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Embedded 
System

� The use of electronics and software within a product 
that has a specific function or set of functions, as 
opposed to a general-purpose computer

� smartphones, digital cameras, 
video cameras, calculators, 
home security systems, 
household appliances…

� …various automotive systems, 
and numerous types of sensors 
and actuators in automated systems
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Embedded 
System

Embedded systems are often tightly coupled to 
their environment

Real-time constraints imposed by the need to 
interact with the environment

Constraints on speed, measurements, time durations, 
and the like, dictate the timing of software operations

If multiple activities must be managed simultaneously, 
this imposes more complex real-time constraints
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Application 
Processors vs 
Dedicated 
Processors

� Application Processor
� General Purpose with ability to execute complex 

operating systems, such as Linux, Android, and Chrome

� Dedicated Processor
� Specialized to perform one or a small number of specific 

tasks
� The processor and associated components can be 

engineered to reduce size and cost

� An Embedded System is comprised by several 
dedicated processors and, optionally, one or more 
application processors
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Automotive 
Systems
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Organization 
of an 
embedded 
system
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Figure 13.1  Possible Organization of an Embedded System
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Typical 
microcontroller 
chip

Figure 13.3  Typical Microcontroller Chip Elements
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Deeply 
Embedded 
System

� Relies on a microcontroller rather than on a microprocessor
� It is not programmable once the program logic for the device 

has been burned into ROM

� No interaction with a user

� Dedicated, single-purpose devices that detect something 
in the environment, perform a basic level of processing, 
then do something with the results

� Extreme resource constraints in terms of memory, 
processor size, time, and power consumption

� The Internet of Things depends heavily on deeply 
embedded systems

� Often wireless capability
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Characteristics 
of Embedded 
OS

Real-time 
operation Reactive operation

Configurability I/O device 
flexibility

Streamlined 
protection 
mechanisms

Direct use of 
interrupts
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Developing an 
Embedded OS

Two general approaches
• Take an existing OS and adapt it 

for the embedded application
• Design and implement an OS 

intended solely for embedded use

Giorgio Giacinto 2019 Operating Systems 10



Adapting an existing OS
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Adapting an 
Existing OS

� An existing commercial OS can be used for an embedded 
system by adding

� Real time capability
� Streamlining operation
� Adding necessary functionality

Advantage
• Familiar interface

Disadvantage
• Not optimized for real-time 

and embedded applications
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Cross Platform 
Development

� Typically, the development of an operating system is 
carried out on the same hardware platform it is built 
for.

� In the case of embedded system, development is 
carried out on a platform that is different from the 
target systems 

Figure 13.4  Host-Target Environment 
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Kernel 
Compilation

Figure 13.5  Kernel Compilation 
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Embedded 
Linux

� An embedded Linux distribution is customized for the 
size and hardware constraints of embedded devices

� Includes software packages that support a variety of 
services and applications on those devices

� An embedded Linux kernel will be far smaller than an 
ordinary Linux kernel

� Example: 
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Size of Linux 
Kernel

Figure 13.6  Size of Linux Kernel (shown in GZIP-compressed file size) 
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Embedded 
Linux File 
Systems

� File system must be as small as possible. 
� cramfs

� A simple read-only file system that is designed to minimize size 
by maximizing the efficient use of underlying storage

� Files are compressed in units that match the Linux page size
� squashfs

� A compressed, read-only file system that was designed for use on 
low memory or limited storage size environments

� jffs2
� A log-based file system that is designed for use on NOR and 

NAND flash devices with special attention to flash-oriented 
issues such as wear-leveling

� ubifs
� Provides better performance on larger flash devices and also 

supports write caching to provide additional performance 
improvements

� yaffs2
� Provides a fast and robust file system for large flash devices
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Advantages of 
Embedded 
Linux

� Vendor independence

� Varied hardware support
� Linux support for a wide range of processor architectures 

and peripheral devices

� Low cost for development and training

� The use of Linux provides all of the advantages of open 
source software
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𝜇Clinux

𝜇Clinux (microcontroller Linux) is an open-source 
Linux kernel variation targeted at microcontrollers 
and other very small embedded systems

The design philosophy for 𝜇Clinux is to slim down 
the operating environment by removing utility 
programs, tools, and other system services that 
are not needed in an embedded environment
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Differences 
Between 
𝜇Clinux and 
Linux  

� Linux is a multiuser OS based on Unix. 
𝜇Clinux is intended for embedded systems typically 
with no interactive user

� 𝜇Clinux does not support memory management

� The Linux kernel maintains a separate virtual address 
space for each process. 𝜇Clinux has a single shared 
address space for all processes

� 𝜇Clinux only provides the vfork() system call for 
process creation
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Designing a specific OS
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Purpose-Built 
Embedded OS

� Fast and lightweight process or thread switch

� Scheduling policy is real time and dispatcher module is 
part of scheduler

� Small size

� Responds to external interrupts quickly
� minimizes intervals during which interrupts are disabled

� Provides fixed or variable-sized partitions for memory 
management 

� Provides special sequential files that 
can accumulate data at a fast rate

Examples of ad-hoc 
embedded OS

• eCos
• TinyOS
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Timing 
Constraints

The kernel

• Provides bounded execution time for primitives
• Maintains a real-time clock
• Provides for special alarms and timeouts
• Supports real-time queuing disciplines 
• Provides primitives to delay processing by a fixed 

amount of time and to suspend/resume execution
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TinyOS
https://github.com/tinyos/tinyos-main

� Streamlines to a very minimal OS for embedded systems
� Core OS requires 400 bytes of code and data memory 

combined
� Has become a popular approach to implementing wireless 

sensor network software

� Not a real-time OS

� There is no kernel

� There are no processes

� OS doesn’t have a memory allocation system 

� Interrupt and exception handling is dependent on the 
peripheral

� It is completely nonblocking, so there are few explicit 
synchronization primitives
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TinyOS 
Components

� Embedded software systems 
built with TinyOS consist of a 
set of modules (called 
components), each of which 
performs a simple task and 
which interface with each 
other and with hardware in 
limited and well-defined ways

� The only other software 
module is the scheduler

� Because there is no kernel 
there is no actual OS

Examples of standardized 
components include:

• Single-hop networking
• Ad-hoc routing
• Power management
• Timers
• Nonvolatile storage 

control
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Components 
and Tasks

� A software component implements one or more tasks

� Each task in a component is similar to a thread in an 
ordinary OS

� Within a component tasks are atomic
� Once a task has started it runs to completion

A task cannot
• Be preempted by another 

task in the same 
component and there is no 
time slicing

• Block or spin wait

A task can
• Perform computations
• Call lower-level 

components (commands)
• Signal higher-level events
• Schedule other tasks
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TinyOS 
Scheduler

� Operates across all components

� Only one task executes at a time

� The scheduler is a separate component that must be 
present in any system

� Default scheduler is a simple FIFO queue

� Scheduler is power aware 
� Puts processor to sleep when there is no task in the 

queue
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Blackberry 
QNX

� QNX
� QNX Neutrino RTOS

Realtime embedded system, microkernel design, and 
modular architecture that supports hundreds of POSIX 
commands, utilities, and programming interfaces

� QNX OS for Automotive Safety
� QNX OS for Medical

� Wide adoption in the automotive sector
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QNX Neutrino 
System 
Architecture
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QNX Neutrino 
microkernel

� thread services (POSIX thread-creation)

� signal services (POSIX signal)

� message-passing services
� the microkernel manages the exchange of messages 

between threads synchronization services (POSIX thread-
synchronization)

� scheduling services (POSIX realtime scheduling policies)

� timer services (POSIX timer services)

� process management services
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VxWorks and 
Integrity

� Wind River
� VxWORKS

RTOS with different profiles for different application 
scenarios.
This OS equipped the MARS Curiosity mission (NASA)

� Green Hills
� Integrity

RTOS with a separation kernel for different markets
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LYNX

� LYNX
� LYNXOS RTOS

LynxOS® is a deterministic, hard real-time operating 
system that provides POSIX-conformant APIs in a small-
footprint embedded kernel. LynxOS provides symmetric 
multi-processing support to fully take advantage of multi-
core/multi-threaded processors
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