
OPERATING SYSTEMS
EMBEDDED SYSTEMS

Embedded
System

� The use of electronics and software within a product
that has a specific function or set of functions, as
opposed to a general-purpose computer

� smartphones, digital cameras,
video cameras, calculators,
home security systems,
household appliances…

� …various automotive systems,
and numerous types of sensors
and actuators in automated systems

Giorgio Giacinto 2019 Operating Systems 2

Embedded
System

Embedded systems are often tightly coupled to
their environment

Real-time constraints imposed by the need to
interact with the environment

Constraints on speed, measurements, time durations,
and the like, dictate the timing of software operations

If multiple activities must be managed simultaneously,
this imposes more complex real-time constraints

Giorgio Giacinto 2019 Operating Systems 3

Application
Processors vs
Dedicated
Processors

� Application Processor
� General Purpose with ability to execute complex

operating systems, such as Linux, Android, and Chrome

� Dedicated Processor
� Specialized to perform one or a small number of specific

tasks
� The processor and associated components can be

engineered to reduce size and cost

� An Embedded System is comprised by several
dedicated processors and, optionally, one or more
application processors

Giorgio Giacinto 2019 Operating Systems 4

Automotive
Systems

Giorgio Giacinto 2019 Operating Systems 5

Organization
of an
embedded
system

Memory

Custom
logic

Human
interface

Diagnostic
port

Processor

D/A
Conversion

Actuators/
indicators

A/D
conversion

Sensors

Figure 13.1 Possible Organization of an Embedded System

Giorgio Giacinto 2019 Operating Systems 6

Typical
microcontroller
chip

Figure 13.3 Typical Microcontroller Chip Elements

A/D
converter

Analog data
acquisition

Temporary
data

Processor

System
bus

RAM

D/A
converter

ROM

Serial I/O
ports

EEPROM

Parallel I/O
ports

TIMER

Program
and data

Permanent
data

Timing
functions

Analog data
transmission

Send/receive
data

Peripheral
interfaces

Giorgio Giacinto 2019 Operating Systems 7

Deeply
Embedded
System

� Relies on a microcontroller rather than on a microprocessor
� It is not programmable once the program logic for the device

has been burned into ROM

� No interaction with a user

� Dedicated, single-purpose devices that detect something
in the environment, perform a basic level of processing,
then do something with the results

� Extreme resource constraints in terms of memory,
processor size, time, and power consumption

� The Internet of Things depends heavily on deeply
embedded systems

� Often wireless capability

Giorgio Giacinto 2019 Operating Systems 8

Characteristics
of Embedded
OS

Real-time
operation Reactive operation

Configurability I/O device
flexibility

Streamlined
protection
mechanisms

Direct use of
interrupts

Giorgio Giacinto 2019 Operating Systems 9

Developing an
Embedded OS

Two general approaches
• Take an existing OS and adapt it

for the embedded application
• Design and implement an OS

intended solely for embedded use

Giorgio Giacinto 2019 Operating Systems 10

Adapting an existing OS

Giorgio Giacinto 2019 Operating Systems 11

Adapting an
Existing OS

� An existing commercial OS can be used for an embedded
system by adding

� Real time capability
� Streamlining operation
� Adding necessary functionality

Advantage
• Familiar interface

Disadvantage
• Not optimized for real-time

and embedded applications

Giorgio Giacinto 2019 Operating Systems 12

Cross Platform
Development

� Typically, the development of an operating system is
carried out on the same hardware platform it is built
for.

� In the case of embedded system, development is
carried out on a platform that is different from the
target systems

Figure 13.4 Host-Target Environment

Host

•Cross-platform
 development
 environment

•Kernel
•Root file system
•Boot loader

Target

Giorgio Giacinto 2019 Operating Systems 13

Kernel
Compilation

Figure 13.5 Kernel Compilation

Cross
Compiler

Kernel image

Kernel
Configuration
Defined according to
target hardware and
system requirements

From open source
or hardware vendor

Executable on
host system

Executable on target
system; ready to be
started by boot loader
on target system

Kernel Source

Giorgio Giacinto 2019 Operating Systems 14

Embedded
Linux

� An embedded Linux distribution is customized for the
size and hardware constraints of embedded devices

� Includes software packages that support a variety of
services and applications on those devices

� An embedded Linux kernel will be far smaller than an
ordinary Linux kernel

� Example:

Giorgio Giacinto 2019 Operating Systems 15

Size of Linux
Kernel

Figure 13.6 Size of Linux Kernel (shown in GZIP-compressed file size)

1992

15

30

45

60

75

90

106

120

135

1994 1996

m
eg

ab
yt

es

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

GZIP-compressed file size

Giorgio Giacinto 2019 Operating Systems 16

Embedded
Linux File
Systems

� File system must be as small as possible.
� cramfs

� A simple read-only file system that is designed to minimize size
by maximizing the efficient use of underlying storage

� Files are compressed in units that match the Linux page size
� squashfs

� A compressed, read-only file system that was designed for use on
low memory or limited storage size environments

� jffs2
� A log-based file system that is designed for use on NOR and

NAND flash devices with special attention to flash-oriented
issues such as wear-leveling

� ubifs
� Provides better performance on larger flash devices and also

supports write caching to provide additional performance
improvements

� yaffs2
� Provides a fast and robust file system for large flash devices

Giorgio Giacinto 2019 Operating Systems 17

Advantages of
Embedded
Linux

� Vendor independence

� Varied hardware support
� Linux support for a wide range of processor architectures

and peripheral devices

� Low cost for development and training

� The use of Linux provides all of the advantages of open
source software

Giorgio Giacinto 2019 Operating Systems 18

𝜇Clinux

𝜇Clinux (microcontroller Linux) is an open-source
Linux kernel variation targeted at microcontrollers
and other very small embedded systems

The design philosophy for 𝜇Clinux is to slim down
the operating environment by removing utility
programs, tools, and other system services that
are not needed in an embedded environment

Giorgio Giacinto 2019 Operating Systems 19

Differences
Between
𝜇Clinux and
Linux

� Linux is a multiuser OS based on Unix.
𝜇Clinux is intended for embedded systems typically
with no interactive user

� 𝜇Clinux does not support memory management

� The Linux kernel maintains a separate virtual address
space for each process. 𝜇Clinux has a single shared
address space for all processes

� 𝜇Clinux only provides the vfork() system call for
process creation

Giorgio Giacinto 2019 Operating Systems 20

Designing a specific OS

Giorgio Giacinto 2019 Operating Systems 21

Purpose-Built
Embedded OS

� Fast and lightweight process or thread switch

� Scheduling policy is real time and dispatcher module is
part of scheduler

� Small size

� Responds to external interrupts quickly
� minimizes intervals during which interrupts are disabled

� Provides fixed or variable-sized partitions for memory
management

� Provides special sequential files that
can accumulate data at a fast rate

Examples of ad-hoc
embedded OS

• eCos
• TinyOS

Giorgio Giacinto 2019 Operating Systems 22

Timing
Constraints

The kernel

• Provides bounded execution time for primitives
• Maintains a real-time clock
• Provides for special alarms and timeouts
• Supports real-time queuing disciplines
• Provides primitives to delay processing by a fixed

amount of time and to suspend/resume execution

Giorgio Giacinto 2019 Operating Systems 23

TinyOS
https://github.com/tinyos/tinyos-main

� Streamlines to a very minimal OS for embedded systems
� Core OS requires 400 bytes of code and data memory

combined
� Has become a popular approach to implementing wireless

sensor network software

� Not a real-time OS

� There is no kernel

� There are no processes

� OS doesn’t have a memory allocation system

� Interrupt and exception handling is dependent on the
peripheral

� It is completely nonblocking, so there are few explicit
synchronization primitives

Giorgio Giacinto 2019 Operating Systems 24

TinyOS
Components

� Embedded software systems
built with TinyOS consist of a
set of modules (called
components), each of which
performs a simple task and
which interface with each
other and with hardware in
limited and well-defined ways

� The only other software
module is the scheduler

� Because there is no kernel
there is no actual OS

Examples of standardized
components include:

• Single-hop networking
• Ad-hoc routing
• Power management
• Timers
• Nonvolatile storage

control

Giorgio Giacinto 2019 Operating Systems 25

Components
and Tasks

� A software component implements one or more tasks

� Each task in a component is similar to a thread in an
ordinary OS

� Within a component tasks are atomic
� Once a task has started it runs to completion

A task cannot
• Be preempted by another

task in the same
component and there is no
time slicing

• Block or spin wait

A task can
• Perform computations
• Call lower-level

components (commands)
• Signal higher-level events
• Schedule other tasks

Giorgio Giacinto 2019 Operating Systems 26

TinyOS
Scheduler

� Operates across all components

� Only one task executes at a time

� The scheduler is a separate component that must be
present in any system

� Default scheduler is a simple FIFO queue

� Scheduler is power aware
� Puts processor to sleep when there is no task in the

queue

Giorgio Giacinto 2019 Operating Systems 27

Blackberry
QNX

� QNX
� QNX Neutrino RTOS

Realtime embedded system, microkernel design, and
modular architecture that supports hundreds of POSIX
commands, utilities, and programming interfaces

� QNX OS for Automotive Safety
� QNX OS for Medical

� Wide adoption in the automotive sector

Giorgio Giacinto 2019 Operating Systems 28

QNX Neutrino
System
Architecture

Giorgio Giacinto 2019 Operating Systems 29

QNX Neutrino
microkernel

� thread services (POSIX thread-creation)

� signal services (POSIX signal)

� message-passing services
� the microkernel manages the exchange of messages

between threads synchronization services (POSIX thread-
synchronization)

� scheduling services (POSIX realtime scheduling policies)

� timer services (POSIX timer services)

� process management services

Giorgio Giacinto 2019 Operating Systems 30

VxWorks and
Integrity

� Wind River
� VxWORKS

RTOS with different profiles for different application
scenarios.
This OS equipped the MARS Curiosity mission (NASA)

� Green Hills
� Integrity

RTOS with a separation kernel for different markets

Giorgio Giacinto 2019 Operating Systems 31

LYNX

� LYNX
� LYNXOS RTOS

LynxOS® is a deterministic, hard real-time operating
system that provides POSIX-conformant APIs in a small-
footprint embedded kernel. LynxOS provides symmetric
multi-processing support to fully take advantage of multi-
core/multi-threaded processors

Giorgio Giacinto 2019 Operating Systems 32

