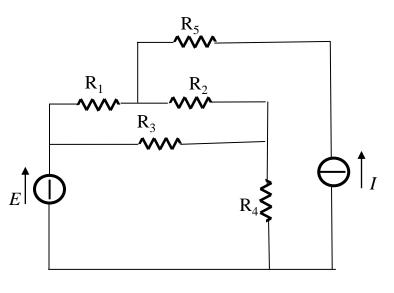
Compito di Elettrotecnica	1 – 20 aprile 2018	Ing	
Nome:	Cognome:	Mtr:	


Le resistenze da 1Ω , 3Ω , 5Ω sono in parallelo, alimentate da un generatore di corrente da 2 A. Disegnare il circuito e determinare la corrente su ciascun resistore applicando la regola opportuna.

Le stesse resistenze sono collegate in serie e alimentate da un generatore di tensione da 3 V. Disegnare il circuito e determinare la tensione su ciascun resistore applicando la regola opportuna.

Una stufa elettrica assorbe una corrente di 6.5 A a 230 V. Determinare la potenza dissipata in calore e altre perdite, l'energia consumata in 24 ore e il costo dell'energia assumendo un costo di 0.20 €/kWh.

Spiegare il significato di potenziale e differenza di potenziale

Dimostrare che il resistore è un elemento passivo, facendo riferimento ad un resistore da $1k\Omega$ sottoposto alla tensione di 1V.

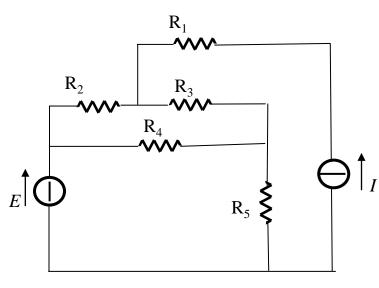
Per il circuito in figura

- 1. Scrivere le equazioni risolventi utilizzando il metodo delle correnti di anello.
- 2. Scrivere le equazioni risolventi utilizzando il metodo dei potenziali nodali.
- 3. Posto

$$R_1 = 1\Omega$$
; $R_2 = 2\Omega$; $R_3 = 3\Omega$; $R_4 = 1\Omega$; $R_5 = 2\Omega$; $I = 1A$; $E = 2V$;

- 4. Verificare la conservazione della potenza.
- 5. Utilizzando le tensioni di ramo Ui scrivere la LKT per gli anelli della rete.
- 6. Utilizzando le correnti di ramo Ii scrivere la LKC per i nodi della rete.

Compito di Elettrotecnica	- 20 aprile 2018		Ing
Nome:	Cognome:	Mtr: _	


Le resistenze da 2Ω , 3Ω , 4Ω sono in parallelo, alimentate da un generatore di corrente da 2 A. Disegnare il circuito e determinare la corrente su ciascun resistore applicando la regola opportuna.

Le stesse resistenze sono collegate in serie e alimentate da un generatore di tensione da 3 V. Disegnare il circuito e determinare la tensione su ciascun resistore applicando la regola opportuna.

Una stufa elettrica assorbe una corrente di 7.5 A a 230 V. Determinare la potenza dissipata in calore e altre perdite, l'energia consumata in 24 ore e il costo dell'energia assumendo un costo di 0.20 €/kWh.

Spiegare il significato di potenziale e differenza di potenziale

Dimostrare che il resistore è un elemento passivo, facendo riferimento ad un resistore da $11k\Omega$ sottoposto alla tensione di 1V.

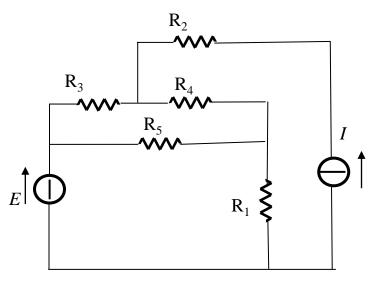
Per il circuito in figura

- 1. Scrivere le equazioni risolventi utilizzando il metodo delle correnti di anello
- 2. Scrivere le equazioni risolventi utilizzando il metodo dei potenziali nodali
- 3. Posto

$$R_2 = 1\Omega$$
; $R_3 = 2\Omega$; $R_4 = 3\Omega$; $R_5 = 1\Omega$; $R_1 = 2\Omega$; $I = 1A$; $E = 2V$;

- 4. Verificare la conservazione della potenza.
- 5. Utilizzando le tensioni di ramo Ui scrivere la LKT per gli anelli della rete.
- 6. Utilizzando le correnti di ramo Ii scrivere la LKC per i nodi della rete.

Compito di Elettrotecnica	1 – 20 aprile 2018	Ing	
Nome:	Cognome:	_ Mtr:	


Le resistenze da 4Ω , 1Ω , 5Ω sono in parallelo, alimentate da un generatore di corrente da 2 A. Disegnare il circuito e determinare la corrente su ciascun resistore applicando la regola opportuna.

Le stesse resistenze sono collegate in serie e alimentate da un generatore di tensione da 4 V. Disegnare il circuito e determinare la tensione su ciascun resistore applicando la regola opportuna.

Una stufa elettrica assorbe una corrente di 8.5 A a 230 V. Determinare la potenza dissipata in calore e altre perdite, l'energia consumata in 36 ore e il costo dell'energia assumendo un costo di 0.20 €/kWh.

Spiegare il significato di potenziale e differenza di potenziale

Dimostrare che il resistore è un elemento passivo, facendo riferimento ad un resistore da 10Ω sottoposto alla tensione di 3V.

Per il circuito in figura

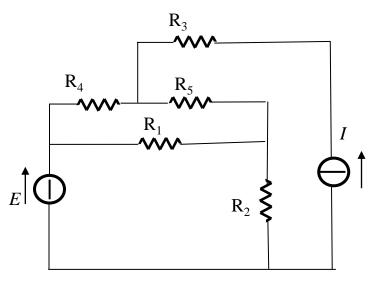
- 1. Scrivere le equazioni risolventi utilizzando il metodo delle correnti di anello
- 2. Scrivere le equazioni risolventi utilizzando il metodo dei potenziali nodali
- 3. Posto

$$R_3=1\Omega; R_4=2\Omega; R_5=3\Omega; R_1=1\Omega; R_2=2\Omega;$$

$$I=1A; E=2V;$$

- 4. Verificare la conservazione della potenza.
- 5. Utilizzando le tensioni di ramo Ui scrivere la LKT per gli anelli della rete.
- 6. Utilizzando le correnti di ramo Ii scrivere la LKC per i nodi della rete.

Compito di Elettrotecnica	1 – 20 aprile 2018	Ing	
Nome:	Cognome:	Mtr:	


Le resistenze da 1Ω , 7Ω , 3Ω sono in parallelo, alimentate da un generatore di corrente da 2 A. Disegnare il circuito e determinare la corrente su ciascun resistore applicando la regola opportuna.

Le stesse resistenze sono collegate in serie e alimentate da un generatore di tensione da 3 V. Disegnare il circuito e determinare la tensione su ciascun resistore applicando la regola opportuna.

Una stufa elettrica assorbe una corrente di 5.2 A a 230 V. Determinare la potenza dissipata in calore e altre perdite, l'energia consumata in 21 ore e il costo dell'energia assumendo un costo di 0.20 €/kWh.

Spiegare il significato di potenziale e differenza di potenziale

Dimostrare che il resistore è un elemento passivo, facendo riferimento ad un resistore da $12k\Omega$ sottoposto alla tensione di 10V.

Per il circuito in figura

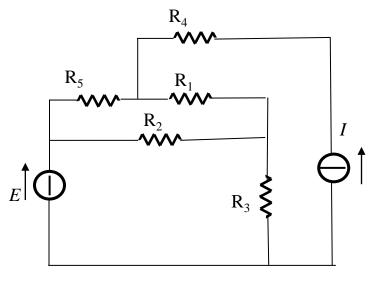
- 1. Scrivere le equazioni risolventi utilizzando il metodo delle correnti di anello
- 2. Scrivere le equazioni risolventi utilizzando il metodo dei potenziali nodali
- 3. Posto

$$R_4 = 1\Omega; R_5 = 2\Omega; R_1 = 3\Omega; R_2 = 1\Omega; R_3 = 2\Omega;$$

$$I = 1A; E = 2V;$$

- 4. Verificare la conservazione della potenza.
- 5. Utilizzando le tensioni di ramo Ui scrivere la LKT per gli anelli della rete.
- 6. Utilizzando le correnti di ramo Ii scrivere la LKC per i nodi della rete.

Compito di Elettrotecnica	1 – 20 aprile 2018	Ing	
Nome:	Cognome:	Mtr:	


Le resistenze da 1Ω , 3Ω , 5Ω sono in parallelo, alimentate da un generatore di corrente da 2 A. Disegnare il circuito e determinare la corrente su ciascun resistore applicando la regola opportuna.

Le stesse resistenze sono collegate in serie e alimentate da un generatore di tensione da 3 V. Disegnare il circuito e determinare la tensione su ciascun resistore applicando la regola opportuna.

Una stufa elettrica assorbe una corrente di 6.5 A a 230 V. Determinare la potenza dissipata in calore e altre perdite, l'energia consumata in 24 ore e il costo dell'energia assumendo un costo di 0.20 €/kWh.

Spiegare il significato di potenziale e differenza di potenziale

Dimostrare che il resistore è un elemento passivo, facendo riferimento ad un resistore da $1k\Omega$ sottoposto alla tensione di 1V.

Per il circuito in figura

- 1. Scrivere le equazioni risolventi utilizzando il metodo delle correnti di anello
- 2. Scrivere le equazioni risolventi utilizzando il metodo dei potenziali nodali
- 3. Posto

$$R_5 = 1\Omega; R_1 = 2\Omega; R_2 = 3\Omega; R_3 = 1\Omega; R_4 = 2\Omega;$$

$$I = 1A; E = 2V;$$

- 4. Verificare la conservazione della potenza.
- 5. Utilizzando le tensioni di ramo Ui scrivere la LKT per gli anelli della rete.
- 6. Utilizzando le correnti di ramo Ii scrivere la LKC per i nodi della rete.