
OPERATING SYSTEMS
VIRTUAL MEMORY

Hardware and
Control
Structures

Two characteristics fundamental
to memory management

1) All memory references are logical addresses
that are dynamically translated into physical

addresses at run time
2) A process may be broken up into a number of

pieces that don’t need to be contiguously
located in main memory during execution

It is not necessary
that all the pages or segments of a process

be in main memory during execution

Operating SystemsGiorgio Giacinto 2019 2

Implications

� More processes may be maintained in main memory
� Only some of the pieces of any particular process are

loaded
� This leads to more efficient utilization of the processor

because it is more likely that at least one of the processes
will be in a ready state at any particular time

� A process may be larger than all of main memory
� Solution with overlays: the programmer must devise

ways to structure the program into pieces that can be
loaded separately

� With virtual memory based on paging or segmentation,
that job is left to the OS and the hardware

Operating SystemsGiorgio Giacinto 2019 3

Virtual
Memory That
is Larger Than
Physical
Memory

Giorgio Giacinto 2019 Operating Systems 4

Execution of a
Process

� The OS brings into main memory a few pieces of the
program

� Resident set
Portion of process that is in main memory

� When an address is needed that is not in main memory,
the OS generates an interrupt

� The OS places the process in a blocking state

Operating SystemsGiorgio Giacinto 2019 5

Steps in
Handling a
Page Fault

Giorgio Giacinto 2019 Operating Systems 6

Real and
Virtual
Memory

Operating Systems

Real memory

Main memory,
the actual RAM

Virtual
memory

Memory on disk

Allows for effective
multiprogramming and
relieves the user of tight

constraints of main memory

Giorgio Giacinto 2019 7

Trashing

Operating Systems

A state in which the
system spends

most of its time
swapping process
pieces rather than

executing
instructions

To avoid this, the
OS tries to guess,

based on recent
history, which

pieces are least
likely to be used in

the near future

Giorgio Giacinto 2019 8

Thrashing

Giorgio Giacinto 2019 Operating Systems 9

Principle of
Locality

� Program and data references within a process tend to
cluster

� Only a few pieces of a process will be needed over a
short period of time

� Therefore it is possible to make intelligent guesses
about which pieces will be needed in the future

� Avoids thrashing

Operating SystemsGiorgio Giacinto 2019 10

Principle of
Locality
Memory map of a Firefox
Browser in Linux

Giorgio Giacinto 2019 Operating Systems 11

Communications of the ACM, 09/2017

Support
Needed for
Virtual
Memory

Operating Systems

For virtual memory to be practical and effective:

• Hardware must support paging and
segmentation

• Operating system must include software for
managing the movement of pages and/or
segments between secondary memory and
main memory

Giorgio Giacinto 2019 12

Demand Paging

Giorgio Giacinto 2019 Operating Systems 13

Demand
Paging

� A page is loaded into memory only when it is needed
� Less I/O needed, no unnecessary I/O
� Less memory needed
� Faster response
� More users

� Similar to paging system with swapping

� Page is needed Þ reference to it
� invalid reference Þ abort
� not-in-memory Þ bring to memory

� Lazy swapper
never swaps a page into memory unless page will be
needed

Giorgio Giacinto 2019 Operating Systems 14

Valid-Invalid
Bit

� With each page table entry a
valid–invalid bit is associated
v Þ in-memory,
i Þ not-in-memory

� During MMU address
translation,
if valid–invalid bit in page table
entry is iÞ page fault

� Initially valid–invalid bit is set to
i on all entries

Giorgio Giacinto 2019 Operating Systems 15

Page Table
When Some
Pages Are Not
in Main
Memory

Giorgio Giacinto 2019 Operating Systems 16

Performance
of Demand
Paging

� Three major activities
� Service the interrupt

careful coding means just several hundred instructions
needed

� Read the page
very slow operation

� Restart the process
fast operation

� Page Fault Rate 0 £ p £ 1
� if p = 0 no page faults
� if p = 1, every reference is a fault

� Effective Access Time (EAT)
EAT = (1 – p) x memory access
+ p page fault overhead

+ swap page out
+ swap page in

Giorgio Giacinto 2019 Operating Systems 17

Demand
Paging
Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds
EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p) x 200 + p x 8,000,000

= 200 + p x 7,999,800
If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

If we want performance degradation < 10 percent
220 > 200 + 7,999,800 x p
20 > 7,999,800 x p
p < .0000025
< one page fault in every 400,000 memory accesses

Giorgio Giacinto 2019 Operating Systems 18

Demand
Paging
Optimizations

� Swap space I/O faster than file system I/O even if on the
same device

� Swap allocated in larger chunks

� Copy entire process image to swap space at process load
time (used in older BSD Unix)

� Then page in and out of swap space

� Discard rather than paging out when freeing frames
containing program binaries (used in Solaris and current BSD)

� Still need to write to swap space
� Pages not associated with a file (like stack and heap)
� Pages modified in memory but not yet written back to the file system

� Mobile systems
� Typically don’t support swapping
� Instead, demand page from file system and reclaim read-only

pages (such as code)

Giorgio Giacinto 2019 Operating Systems 19

Copy-on-
Write

� Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memory

� If either process modifies a shared page, only then is
the page copied

Giorgio Giacinto 2019 Operating Systems 20

Before Process
1 Modifies
Page C

Giorgio Giacinto 2019 Operating Systems 21

After Process 1
Modifies Page
C

Giorgio Giacinto 2019 Operating Systems 22

What Happens
if There is no
Free Frame?

� Main memory demanded non only by process pages
� Also in demand from the kernel, I/O buffers, etc

� How much to allocate to each?

� Page replacement
find some page in memory, but not really in use, page
it out

� Algorithm
terminate? swap out? replace the page?

� Performance
an algorithm which will result in minimum number of
page faults

� Drawback
Same page may be brought into memory several times

Giorgio Giacinto 2019 Operating Systems 23

Page
Replacement

� Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

� Use modify (dirty) bit to reduce overhead of page
transfers

� only modified pages are written to disk

� Page replacement completes separation between
logical memory and physical memory

� large virtual memory can be provided on a smaller
physical memory

Giorgio Giacinto 2019 Operating Systems 24

Basic Page
Replacement

1. Find the location of the desired page on disk

2. Find a free frame
� if there is a free frame, use it
� if there is no free frame, use a page replacement algorithm

to select a victim frame
� write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Continue the process by restarting the instruction that
caused the trap

5. Note: now potentially 2 page transfers for page fault –
increasing EAT

Giorgio Giacinto 2019 Operating Systems 25

Page
Replacement

Giorgio Giacinto 2019 Operating Systems 26

Page and
Frame
Replacement
Algorithms

� Frame-allocation algorithm determines
� How many frames to give each process
� Which frames to replace

� Page-replacement algorithm goal
� lowest page-fault rate on both first access and re-access

� Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

� String is just page numbers, not full addresses
� Repeated access to the same page does not cause a page fault
� Results depend on number of frames available

� In all our examples, the reference string of referenced page
numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Giorgio Giacinto 2019 Operating Systems 27

Desired
Behaviour of
Page Faults
Versus The
Number of
Frames

Giorgio Giacinto 2019 Operating Systems 28

First-In-First-
Out (FIFO)
Algorithm

� Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

� 3 frames (3 pages can be in memory at a time per process)

�

� Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
� Adding more frames can cause more page faults!

� Belady’s Anomaly

� How to track ages of pages?
� Just use a FIFO queue

15 page faults

Giorgio Giacinto 2019 Operating Systems 29

FIFO
Illustrating
Belady’s
Anomaly n

u
m

b
e

r
o

f
p

a
g

e
 f

a
u

lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Giorgio Giacinto 2019 Operating Systems 30

Optimal
Algorithm

� Replace page that will not be used for longest period
of time

� How do you know this?
� Can’t read the future

� Used for measuring how well your algorithm performs

9 page faults

Giorgio Giacinto 2019 Operating Systems 31

Least Recently
Used (LRU)
Algorithm

� Use past knowledge rather than future
� Replace page that has not been used in the most amount of time
� Associate time of last use with each page

� 12 faults – better than FIFO but worse than OPT
� Generally good algorithm and frequently used
� But how to implement?

Giorgio Giacinto 2019 Operating Systems 32

LRU
Algorithm

� Counter implementation
� Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter

� When a page needs to be changed, look at the counters to
find smallest value

� Search through table needed

� Stack implementation
� Keep a stack of page numbers in a double link form:
� Page referenced:

� move it to the top
� requires 6 pointers to be changed

� But each update more expensive
� No search for replacement

� LRU and OPT are cases of stack algorithms that don’t
have Belady’s Anomaly

Giorgio Giacinto 2019 Operating Systems 33

LRU
Approximation
Algorithms

� LRU needs special hardware and still slow

� Reference bit
� With each page associate a bit, initially = 0
� When page is referenced bit set to 1
� Replace any with reference bit = 0 (if one exists)

� We do not know the order, however

� Second-chance algorithm
� Generally FIFO, plus hardware-provided reference bit
� Clock replacement
� If page to be replaced has

� Reference bit = 0 -> replace it
� reference bit = 1 then

� set reference bit 0, leave page in memory
� replace next page, subject to same rules

Giorgio Giacinto 2019 Operating Systems 34

Second-
Chance (clock)
Page-
Replacement
Algorithm

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……
circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

Giorgio Giacinto 2019 Operating Systems 35

Second-
Chance (clock)
Page-
Replacement
Algorithm

0

6

1

2

3

4

5

7

8

n – 1

n – 1

�
�

�

page 19
use = 1

page 1
use = 1

next frame
pointer

page 45
use = 1

page 191
use = 1

page 556
use = 0

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(a) State of buffer just prior to a page replacement

0

6

1

2

3

4

5

7

8

�
�

�

page 19
use = 1

page 1
use = 1

page 45
use = 0

page 191
use = 0

page 727
use = 1

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(b) State of buffer just after the next page replacement

Figure 8.15 Example of Clock Policy Operation

First frame in
circular buffer of
frames that are
candidates for replacement

0

6

1

2

3

4

5

7

8

n – 1

n – 1

�
�

�

page 19
use = 1

page 1
use = 1

next frame
pointer

page 45
use = 1

page 191
use = 1

page 556
use = 0

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(a) State of buffer just prior to a page replacement

0

6

1

2

3

4

5

7

8

�
�

�

page 19
use = 1

page 1
use = 1

page 45
use = 0

page 191
use = 0

page 727
use = 1

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(b) State of buffer just after the next page replacement

Figure 8.15 Example of Clock Policy Operation

First frame in
circular buffer of
frames that are
candidates for replacement

Giorgio Giacinto 2019 Operating Systems 36

Enhanced
Second-
Chance
Algorithm

� Improve algorithm by using reference bit and modify bit
(if available) in concert

� Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified

best page to replace
2. (0, 1) not recently used but modified

not quite as good, must write out before replacement
3. (1, 0) recently used but clean

probably will be used again soon
4. (1, 1) recently used and modified

probably will be used again soon and need to write out
before replacement

� When page replacement called for, use the clock scheme
but use the four classes replace page in lowest non-
empty class

� Might need to search circular queue several times

Giorgio Giacinto 2019 Operating Systems 37

Counting
Algorithms

� Keep a counter of the number of references that have
been made to each page

� Not common

� Least Frequently Used (LFU) Algorithm
� replaces page with smallest count

� Most Frequently Used (MFU) Algorithm
� based on the argument that the page with the smallest

count was probably just brought in and has yet to be
used

Giorgio Giacinto 2019 Operating Systems 38

Page-
Buffering
Algorithms

� Keep a pool of free frames, always
� Then frame available when needed, not found at fault

time
� Read page into free frame and select victim to evict and

add to free pool
� When convenient, evict victim

� Possibly, keep list of modified pages
� When backing store otherwise idle, write pages there

and set to non-dirty

� Possibly, keep free frame contents intact and note
what is in them

� If referenced again before reused, no need to load
contents again from disk

� Generally useful to reduce penalty if wrong victim frame
selected

Giorgio Giacinto 2019 Operating Systems 39

Prepaging

� Pages other than the one demanded by a page fault
are brought in

� Exploits the characteristics of most secondary memory
devices

� If pages of a process are stored contiguously in
secondary memory it is more efficient to bring in a
number of pages at one time

� Ineffective if extra pages are not referenced

� Should not be confused with “swapping”

Operating SystemsGiorgio Giacinto 2019 40

Applications
and Page
Replacement

� All of these algorithms have OS guessing about future
page access

� Some applications have better knowledge
� i.e. databases

� Memory intensive applications can cause double
buffering

� OS keeps copy of page in memory as I/O buffer
� Application keeps page in memory for its own work

� Operating system can give direct access to the disk,
getting out of the way of the applications

� Raw disk mode
� Bypasses buffering, locking, etc

Giorgio Giacinto 2019 Operating Systems 41

Resident Set
Management

Giorgio Giacinto 2019 Operating Systems 42

Resident Set
Management

�The OS must decide how many pages to bring
into main memory
� The smaller the amount of memory allocated to

each process, the more processes can reside in
memory

� Small number of pages loaded increases page
faults

� Beyond a certain size, further allocations
of pages will not effect the page fault rate

Operating SystemsGiorgio Giacinto 2019 43

Resident Set
Size

� Fixed Allocation
Gives a process a fixed number of frames in main
memory within which to execute

� When a page fault occurs, one of the pages of that
process must be replaced

� Variable Allocation
Allows the number of page frames allocated to a
process to be varied over the lifetime of the process

Operating SystemsGiorgio Giacinto 2019 44

Replacement
Scope

� The scope of a replacement strategy can be
categorized as global or local
� Both types are activated by a page fault when there

are no free page frames

Operating Systems

Local

• Chooses only among the resident pages of the process that
generated the page fault

Global

• Considers all unlocked pages in main memory

Giorgio Giacinto 2019 45

Fixed
Allocation,
Local Scope

� Necessary to decide ahead of time the amount of
allocation to give a process

� If allocation is too small, there will be a high page
fault rate

Operating Systems

• Increased processor idle time
• Increased time spent in

swapping

If allocation is too
large, there will be
too few programs
in main memory

Giorgio Giacinto 2019 46

Variable
Allocation
Global Scope

Operating Systems

Easiest to implement Adopted in a number of operating
systems

OS maintains a list of free frames

Free frame is added to resident set of process when a
page fault occurs

If no frames are available the OS must choose a page
currently in memory

One way to counter potential problems is to use page
buffering

Giorgio Giacinto 2019 47

Variable
Allocation
Local Scope

Operating Systems

When a new process is loaded into main
memory, allocate to it a certain number of
page frames as its resident set

When a page fault occurs, select the page
to replace from among the resident set of
the process that suffers the fault

Reevaluate the allocation provided to the
process and increase or decrease it to
improve overall performance

Giorgio Giacinto 2019 48

Variable
Allocation
Local Scope

� Decision to increase or decrease a resident set size is
based on the assessment of the likely future demands
of active processes

Operating Systems

Key elements:

• Criteria used to determine
resident set size

• The timing of changes

Giorgio Giacinto 2019 49

Working-Set
Model

� D º working-set window º a fixed number of page
references
Example: 10,000 instructions

� WSSi (working set of Process Pi) =
total number of pages referenced in the most recent D

� if D too small will not encompass entire locality
� if D too large will encompass several localities
� if D = ¥Þwill encompass entire program

Giorgio Giacinto 2019 Operating Systems 50

Working-Set
Model

� D = SWSSi º total demand frames
� Approximation of locality

� if D > m ÞThrashing

� Policy if D > m, then suspend or swap out one of the
processes

Giorgio Giacinto 2019 Operating Systems 51

Page-Fault
Frequency

� More direct approach than WSS

� Establish acceptable page-fault frequency (PFF) rate
and use local replacement policy

� If actual rate too low, process loses frame
� If actual rate too high, process gains frame

number of frames

increase number
of frames

upper bound

lower bound
decrease number
of frames

pa
ge

-f
au

lt
ra

te

Giorgio Giacinto 2019 Operating Systems 52

Working Sets
and Page Fault
Rates

� Direct relationship between working set of a process
and its page-fault rate

� Working set changes over time

� Peaks and valleys over time

Giorgio Giacinto 2019 Operating Systems 53

Kernel Memory
Allocation

Giorgio Giacinto 2019 Operating Systems 54

Allocating
Kernel
Memory

� Treated differently from user memory

� Often allocated from a free-memory pool
� Kernel requests memory for structures of varying sizes
� Some kernel memory needs to be contiguous

� I.e. for device I/O

Giorgio Giacinto 2019 Operating Systems 55

Buddy System

� Allocates memory from fixed-size segment consisting
of physically-contiguous pages

� Memory allocated using power-of-2 allocator
� Satisfies requests in units sized as power of 2
� Request rounded up to next highest power of 2
� When smaller allocation needed than is available, current

chunk split into two buddies of next-lower power of 2
� Continue until appropriate sized chunk available

Giorgio Giacinto 2019 Operating Systems 56

For example, assume 256KB chunk available, kernel requests 21KB

Advantage – quickly coalesce unused chunks into larger chunk
Disadvantage – fragmentation

Buddy System
Allocator

physically contiguous pages

256 KB

128 KB
AL

64 KB
BR

64 KB
BL

32 KB
CL

32 KB
CR

128 KB
AR

Giorgio Giacinto 2019 Operating Systems 57

Slab Allocator

� Slab is one or more physically contiguous pages

� Cache consists of one or more slabs

� Single cache for each unique kernel data structure
� Each cache filled with objects – instantiations of the data

structure

� When cache created, filled with objects marked as free

� When structures stored, objects marked as used

� If slab is full of used objects, next object allocated from
empty slab

� If no empty slabs, new slab allocated

� Benefits include no fragmentation, fast memory
request satisfaction

Giorgio Giacinto 2019 Operating Systems 58

Slab
Allocation

3-KB
objects

7-KB
objects

kernel objects caches slabs

physically
contiguous
pages

Giorgio Giacinto 2019 Operating Systems 59

Design Issues

Giorgio Giacinto 2019 Operating Systems 60

Page Size

� Sometimes OS designers have a choice
� Especially if running on custom-built CPU

� Page size selection must take into consideration
� Fragmentation
� Page table size
� Resolution
� I/O overhead
� Number of page faults
� Locality
� TLB size and effectiveness

� Always power of 2, usually in the range 212 (4,096 bytes)
to 222 (4,194,304 bytes)

� On average, growing over time

Giorgio Giacinto 2019 Operating Systems 61

TLB Reach

� TLB Reach
The amount of memory accessible from the TLB

� TLB Reach = (TLB Size) X (Page Size)

� Ideally, the working set of each process is stored in the
TLB

� Otherwise there is a high degree of page faults

� Increase the Page Size
� This may lead to an increase in fragmentation as not all

applications require a large page size

� Provide Multiple Page Sizes
� This allows applications that require larger page sizes the

opportunity to use them without an increase in
fragmentation

Giorgio Giacinto 2019 Operating Systems 62

Program
Structure

� Program structure
� int[128,128] data;
� Each row is stored in one page
� Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;
� 128 x 128 = 16,384 page faults

� Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

� 128 page faults

Giorgio Giacinto 2019 Operating Systems 63

I/O interlock

� I/O Interlock
Pages must sometimes be
locked into memory

� Consider I/O
Pages that are used for copying
a file from a device must be
locked from being selected for
eviction by a page replacement
algorithm

� Pinning of pages to lock into
memory

Giorgio Giacinto 2019 Operating Systems 64

Operating System
Examples

Giorgio Giacinto 2019 Operating Systems 65

Windows

� Uses demand paging with clustering. Clustering brings
in pages surrounding the faulting page

� Processes are assigned working set minimum and
working set maximum

� Working set minimum is the minimum number of pages
the process is guaranteed to have in memory

� A process may be assigned as many pages up to its
working set maximum

� When the amount of free memory in the system falls
below a threshold, automatic working set trimming is
performed to restore the amount of free memory

� Working set trimming removes pages from processes
that have pages in excess of their working set minimum

Giorgio Giacinto 2019 Operating Systems 66

Solaris

� Maintains a list of free pages to assign faulting processes

� Lotsfree threshold parameter (amount of free memory)
to begin paging

� Desfree threshold parameter to increasing paging

� Minfree threshold parameter to being swapping

� Paging is performed by pageout process

� Pageout scans pages using modified clock algorithm

� Scanrate is the rate at which pages are scanned. This
ranges from slowscan to fastscan

� Pageout is called more frequently depending upon the
amount of free memory available

� Priority paging gives priority to process code pages

Giorgio Giacinto 2019 Operating Systems 67

Linux Virtual
Memory

Three level page table structure

Operating Systems

Page directory

Process has a single page
directory

Each entry points to one
page of the page middle

directory

Must be in main memory
for an active process

Page middle directory

May span multiple pages

Each entry points to one
page in the page table

Page table

May also span multiple
pages

Each entry refers to one
virtual page of the process

Giorgio Giacinto 2019 68

Global Directory

cr3
register

Page
directory

Page middle
directory

Page table

Page frame
in physical

memory

Virtual address

Figure 8.23 Address Translation in Linux Virtual Memory Scheme

Middle Directory Page Table Offset

+

+

+

+

Address
Transaltion in
Linux Virtual
Memory
Scheme

Operating SystemsGiorgio Giacinto 2019 69

Linux Page
Replacement

Operating Systems

Based on the clock algorithm

The use bit is replaced
with an 8-bit age variable

Incremented each time the
page is accessed

Periodically decrements
the age bits

A page with an age of 0 is an “old”
page that has not been referenced
in some time and is the best
candidate for replacement

A form of least frequently used policy

Giorgio Giacinto 2019 70

