
Compito di Elettrotecnica	ı − II prova −−7 giugno 2018		Ing
Nome:	Cognome:	Mtr: _	

Nel circuito a regime sinusoidale in figura, Ricavare la corrente i_x

C=0.01F L=1H

Si consideri un trasformatore reale con tensioni al primario e secondario del trasformatore ideale 1100 e 230 Veff, chiuso su un carico di impedenza 15+j15. I parametri relativi alla diverse perdite sono:

- perdite nel rame al primario e secondario: 2Ω , 0.4Ω
- flussi dispersi al primario e secondario: 3Ω e 2Ω
- perdite nel ferro: $8 \text{ k}\Omega$
- reattanza di magnetizzazione 3 k Ω

Disegnare il circuito equivalente riportando in figura i valori dei parametri. Calcolare il rapporto spire e il valore efficace della corrente magnetizzante.

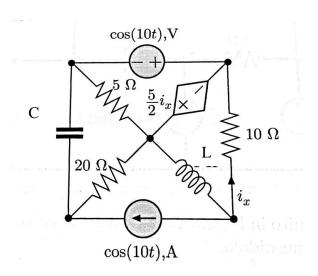
Un carico ohmico-induttivo da 4040 W, con fattore di potenza 0.62, è connesso ad una rete da 50Hz, a 230Veff. Si determini:

- 1. Il triangolo delle potenze del carico
- 2. La capacità del banco di condensatori che deve essere inserita in parallelo per portare l'impianto a $\cos \varphi = 0.97$.
- 3. La potenza reattiva assorbita dal carico prima e dopo il rifasamento. Motivare la differenza tra i valori trovati.

Compito di Elettrotecnica	ı – II prova ––7 giugno 2018		Ing
Nome:	Cognome:	_Mtr: _	

Si consideri un trasformatore reale con tensioni al primario e secondario del trasformatore ideale 1200 e 230 Veff chiuso su un carico di impedenza 20+j15. I parametri relativi alla diverse perdite sono:

perdite nel rame al primario e secondario: $3\Omega,\,0.5\Omega$ flussi dispersi al primario e secondario: 4Ω e 3Ω

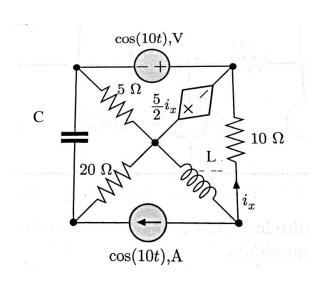

perdite nel ferro: $12 \text{ k}\Omega$

reattanza di magnetizzazione $4~k\Omega$

Disegnare il circuito equivalente riportando in figura i valori dei parametri. Calcolare il valore efficace della corrente magnetizzante e il rapporto spire.

Un motore da 4050 W, con fattore di potenza 0.6, è connesso ad una rete da 60Hz, a 230Veff. Si determini:

- 1. Il triangolo delle potenze del carico
- 2. La capacità del banco di condensatori che deve essere inserita in parallelo per portare l'impianto a cosφ unitario.
- 3. La variazione della corrente ad impianto rifasato


Ricavare i_x a regime

C=0.02F L=2H

Compito di Elettrotecnica	a – II prova ––7 giugno 2018		Ing
Nome:	Cognome:	_Mtr: _	

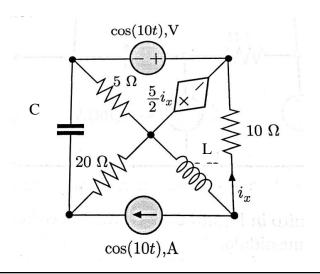
Un carico ohmico-induttivo da 4050 W, con fattore di potenza 0.62, è connesso ad una rete da 60Hz, a 230Veff. Si determini:

- 1. Il triangolo delle potenze del carico
- 2. La capacità del banco di condensatori che deve essere inserita in parallelo per portare l'impianto a cosφ=0.98.
- 3. La potenza reattiva assorbita dal carico prima e dopo il rifasamento. Motivare la differenza tra i valori trovati.

Ricavare i_x a regime

C=0.05F L=5H

Si consideri un trasformatore reale con tensioni al primario e secondario del trasformatore ideale 1300 e 230 Veff chiuso su un carico di impedenza 20+j20. I parametri relativi alla diverse perdite sono:


perdite nel rame al primario e secondario: 4Ω , 0.7Ω flussi dispersi al primario e secondario: 5Ω e $1.5~\Omega$

perdite nel ferro: $10 \text{ k}\Omega$

reattanza di magnetizzazione 5 k Ω

Disegnare il circuito equivalente riportando in figura i valori dei parametri. Calcolare il rapporto spire e il valore efficace della corrente magnetizzante.

Compito di Elettrotecnica – II prova 7 giugno 2018			Ing
Nome:	Cognome:	Mtr: _	

Ricavare i_x a regime

Si consideri un trasformatore reale con tensioni al primario e secondario del trasformatore ideale 2000 e 230 Veff chiuso su un carico di impedenza 10+j20. I parametri relativi alla diverse perdite sono:

perdite nel rame al primario e secondario: 5Ω , 0.8Ω flussi dispersi al primario e secondario: 3Ω e 1Ω

perdite nel ferro: $8k\Omega$

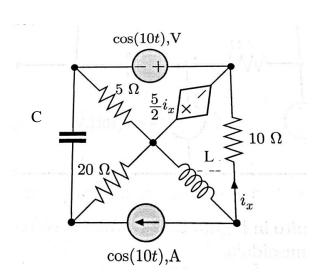
reattanza di magnetizzazione 4 $k\Omega$

Disegnare il circuito equivalente riportando in figura i valori dei parametri. Calcolare il rapporto spire e il valore efficace della corrente magnetizzante.

Un motore da 4060 W, con fattore di potenza 0.6 ritardo, è connesso ad una rete da 50Hz, a 230Veff. Si determini:

- 1. Il triangolo delle potenze del carico
- 2. La capacità del banco di condensatori che deve essere inserita in parallelo per portare l'impianto a cosφ unitario.
- 3. La variazione della corrente ad impianto rifasato

Compito di Elettrotecnica	a – II prova ––7 giugno 2018	Ing
Nome:	Cognome:	Mtr:


Un carico ohmico-induttivo da 4030 W, con fattore di potenza 0.62, è connesso ad una rete da 60Hz, a 230Veff. Si determini:

- 1. La capacità del banco di condensatori che deve essere inserita in parallelo per portare l'impianto a cosφ=0.96.
- 2. La potenza reattiva assorbita dal carico prima e dopo il rifasamento. Motivare la differenza tra i valori trovati.
- 3. La variazione della corrente ad impianto rifasato

Si consideri un trasformatore reale; le tensioni al primario e al secondario del trasformatore ideale siano 1000 e 230 Veff; il trasformatore è chiuso su un carico di impedenza 15+j20. I parametri relativi alla diverse perdite siano:

- perdite nel rame al primario e secondario: 3Ω , 0.6Ω
- flussi dispersi al primario e secondario: 4Ω e 1.5Ω
- perdite nel ferro: $10 \text{ k}\Omega$
- reattanza di magnetizzazione: $5 \text{ k}\Omega$

Disegnare il circuito equivalente riportando in figura i valori dei parametri; Calcolare il rapporto spire e il valore efficace della corrente magnetizzante;

Ricavare i_x a regime

C=0.05F L=2H