente M_{ν} tende le fibre dal lato delle z positive.

Di conseguenza l'equazione corretta è la seguente:

$$\sigma_x(x, y, z) = \frac{F_y(x - L)y}{I_{zz}} - \frac{F_z(x - L)z}{I_{yy}}$$

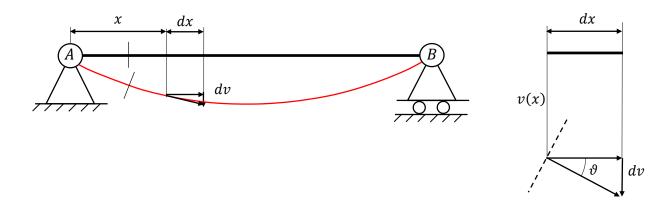

L'asse neutro è il luogo dei punti dove gli sforzi σ_{χ} si annullano:

$$\sigma_x(x, y, z) = \frac{M_z y}{I_{zz}} - \frac{M_y z}{I_{yy}} = 0$$

da cui:

$$y = \frac{M_y}{M_z} \frac{I_{zz}}{I_{yy}} z = \frac{F_z(x - L)}{F_y(x - L)} \frac{I_{zz}}{I_{yy}} z = \frac{\sin(\vartheta)}{\cos(\vartheta)} \frac{I_{zz}}{I_{yy}} z = \tan g(\vartheta) \frac{I_{zz}}{I_{yy}} z = \tan g(\vartheta) z$$

Quindi l'asse neutro passa per l'origine degli assi. La sua inclinazione non è sempre perpendicolare alla direzione della forza (o parallela al vettore del momento flettente), ma dipende anche dal rapporto tra i momenti d'inerzia.

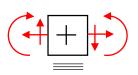

Calcolo degli spostamenti trasversali della trave causati dalla flessione

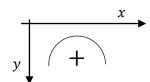
Ricordo la Legge di Eulero-Bernoulli:

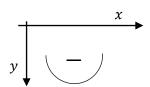
$$\frac{1}{R} = \frac{d\vartheta}{dx} = \frac{M_Z}{EI_{ZZ}}$$

Ricordo inoltre la seconda ipotesi cinematica alla base della loro teoria:

le sezioni trasversali all'asse della trave indeformata, rimangono perpendicolari all'asse della trave deformata.

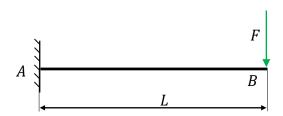

$$\frac{dv}{dx} = tang(\vartheta) \cong \vartheta$$

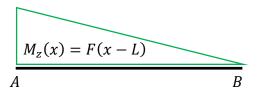

da cui:


$$\frac{d\vartheta}{dx} = \frac{d\left[\frac{dv}{dx}\right]}{dx} = \frac{d^2v}{dx^2} = -\frac{M_Z(x)}{EI_{ZZ}}$$

$$\frac{d^2v}{dx^2} = -\frac{M_Z(x)}{EI_{ZZ}}$$

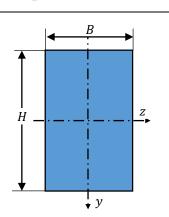
$\frac{d^2v}{dx^2} = -\frac{M_Z(x)}{EI_{77}}$ Equazione della linea elastica

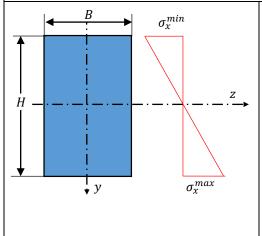




Il momento positivo tende le fibre inferiori, quindi la concavità della funzione "spostamento trasversale v(x)", è negativa: questo giustifica l'aggiunta del segno negativo nell'equazione della linea elastica.

ESEMPI


Il momento flettente massimo vale: $M_z^{max} = FL$ e tende le fibre superiori della trave.


Si utilizzi una trave rettangolare di base B ed altezza H; il suo momento d'inerzia rispetto l'asse z vale:

$$I_{zz} = \frac{BH^3}{12}$$

Il campo degli sforzi assiali è il seguente:

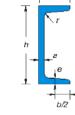
$$\sigma_{x} = \frac{M_{z}y}{I_{zz}}$$

Gli sforzi estremi si raggiungono dove

$$y = \pm \frac{H}{2}$$

$$\begin{cases} \sigma_x^{min} = -\frac{M_z \frac{H}{2}}{I_{zz}} = -\frac{M_z}{W_z} \\ \sigma_x^{max} = \frac{M_z \frac{H}{2}}{I_{zz}} = \frac{M_z}{W_z} \end{cases}$$

Il coefficiente W_z si chiama "**modulo di resistenza**" e vale $W_z = \frac{I_{zz}}{y_{max}}$.


Con una sezione rettangolare si ha: $y_{max} = \frac{H}{2}$ e quindi: $W_z = \frac{I_{zz}}{y_{max}} = \frac{\frac{BH^3}{12}}{\frac{H}{2}} = \frac{BH^2}{6}$.

Quindi lo sforzo massimo vale:

$$\sigma_x^{max} = \frac{6M_z}{BH^2}$$

Se si utilizzano profilati normalizzati si fa ricorso alle tabelle; per esempio nel caso dei profilati metallici UPN normalizzati secondo le norme UNI 5680-73, le tabelle hanno la forma seguente:

Profilati metallici Travi UPN

UNI 5680-73

						I					
						Momenti di inerzia		Moduli di resistenza		Raggi di inerzia	
b mm	a mm	e mm	r mm	Peso kg/m	Sezione cm ²	Jx cm⁴	Jy cm⁴	Wx cm ³	Wy cm ³	ix cm	iy cm
33	5,0	7,0	7,0	4.27	5,44	6,39	5,10	4,26	2,60	1,08	0,968
35	5,0	7,0	7,0	4,88	6,21	14,1	6,68	7,07	3,08	1,51	1,04
38	5,0	7,0	7,0	5,59	7,12	26,5	9,10	10,06	3,74	1,93	1,13
42	5,5	7,5	7,5	7,09	9,03	57,5	14,0	17,7	5,05	2,52	1,25
45	6,0	8,0	8,0	8,65	11,0	106	19,4	26,5	6,35	3,10	1,33
50	6,0	8,5	8,5	10,6	13,5	205	29,1	41,1	8,45	3,91	1,47
55	7,0	9,0	9,0	13,3	17,0	364	43,1	60,7	11,1	4,63	1,59
60	7,0	10,0	10,0	16,0	20,4	605	62,5	86,4	14,7	5,45	1,75
65	7,5	10,5	10,5	18,9	24,0	925	85,1	116	18,2	6,21	1,88
70	8,0	11,0	11,0	22,0	28,0	1.354	114	150	22,4	6,96	2,01
75	8,5	11,5	11,5	25,3	32,2	1.911	148	191	26,9	7,71	2,14
	mm 33 35 38 42 45 50 55 60 65 70	mm mm 33 5,0 35 5,0 38 5,0 42 5,5 45 6,0 50 6,0 55 7,0 60 7,5 70 8,0	mm mm mm 33 5,0 7,0 35 5,0 7,0 38 5,0 7,0 42 5,5 7,5 45 6,0 8,0 50 6,0 8,5 55 7,0 9,0 60 7,0 10,0 65 7,5 10,5 70 8,0 11,0	mm mm mm mm 33 5,0 7,0 7,0 35 5,0 7,0 7,0 38 5,0 7,0 7,0 42 5,5 7,5 7,5 45 6,0 8,0 8,0 50 6,0 8,5 8,5 55 7,0 9,0 9,0 60 7,0 10,0 10,0 65 7,5 10,5 10,5 70 8,0 11,0 11,0	mm mm mm kg/m 33 5,0 7,0 7,0 4.27 35 5,0 7,0 7,0 4,88 38 5,0 7,0 7,0 5,59 42 5,5 7,5 7,5 7,09 45 6,0 8,0 8,0 8,65 50 6,0 8,5 8,5 10,6 55 7,0 9,0 9,0 13,3 60 7,0 10,0 10,0 16,0 65 7,5 10,5 10,5 18,9 70 8,0 11,0 11,0 22,0	mm mm mm mm kg/m cm² 33 5,0 7,0 7,0 4.27 5,44 35 5,0 7,0 7,0 4,88 6,21 38 5,0 7,0 7,0 5,59 7,12 42 5,5 7,5 7,5 7,09 9,03 45 6,0 8,0 8,0 8,65 11,0 50 6,0 8,5 8,5 10,6 13,5 55 7,0 9,0 9,0 13,3 17,0 60 7,0 10,0 10,0 16,0 20,4 65 7,5 10,5 10,5 18,9 24,0 70 8,0 11,0 11,0 22,0 28,0	b a e r Peso kg/m Sezione cm² Jx 33 5,0 7,0 7,0 4.27 5,44 6,39 35 5,0 7,0 7,0 4,88 6,21 14,1 38 5,0 7,0 7,0 5,59 7,12 26,5 42 5,5 7,5 7,5 7,09 9,03 57,5 45 6,0 8,0 8,0 8,65 11,0 106 50 6,0 8,5 8,5 10,6 13,5 205 55 7,0 9,0 9,0 13,3 17,0 364 60 7,0 10,0 16,0 20,4 605 65 7,5 10,5 10,5 18,9 24,0 925 70 8,0 11,0 11,0 22,0 28,0 1.354	b a e r Peso mm Sezione kg/m Jx Jy 33 5,0 7,0 7,0 4.27 5,44 6,39 5,10 35 5,0 7,0 7,0 4,88 6,21 14,1 6,68 38 5,0 7,0 7,0 5,59 7,12 26,5 9,10 42 5,5 7,5 7,5 7,09 9,03 57,5 14,0 45 6,0 8,0 8,0 8,65 11,0 106 19,4 50 6,0 8,5 8,5 10,6 13,5 205 29,1 55 7,0 9,0 9,0 13,3 17,0 364 43,1 60 7,0 10,0 10,0 16,0 20,4 605 62,5 65 7,5 10,5 10,5 18,9 24,0 925 85,1 70 8,0 11,0 11,0 22,0 28,0	b a e r Peso kg/m Sezione cm² Jx Jy Wx 33 5,0 7,0 7,0 4.27 5,44 6,39 5,10 4,26 35 5,0 7,0 7,0 4,88 6,21 14,1 6,68 7,07 38 5,0 7,0 7,0 5,59 7,12 26,5 9,10 10,06 42 5,5 7,5 7,5 7,09 9,03 57,5 14,0 17,7 45 6,0 8,0 8,65 11,0 106 19,4 26,5 50 6,0 8,5 8,5 10,6 13,5 205 29,1 41,1 55 7,0 9,0 9,0 13,3 17,0 364 43,1 60,7 60 7,0 10,0 16,0 20,4 605 62,5 86,4 65 7,5 10,5 10,5 18,9 24,0 925 85,1	b a e r Peso mm Sezione kg/m Jx Jy Wx Wy 33 5,0 7,0 7,0 4.27 5,44 6,39 5,10 4,26 2,60 35 5,0 7,0 7,0 4,88 6,21 14,1 6,68 7,07 3,08 38 5,0 7,0 7,0 5,59 7,12 26,5 9,10 10,06 3,74 42 5,5 7,5 7,5 7,09 9,03 57,5 14,0 17,7 5,05 45 6,0 8,0 8,0 8,65 11,0 106 19,4 26,5 6,35 50 6,0 8,5 8,5 10,6 13,5 205 29,1 41,1 8,45 55 7,0 9,0 9,0 13,3 17,0 364 43,1 60,7 11,1 60 7,0 10,0 10,0 16,0 20,4 605 62,5 <td>b a e r Peso kg/m Sezione cm² Jx Jy Wx Wy ix 33 5,0 7,0 7,0 4.27 5,44 6,39 5,10 4,26 2,60 1,08 35 5,0 7,0 7,0 4,88 6,21 14,1 6,68 7,07 3,08 1,51 38 5,0 7,0 7,0 5,59 7,12 26,5 9,10 10,06 3,74 1,93 42 5,5 7,5 7,5 7,09 9,03 57,5 14,0 17,7 5,05 2,52 45 6,0 8,0 8,65 11,0 106 19,4 26,5 6,35 3,10 50 6,0 8,5 8,5 10,6 13,5 205 29,1 41,1 8,45 3,91 55 7,0 9,0 9,0 13,3 17,0 364 43,1 60,7 11,1 4,63 60<</td>	b a e r Peso kg/m Sezione cm² Jx Jy Wx Wy ix 33 5,0 7,0 7,0 4.27 5,44 6,39 5,10 4,26 2,60 1,08 35 5,0 7,0 7,0 4,88 6,21 14,1 6,68 7,07 3,08 1,51 38 5,0 7,0 7,0 5,59 7,12 26,5 9,10 10,06 3,74 1,93 42 5,5 7,5 7,5 7,09 9,03 57,5 14,0 17,7 5,05 2,52 45 6,0 8,0 8,65 11,0 106 19,4 26,5 6,35 3,10 50 6,0 8,5 8,5 10,6 13,5 205 29,1 41,1 8,45 3,91 55 7,0 9,0 9,0 13,3 17,0 364 43,1 60,7 11,1 4,63 60<

Assegniamo dei valori numerici ai parametri dell'esercizio: ipotizziamo una trave lunga L=1000~[mm] e un carico in B pari a F=10000~[N]: il momento massimo sarà pari a $M_x^{max}=FL=10^7~[Nmm]=10~[kNm]$. Ipotizziamo di utilizzare un profilo normalizzato del tipo UPN realizzato con un acciaio del tipo Fe 530 che ha uno sforzo di snervamento minimo garantito pari a $\sigma_{sn}=355~[MPa]$; ipotizziamo infine di utilizzare un coefficiente di sicurezza CS rispetto allo snervamento pari a 2, di conseguenza lo sforzo massimo ammissibile varrà:

$$\sigma_{am} = \frac{\sigma_{sn}}{CS} = \frac{355}{2} = 177 \ [MPa]$$

Lo sforzo massimo che agisce sulla trave non deve superare il valore dello sforzo ammissibile; quindi è necessaria una sezione che abbia un modulo di resistenza superiore a:

$$W_z \ge \frac{M_z}{\sigma_{am}} = \frac{10^7}{177} = 56500 \ [mm^3] = 56.5 \ [cm^3]$$

Nella tabella osserviamo che il profilato del tipo UPN120 ha un modulo di resistenza pari a $W_z = 60.7 \ [cm^3]$. Utilizzando tale profilo si ottiene uno sforzo massimo paria a:

$$\sigma_x^{max} = \frac{M_z}{W_z} = \frac{10^7}{60700} = 165 \, [MPa]$$

Di conseguenza il coefficiente di sicurezza vale:

$$CS = \frac{\sigma_{Sn}}{\sigma_x^{max}} = \frac{355}{165} = 2.15$$

superiore al valore richiesto: di conseguenza la sezione scelta è adeguata.

Quanto vale lo spostamento verticale subito dal punto B?

E' necessario integrare l'equazione della linea elastica. Ipotizzando che EI_{zz} sia costante lungo l'asta:

$$EI_{zz}\frac{d^2v}{dx^2} = -M_z(x) = F(L-x)$$

Integrando la prima volta si ottiene:

$$EI_{zz}\frac{dv}{dx} = F\left(Lx - \frac{x^2}{2}\right) + c_1$$

Integrando la seconda volta si ottiene:

$$EI_{zz}v(x) = F\left(L\frac{x^2}{2} - \frac{x^3}{6}\right) + c_1x + c_2$$

Condizioni al contorno:

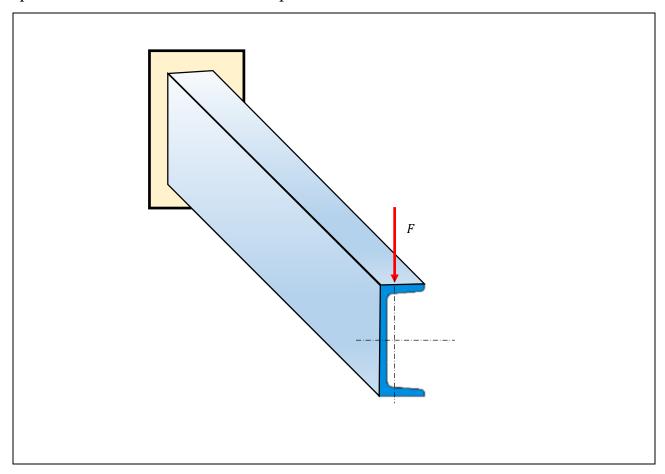
nel punto A c'è un incastro quindi sono impedite le rotazioni e gli spostamenti;

a) in
$$x = 0$$
 $\frac{dv}{dx} = \vartheta = 0$, ma $\vartheta = \frac{F}{EI_{77}} \left(Lx - \frac{x^2}{2} \right) + \frac{c_1}{EI_{77}}$ quindi $c_1 = 0$

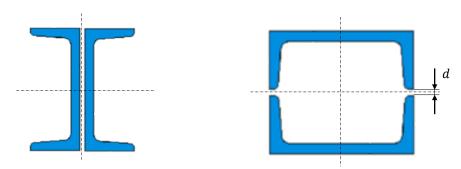
b) in
$$x = 0$$
 $v = 0$, ma $v(x) = \frac{F}{EI_{77}} \left(L \frac{x^2}{2} - \frac{x^3}{6} \right) + \frac{c_2}{EI_{77}}$ quindi $c_2 = 0$

Quindi l'equazione della linea d'asse deformata vale:

$$v(x) = \frac{F}{EI_{zz}} \left(L \frac{x^2}{2} - \frac{x^3}{6} \right)$$


Il punto B posto in x = L subisce lo spostamento:

$$v(x = L) = \frac{F}{EI_{zz}} \left(\frac{L^3}{2} - \frac{L^3}{6}\right) = \frac{FL^3}{3EI_{zz}}$$


Nel nostro esempio avendo usato il profilo UPN120 che ha un momento d'inerzia calcolato rispetto all'asse orizzontale pari a $I_{zz}=364\ [cm^4]$ si ottiene:

$$v(x = L) = \frac{FL^3}{3EI_{zz}} = \frac{10000 \cdot (1000)^3}{3 \cdot 210000 \cdot 3640000} = 4.36 \text{ [mm]}$$

Lo spostamento è sufficientemente piccolo, inferiore allo spessore dell'anima del profilato (pari a 7 [mm]): ricordo che le teorie che utilizziamo sono valide purché gli spostamenti siano sufficientemente piccoli.

Sarebbe stato possibile utilizzare due profilati di dimensione più piccole, uniti tra di loro con delle piastre saldate, per esempio:

Nel profilato rappresentato a sinistra, i momenti d'inerzia calcolati rispetto all'asse orizzontale sono pari al doppio dei momenti d'inerzia del singolo profilato: in questo caso sarebbe possibile usare il profilato del tipo UPN100 che ha un modulo di resistenza pari a $W_z = 41.1 \ [cm^3]$.

In questo caso lo sforzo massimo vale:

$$\sigma_x^{max} = \frac{M_z}{W_z} = \frac{10^7}{2 \times 41.1} = 122 \, [MPa]$$

Di conseguenza il coefficiente di sicurezza vale:

$$CS = \frac{\sigma_{Sn}}{\sigma_x^{max}} = \frac{355}{122} = 2.9$$

Poiché il momento d'inerzia complessivo dei due profilati vale $I_{zz}=2\times 205=410 \ [cm^4]$, lo spostamento verticale del punto B in questo caso vale:

$$v(x = L) = \frac{FL^3}{3EI_{zz}} = \frac{10000 \cdot (1000)^3}{3 \cdot 210000 \cdot 4100000} = 3.87 \ [mm]$$

inferiore al valore precedente perché la sezione è più rigida.

Nel caso della sezione scatolare rappresentata a destra, è necessario procedere con il calcolo del momento d'inerzia della sezione composta. Il momento d'inerzia e il modulo di resistenza calcolati rispetto all'asse y della tabella UNI consentono di stabilire la posizione del baricentro della sezione:

h [mm]	<i>b</i> [<i>mm</i>]	Area [cm ²]	$I_{yy}[cm^4]$	$W_y[cm^3]$	$x_{max}[mm]$
65	42	9.03	14.0	5.05	27.72
80	45	11	19.4	6.35	30.55
100	50	13.5	29.1	8.45	34.44

Ipotizzando che i due profili siano montati come indicato in figura e che tra di loro la distanza sia d, il momento d'inerzia complessivo dell'intero profilato composto vale:

$$I_{zz} = 2 \times \left[I_{yy} + A \left(x_{max} + \frac{d}{2} \right)^2 \right]$$

Posto in tutti i casi d = 5 [mm] si ottiene:

h [mm]	<i>b</i> [<i>mm</i>]	$I_{zz}[cm^4]$	<i>B</i> [<i>mm</i>]	$W_{zz}[cm^3]$
65	42	192.93	89	43.35
80	45	279.1	95	58.76
100	50	426.63	105	81.26

Nella tabella precedente I_{zz} indica il momento d'inerzia complessivo della sezione composta, B=2b+d indica la sua altezza e W_{zz} il suo modulo di resistenza. Come detto, il modulo di resistenza deve essere superiore a 56.5 $[cm^3]$. Quindi è possibile utilizzare due profili del tipo UPN80. In questo caso lo sforzo massimo vale:

$$\sigma_x^{max} = \frac{M_z}{W_z} = \frac{10^7}{58760} = 170.2 \ [MPa]$$

Di conseguenza il coefficiente di sicurezza vale:

$$CS = \frac{\sigma_{sn}}{\sigma_x^{max}} = \frac{355}{150} = 2.09$$

Poiché il momento d'inerzia complessivo dei due profilati vale $I_{zz} = 279.1 \ [cm^4]$, lo spostamento verticale del punto B in questo caso vale:

$$v(x = L) = \frac{FL^3}{3EI_{zz}} = \frac{10000 \cdot (1000)^3}{3 \cdot 210000 \cdot 2791000} \approx 5.7 \text{ [mm]}$$