
OPERATING SYSTEMS
VIRTUAL MACHINES, CLOUD COMPUTING, IoT

Topolino 1238 - 19.08.1979
https://www.topolino.it/character/professor-zapotec/

Giorgio Giacinto 2019 Operating Systems 2

Overview

� Virtualization abstracts hardware of a single computer
into several different execution environments

� Similar to the layered approach, each layer creating a
virtual system on which OS or applications can run

� Components
� Host – underlying hardware system
� Virtual machine manager (VMM) or hypervisor – creates

and runs virtual machines by providing an interface that is
identical to the host

� Guest – process provided with virtual copy of the host,
usually an operating system

A single physical machine can run multiple operating
systems concurrently, each in its own virtual machine

Giorgio Giacinto 2019 Operating Systems 3

System
Model

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

Virtual Machines (VM)
Giorgio Giacinto 2019 Operating Systems 4

Virtual
Machines

� A Virtual Machine is a software construct that mimics
the characteristics of a physical server

� It is configured with some number of processors, some
amount of RAM, storage resources, and connectivity
through the network ports

� A VM can be powered on like a physical server, loaded
with an operating system and software solutions, and
utilized in the manner of a physical server

� Unlike a physical server, this virtual server only sees the
resources it has been configured with, not all of the
resources of the physical host itself

Giorgio Giacinto 2019 Operating Systems 5

Virtual
Machines Files

• The configuration file describes the attributes of the
virtual machine
• It contains the server definition, how many virtual

processors (vCPUs) are allocated to this virtual machine,
how much RAM is allocated, which I/O devices the VM
has access to, how many network interface cards (NICs)
are in the virtual server, and more
• It also describes the storage that the VM can access

• When a virtual machine is powered on, or instantiated,
additional files are created for logging, for memory
paging, and other functions
• Since VMs are already files, copying them produces not

only a backup of the data but also a copy of the entire
server, including the operating system, applications, and
the hardware configuration itself

Giorgio Giacinto 2019 Operating Systems 6

History

� Virtualization first introduced by IBM in the CP-40
research systems in 1967.

� First appeared in IBM mainframes in 1972
� Allowed multiple users to share a batch-oriented system

� Since then ,virtualization is a feature of mainframe IBM
operating systems, currently named z/OS

Giorgio Giacinto 2019 Operating Systems 7

History

� Formal definition of virtualization helped move it beyond
IBM

� A VMM provides an environment for programs that is
essentially identical to the original machine

� The VMM is in complete control of system resources

� In late 1990s Intel CPUs fast enough for researchers to try
virtualizing on general purpose PCs

� Xen and VMware created technologies, still used today
� Virtualization has expanded to many OSes, CPUs, VMMs

� Intel x86 architectures (IA-32 e IA-64) provide support to
virtualization

� Intel: VT-x
AMD: AMD-V

Giorgio Giacinto 2019 Operating Systems 8

Key Reasons
for Using
Virtualization

� Consolidation
� A large-capacity or high-speed resource can be used more

efficiently by sharing the resource among multiple
applications simultaneously

� Aggregating
� Virtualization makes it easy to combine multiple resources in

to one virtual resource, such as in the case of storage
virtualization

� Dynamics
� Hardware resources can be easily allocated in a dynamic

fashion, enhancing load balancing and fault tolerance

� Ease of management
� Virtual machines facilitate deployment and testing of software

� Increased availability
� Virtual machine hosts are clustered together to form pools of

computing resources

Giorgio Giacinto 2019 Operating Systems 9

Key Reasons
for Using
Virtualization

� Legacy hardware
� Applications built for legacy hardware can still be run by

virtualizing the legacy hardware, enabling the retirement
of the old hardware

� Rapid deployment
� A new VM may be deployed in a matter of minutes

� Versatility
� Hardware usage can be optimized by maximizing the

number of kinds of applications that a single computer can
handle

Giorgio Giacinto 2019 Operating Systems 10

Benefits and
Features

� Host system protected from VMs, VMs protected
from each other

� Sharing is provided though via shared file system volume,
network communication

� Freeze, suspend, running VM
� A VM can be moved or copied somewhere else and resume

� Snapshot of a given state, able to restore back to that state

� Run multiple, different OSes on a single machine
� Consolidation, app dev, research, etc.

Giorgio Giacinto 2019 Operating Systems 11

App
Development

� Templating
create an OS + application VM, provide it to customers,
use it to create multiple instances of that combination

� Live migration
move a running VM from one host to another with no
interruption of user access

� Cloud computing is a consequence of virtualization
� Using APIs, programs tell cloud infrastructure (servers,

networking, storage) to create new guests, VMs, virtual
desktops

Giorgio Giacinto 2019 Operating Systems 12

Virtualization
Technologies

Giorgio Giacinto 2019 Operating Systems 13

Definitions

� Hardware virtualization
� A software-defined virtual hardware environment
� It is supported by the underlying hardware platform

� Application-level virtualization
� often referred to as run-time systems
� allows the execution of a program on a virtualexecution

environment that is not a replica of a hardware platform
JAVA
.NET

Giorgio Giacinto 2019 Operating Systems 14

Hardware
virtualizarion

� Complete virtualization
� each virtual environment is identical to the underlying

hardware

� Emulation
� A legacy or special-purpose CPU (e.g., an embedded

systems) is emulated on a different environment (e.g., a
workstation)
QEMU (https://www.qemu.org) is one of the most popular
processor emulator

� Container
Virtualization at the operating system level, that creates
isolated execution environments

Giorgio Giacinto 2019 Operating Systems 15

Implementation of
Virtual Machine Managers

Giorgio Giacinto 2019 Operating Systems 16

Implementati
on of VMMs

� Type 0 hypervisors
Hardware-based solutions that provide support for virtual
machine creation and management via firmware

� IBM LPARs and Oracle LDOMs are examples

� Type 1 hypervisors
Operating-system-like software built to provide
virtualization

� Including VMware ESX, Xen
� Also include general-purpose OS that provide standard

functions as well as VMM functions, such as Microsoft
Windows with Hyper-V and RedHat Linux with KVM

� Type 2 hypervisors
Applications that run on standard operating systems but
provide VMM features to guest operating systems

� Including VMware Workstation and Fusion, Parallels
Desktop, and Oracle VirtualBox

Giorgio Giacinto 2019 Operating Systems 17

Type 0
Hypervisor

� Old idea, under many names by HW manufacturers
� “partitions”, “domains”
� a HW feature implemented by firmware
� Each guest has dedicated HW

Guest 1 Guest 2

CPUs
memory

CPUs
memory

Hypervisor (in firmware) I/O

CPUs
memory

CPUs
memory

Guest 3 Guest 4

Guest Guest Guest Guest Guest

Giorgio Giacinto 2019 Operating Systems 18

Type 1
Hypervisor

� Special purpose operating systems that run natively on
HW

� Rather than providing system call interface, create run
and manage guest OSes

� Run in kernel mode
� Guests generally don’t know they are running in a VM
� Implement device drivers

for host HW because
no other component
can

� Also provide other
traditional OS services
like CPU
and memory
management

Shared Hardware

(a) Type 1 Hypervisor

Figure 14.2 Type 1 and Type 2 Hypervisors

Hypervisor Type 1

Guest OS

libraries

Guest OS

Applications

Virtual
Machine 1

Applications

(b) Type 2 Hypervisor

libraries

Shared Hardware

Host Operating System

Hypervisor Type 2

Guest OS

libraries

Guest OS

Applications Applications

libraries

Virtual
Machine 2

Virtual
Machine 1

Virtual
Machine 2

Giorgio Giacinto 2019 Operating Systems 19

Type 1
Hypervisor

� Another variation is a general-purpose OS that also
provides VMM functionality

� RedHat Enterprise Linux with KVM, Windows with Hyper-V,
Oracle Solaris

� Perform normal duties as well as VMM duties
� Typically less feature rich than dedicated Type 1 hypervisors

� In many ways, treat guest OS as just another process

Giorgio Giacinto 2019 Operating Systems 20

Type 2
Hypervisor

� The aim is to let the user run different guest operating
systems within a host operating system

� the emphasis is not on performances.
Allows a user of a specific OS to occasionally run
applications built for a different OSs

� VMware Workstation and Fusion, Parallels Desktop, and Oracle
VirtualBox

� VMM is simply another
process, run and managed
by host

� Even the host doesn’t know
that a VMM is running
guests

� Very little OS involvement
in virtualizationShared Hardware

(a) Type 1 Hypervisor

Figure 14.2 Type 1 and Type 2 Hypervisors

Hypervisor Type 1

Guest OS

libraries

Guest OS

Applications

Virtual
Machine 1

Applications

(b) Type 2 Hypervisor

libraries

Shared Hardware

Host Operating System

Hypervisor Type 2

Guest OS

libraries

Guest OS

Applications Applications

libraries

Virtual
Machine 2

Virtual
Machine 1

Virtual
Machine 2

Giorgio Giacinto 2019 Operating Systems 21

Paravirtualization

� A software assisted virtualization technique that
uses specialized APIs to link virtual machines with the
hypervisor

� The OS in the virtual machine has specialized
paravirtualization support as part of the kernel, as well as
specific paravirtualization drivers

Figure 14.3 Paravirtualization

Hypervisor

Real
Drivers

Hardware

(a) Type 1 Hypervisor

VM

Real
Drivers

App

Guest
OS

VM

Real
Drivers

App

Guest
OS

VM

Real
Drivers

App

Guest
OS

Device Models
(emulated hardware)

Hypervisor

Real
Drivers

Hardware

(b) Paravirtualized Type 1 Hypervisor
with Paravirtualized Guest OSs

VM

Modified
Drivers

App

Guest
OS

VM

App

Guest
OS

VM

App

Guest
OS

Hypervisor
Driver Interface

Modified
Drivers

Modified
Drivers

Giorgio Giacinto 2019 Operating Systems 22

Paravirtualization
example

� The kernel of the guest OS is modified so that some
system calls are replaced by hypervisor calls

Giorgio Giacinto 2019 Operating Systems 23

Programming
Environment
Virtualization

� Also not-really-virtualization

� Programming language is designed to run within
custom-built virtualized environment

� for example, Oracle Java has many features that depend
on running in Java Virtual Machine (JVM)

� Similar to interpreted languages

Giorgio Giacinto 2019 Operating Systems 24

Application
Containment

� Achieve the goals of virtualization without full-fledged
virtualization

� Segregation of apps, performance and resource
management, easy start, stop, move, and management of
applications

� Example: Oracle containers / zones create a virtual layer
between OS and apps

� Only one kernel running – host OS
� OS and devices are virtualized, providing resources within

zone
� Each zone has its own applications; networking stack,

addresses, and ports; user accounts, etc.
� CPU and memory resources divided between zones

� Zone can have its own scheduler to use those resources

Giorgio Giacinto 2019 Operating Systems 25

Container
Virtualization

Container
virtualization
is a relatively
recent
approach to
virtualization

In this approach, software, known as a
virtualization container, runs on top of the
host OS kernel and provides an isolated
execution environment for applications

Unlike hypervisor-based VMs, containers do
not aim to emulate physical servers; instead,
all containerized applications on a host share
a common OS kernel

This eliminates the resources needed to run a
separate OS for each application and can
greatly reduce overhead

Giorgio Giacinto 2019 Operating Systems 26

Comparison of
Virtual
Machine and
Containers

Figure 14.4 Comparison of Virtual Machines and Containers

(a) Type 1 Hypervisor

Hardware
Hypervisor

Guest OS Guest OS

libraries

Vi
rt

ua
l m

ac
hi

ne

libraries

App App App App

Hardware

Container Engine
Host OS

libraries libraries

App App App App

(c) Container

(b) Type 2 Hypervisor

Hardware

Hypervisor

Host OS

Guest OS Guest OS

libraries

Vi
rt

ua
l m

ac
hi

ne

libraries

App App App App

C
on

ta
in

er

C
on

ta
in

er

Giorgio Giacinto 2019 Operating Systems 27

I/O Operation
via Hypervisor
and Container

Figure 14.5 Data Flow for I/O Operation via Hypervisor and Container

(a) Hypervisor (b) Container

Application

Guest OS device driver

Virtual I/O device

Hypervisor interception

Physical device driver

Physical I/O device

Application

Indirection through
kernel control groups

Physical device driver

Physical I/O device

Giorgio Giacinto 2019 Operating Systems 28

Docker

� Provides a simpler and more standardized way to run
containers

� It was first started in 2013 and is developed by Docker
Inc.

� The popularity of the
Docker container
is due to its ability
to load a container
image on a host
operating system
in a simple and quick
manner

Giorgio Giacinto 2019 Operating Systems 29

Microservices

� NIST SP 800-180 (NIST Definition of Microservices,
Application Containers and System Virtual Machines)
defines a microservice as

a basic element that results from the architectural
decomposition of an application’s components into loosely
coupled patterns consisting of self-contained services that
communicate with each other using a standard
communication protocol and a set of well-defined APIs,
independent of any vendor, product, or technology

Giorgio Giacinto 2019 Operating Systems 30

Microservices

www.redhat.com

Giorgio Giacinto 2019 Operating Systems 31

Operating Systems
issues

Giorgio Giacinto 2019 Operating Systems 32

CPU modes
and kernel
execution

� Dual mode CPU means
� guest executes in user mode
� kernel runs in kernel mode

� Not safe to let guest kernel run in kernel mode too
� VM needs two modes, virtual user mode and virtual

kernel mode, both of which run in real user mode

Giorgio Giacinto 2019 Operating Systems 33

Trap-and-
Emulate

� Switch from virtual user mode to virtual kernel mode
� Attempting a privileged instruction in user mode causes an

error -> trap
� VMM gains control, analyzes error, executes operation as

attempted by guest
� Returns control to guest in user mode
� Most virtualization products use this at least in part

� user mode code in guest runs at same speed as if not a
guest

� kernel mode code runs slower due to trap-and-emulate

� CPUs adding hardware support in the form or more CPU
modes to improve virtualization performance

Giorgio Giacinto 2019 Operating Systems 34

Trap-and-
Emulate
Virtualization
Implementation

Privileged Instruction

Operating
System

VCPU

VMM

VMM

Guest

Kernel Mode

User Mode

Emulate Action

R
eturn

Trap

Update

User Processes

Giorgio Giacinto 2019 Operating Systems 35

Ring O

Native operating systems manage hardware by acting as the intermediary
between application code requests and the hardware

One key function of the operating system is to help prevent malicious or
accidental system calls from disrupting the applications or the operating
system itself

Protection rings describe level of access or privilege inside of a
computer system

The most trusted layer is often called Ring 0 (zero) and is where the
operating system kernel works and can interact directly with hardware

Hypervisors run in Ring 0 controlling hardware access for the virtual machines
they host

Giorgio Giacinto 2019 Operating Systems 36

Binary
Translation

� Some CPUs don’t have clean separation between
privileged and nonprivileged instructions

� Earlier Intel x86 CPUs are among them, wbile earliest Intel
CPU designed for a calculator

� Trap-and-emulate method considered impossible until
1998

� Binary translation solves the problem
� Basics are simple, but implementation very complex
� If guest VCPU is in user mode, guest can run instructions

natively
� If guest VCPU in kernel mode (guest believes it is in kernel

mode)
� VMM examines every instruction guest is about to execute by

reading a few instructions ahead of program counter
� Special instructions translated into new set of instructions that

perform equivalent task

Giorgio Giacinto 2019 Operating Systems 37

Binary
Translation
Virtualization
Implementation

User Processes

Special Instruction

(VMM Reads Instructions)

Operating
System

VCPU

VMM

VMM

Guest

Kernel Mode

User Mode

Translate
Execute Translation

Return

Update

Giorgio Giacinto 2019 Operating Systems 38

Memory
management

� VMM keeps page-table state for guests through
Nested Page Tables (NPTs)

� Each guest maintains page tables to translate virtual to
physical addresses

� VMM maintains per guest NPTs to represent guest’s
page-table state

� Just as VCPU stores guest CPU state

� When guest on CPU -> VMM makes that guest’s NPTs the
active system page tables

� Guest tries to change page table -> VMM makes
equivalent change to NPTs and its own page tables

� Can cause many more TLB misses -> much slower
performance

Giorgio Giacinto 2019 Operating Systems 39

Memory
Management
in vmware

Giorgio Giacinto 2019 Operating Systems 40

Nested Page
Tables

V
M

M
 N

es
te

d
P

ag
e

T
ab

le
 D

at
a

S
tr

uc
tu

re PML4E

PDPTE

PDE

PTE

Phy Addr

Host Physical Address

OffsetTableDirectoryDirectory PtrPML4

Guest Virtual Address

Kernel Paging Data
Structures

Guest Physical Address

G
ue

st

1

2 3 4
5

1 1 2 2 3 3 4

54

Giorgio Giacinto 2019 Operating Systems 41

Memory
Management
VMware example

� VMware ESX guests have a configured amount of
physical memory.
ESX uses 3 methods of memory management

� Double-paging, in which the guest page table indicates a
page is in a physical frame but the VMM moves some of
those pages to backing store

� Install a pseudo-device driver in each guest kernel that
adds kernel-mode code to the guest

� Balloon memory manager communicates with VMM and is
told to allocate or deallocate memory to decrease or
increase physical memory use of guest, causing guest OS to
free or have more memory available

Giorgio Giacinto 2019 Operating Systems 42

Memory
Management

� The virtual machine operating systems are unaware of
what is happening in the physical system

� Ballooning
� The hypervisor activates a balloon driver that (virtually)

inflates and presses the guest operating system to flush
pages to disk

� Once the pages are cleared, the balloon driver deflates
and the hypervisor can use the physical memory for
other VMs

� Memory overcommit
� The capability to allocate more memory than physically

exists on a host

Giorgio Giacinto 2019 Operating Systems 43

Memory
overcommitment

Giorgio Giacinto 2019 Operating Systems 44

Ballooning

• The VM is assigned 4 frames

• At a certain point of the execution
only 2 frames are used by the VM

• The hypervisor cannot see that some
frames assigned to the VM are not
currently in use

• The balloon driver can identify the
unused frames, and communicate
the addresses to the hypervisor

• The pages can be temporarily used
by the hypervisor for requests from
other VMs

Giorgio Giacinto 2019 Operating Systems 45

CPU
Scheduling

� Generally VMM has one or more physical CPUs and
number of threads to run on them

� When enough CPUs for all guests, the VMM can
allocate dedicated CPUs, each guest much like native
operating system managing its CPUs

� Usually not enough CPUs -> CPU overcommitment
� VMM can use standard scheduling algorithms to put

threads on CPUs
� Some add fairness aspect

Giorgio Giacinto 2019 Operating Systems 46

I/O in a virtual
environment

Figure 14.5 I/O in a Virtual Environment

Applications

Operating system

NIC driver

NIC driver

NIC

Hypervisor

V
ir

tu
al

 m
ac

hi
ne

Ph
ys

uc
al

 se
rv

er

Emulated device

Network

Giorgio Giacinto 2019 Operating Systems 47

I/O
Performance
improvement

I/OAT

I/O Acceleration
Technology (Intel)

a physical
subsystem that
moves memory
copies via direct
memory access
(DMA) from the
main processor to
this specialized
portion of the
motherboard

TOE

TCP Offload Engine

removes the TCP/IP
processing from the
server processor
entirely to the NIC

LRO

Large Receive
Offload

aggregates
incoming packets
into bundles for
more efficient
processing

LSO

Large Segment
Offload

allows the
hypervisor to
aggregate multiple
outgoing TCP/IP
packets and has the
NIC hardware
segment them into
separate packets

Giorgio Giacinto 2019 Operating Systems 48

Examples

Giorgio Giacinto 2019 Operating Systems 49

VMware ESXi

� VMware started the development of virtualization
solutions for x86 architectures by the end of the 90s

� VMware is one of the major players in the enterprise
virtualization business

� ESXi is a bare-metal Type-1 hypervisor, part of the
vSphere solution

� ESX is the former version

https://www.vmware.com/products/esxi-and-esx.html

Giorgio Giacinto 2019 Operating Systems 50

VMware ESX
architecture

Figure 14.6 ESX

Hardware
monitoring

agents

VMware
management

agents

Infrastructure
agents

(NTP, Syslog)

CLI commands
for configuration

and support

VM support and
resource

management

VM VM

VMkernel

System
management

agents

The early versions of the VMware hypervisor leveraged on a Linux
kernel for system management

Giorgio Giacinto 2019 Operating Systems 51

VMware ESXi
architecture

Figure 14.7 ESXi

CLI commands
for configuration

and support

Agentless
systems

management

Agentless
hardware

monitoring

VMware
management
framework

Common
information

model

Infrastructure
agents

(NTP, Syslog)

VM support and
resource

management

Local support consoles

VM VM

VMkernel

Giorgio Giacinto 2019 Operating Systems 52

VMware ESXi
main features

Storage
VMotion

Permits the relocation of the data files that compose a virtual
machine, while that virtual machine is in use

Fault Tolerance

Creates a lockstep copy of a virtual machine on a different host ---
if the original host suffers a failure, the virtual machine’s
connections get shifted to the copy without interrupting users or
the application they are using

Site Recovery
Manager

Uses various replication technologies to copy selected virtual
machines to a secondary site in the case of a data center disaster

Storage and
Network I/O
Control

Allows an administrator to allocate network bandwidth in a virtual
network in a very granular manner

Distributed
Resource
Scheduler
(DRS)

Intelligently places virtual machines on hosts for startup and can
automatically balance the workloads via VMotion based on
business policies and resource usage

Giorgio Giacinto 2019 Operating Systems 53

XEN

� Open-source project started by Cambridge University
at the beginning of the new century, and supported by
the Linux Foundation. Shipped with some EL distro

� XEN needs an operating systems to run the hypervisor,
called DOM0 (DOM-zero)

https://xenproject.org

Figure 14.8 Xen

Dom0

drivers

DomU

KernelU

Xen Hypervisor

Hardware

Kernel0

DomU

KernelU

Giorgio Giacinto 2019 Operating Systems 54

Qubes OS
leverages xen virtualization to
create and manage isolated
VMs called qubes.

https://www.qubes-os.org

Giorgio Giacinto 2019 Operating Systems 55

Microsoft
Hyper-V

� Type-1 hypervisor released in 2008 as part of Windows
Server 2008

� Now shipped with Windows 10

Figure 14.9 Hyper-V

Parent partition

drivers

Child partition

Kernel

Microsoft Hyper-V

Hardware

Kernel

Child partition

Kernel

WMI

VSP VSC VSC

VM
workers

VMBus

Giorgio Giacinto 2019 Operating Systems 56

KVM

� Kernel-based Virtual Machine (KVM) is
a virtualization module in the Linux kernel that allows
the kernel to function as a Type-1 bare-metal
hypervisor.

� It was merged into the Linux kernel mainline in kernel
version 2.6.20, since 2007.

� KVM requires a processor with hardware virtualization
extensions, such as Intel VT or AMD-V.

Giorgio Giacinto 2019 Operating Systems 57

KVM
Architecture

https://doc.opensuse.org/documentation/leap/virtualization/html/book.virt/cha-kvm-intro.html

Giorgio Giacinto 2019 Operating Systems 58

Run-Time
Environments

Giorgio Giacinto 2019 Operating Systems 59

Java VM

� Programming language designed to run within
custom-built virtualized environment

� In this case virtualization is defined as providing APIs
that define a set of features made available to a
language and programs written in that language to
provide an improved execution environment

� JVM compiled to run on many systems
� Similar to interpreted languages

Giorgio Giacinto 2019 Operating Systems 60

JVM

� It is an abstract machine comprising
� the instruction set
� the program counter
� the stack to store variables and results
� the heap for runtime data and garbage collection
� the method area to store the code and constants

Giorgio Giacinto 2019 Operating Systems 61

Android
Runtime (ART)

Previously named
Dalvik

(DVM) executes files in .dex
format

(Dalvik Executable)

Every Android
Application is
executed in an
isolated ART

Giorgio Giacinto 2019 Operating Systems 62

Java VM and
Dalvik VM

Figure 14.12 Java and Dalvik Formats

Header
.dex

.apk

.class

.jar

Class
Field

Method

Attributes

Heterogenous
constant pool

Header
.class

Class
Field

Method

Attributes

Heterogenous
constant pool

Header

Field list
Method list

Code header
Local variables

Strings
constant pool

Type/class
constant pool

Field
constant pool

Method
constant pool

Class
definition

Figure 14.12 Java and Dalvik Formats

Header
.dex

.apk

.class

.jar

Class
Field

Method

Attributes

Heterogenous
constant pool

Header
.class

Class
Field

Method

Attributes

Heterogenous
constant pool

Header

Field list
Method list

Code header
Local variables

Strings
constant pool

Type/class
constant pool

Field
constant pool

Method
constant pool

Class
definition

Giorgio Giacinto 2019 Operating Systems 63

Zygote

� This is the name of the process that is executed at
system startup. It contains a copy of the ART

� Zygote forks a new ART as soon as an applications is
requested to start

� The time needed to create a new ART is reduced thanks
to a clever management of shared memory locations

� At startup all Java core classes and resources are
loaded and initialised

Giorgio Giacinto 2019 Operating Systems 64

Cloud Computing
and IoT

Giorgio Giacinto 2019 Operating Systems 65

Cloud
Computing
Components

Figure 16.1 Cloud Computing Elements

Broad
Network Access

Resource Pooling

Rapid
Elasticity

Es
se

n
ti

al
C

h
ar

ac
te

ri
st

ic
s

S
er

vi
ce

M
od

el
s

D
ep

lo
ym

en
t

M
od

el
s

Measured
Service

On-Demand
Self-Service

Public Private Hybrid Community

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Giorgio Giacinto 2019 Operating Systems 66

Cloud Service
Models

Figure 16.2 Separation of Responsibilities in Cloud Operation

Managed by customer

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

Traditional
IT - on

premises

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

IaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

PaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

SaaS

Managed by cloud service provider

Giorgio Giacinto 2019 Operating Systems 67

Cloud
Operating
Systems

Figure 16.6 Cloud Operating System Concept

Standard
high-volume

servers

Standard
high-volume

storage

Standard
high-volume

Ethernet switches

Virtual
computing

Database &
Object Storage

Virtual
storage

Virtual
network

Hypervisor

Appllications

Cloud
OS

Physical
Infrastructure

Management &
Orchestration

API & GUI

Giorgio Giacinto 2019 Operating Systems 68

OpenStack
http://www.openstack.org

Giorgio Giacinto 2019 Operating Systems 69

Internet-of-
Things and
Cloud

Figure 16.12 The IoT/Cloud Context

Data center/
cloud
Ethernet
Transactional
response time

Core network
IP/MPLS, security
QoS/QoE driven
response time

Fog network
3G/4G/LTE/Wi-Fi
Distributed intelligence
Real-time response time

Smart things network
Bluetooth, WiFi, wired
millisecond response time

Network management Applications

Millions
of devices

Tens of
thousands
of devices

Thousands
of devices

Hundreds
of devices

Giorgio Giacinto 2019 Operating Systems 70

OS
Architecture
for IoT

Hardware Abstraction Layer
(e.g., GPIO, UART, SPI, I2C)

Figure 16.13 Typical Structure for IoT OS

Kernel
(scheduler, task mgr, locks, etc.)

System and Support Libraries

Low-Power Network Stack
(e.g, 802.15, BLE,

6LoWPAN, IPv6, CoAP, RPL)

Device Driver/
logical file

system

Hardware

Applications

Giorgio Giacinto 2019 Operating Systems 71

