
OPERATING SYSTEMS
MEMORY MANAGEMENT



Background

� Programs must be brought (from disk) into memory and 
placed within a process for them to be run

� Main memory and registers are the only storage devices 
the CPU can access directly

� Memory unit only sees a stream of addresses + read 
requests, or address + data and write requests

� Register access in one CPU clock (or less)

� Cache sits between main memory and CPU registers 

� Main memory can take many cycles, causing a stall

Giorgio Giacinto 2019 Operating Systems 2



Memory 
Management 
Requirements

� Memory management is intended to satisfy the 
following requirements

� Relocation

� Protection

� Sharing

� Logical organization

� Physical organization

Operating SystemsGiorgio Giacinto 2019 3



Relocation

� Programmers typically do not know in advance which 
other programs will be resident in main memory at the 
time of execution of their program

� Active processes need to be able to be swapped in and 
out of main memory in order to maximize processor 
utilization

� The OS may need to relocate the process to a different 
area of memory when it is swapped back in 

� Specifying that a process must be placed in the same 
memory region would be limiting

Operating SystemsGiorgio Giacinto 2019 4



Process Control Block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

Figure 7.1    Addressing Requirements for a Process

Addressing 
Requirements 
for a Process

Operating SystemsGiorgio Giacinto 2019 5



Protection

� Processes need to acquire permission to reference 
memory locations for reading or writing purposes

� Location of a program in main memory is 
unpredictable

� Memory references generated by a process must be 
checked at run time

� Mechanisms that support relocation also support 
protection

Operating SystemsGiorgio Giacinto 2019 6



Sharing

� Advantageous to allow each process access to the 
same copy of the program rather than have their own 
separate copy

� Memory management must allow controlled access to 
shared areas of memory without compromising 
protection

� Mechanisms used to support relocation support 
sharing capabilities

Operating SystemsGiorgio Giacinto 2019 7



Logical 
Organization

� Memory is organized as linear

� The main memory can be logically organized in 
segments corresponding to the program modules

Operating Systems

Programs are written in modules
• Modules can be written and compiled independently
• Different degrees of protection given to modules (read-only, 

execute-only)
• Sharing on a module level corresponds to the user’s way of viewing 

the problem

Giorgio Giacinto 2019 8



Physical 
Organization

Cannot leave the 
programmer with 
the responsibility 

to manage 
memory

Memory available 
for a program plus 

its data may be 
insufficient

Overlaying allows various 
modules to be assigned 

the same region of 
memory but is time 

consuming to program

Programmer does 
not know how 

much space will be 
available

Operating SystemsGiorgio Giacinto 2019 9



Memory access

Giorgio Giacinto 2019 Operating Systems 10



Base and Limit 
Registers

� A pair of base and limit
registers define the 
logical address space

� The CPU must check
that every memory 
access generated in 
user mode is between 
base and limit

Giorgio Giacinto 2019 Operating Systems 11



Hardware 
Address 
Protection

Process Control Block

Program

Data

Stack

Figure 7.8    Hardware Support for Relocation

Comparator

Interrupt to
operating system

Absolute
address

Process image in
main memory

Relative address

Base Register

Bounds Register

Adder

Giorgio Giacinto 2019 Operating Systems 12



Multistep 
Processing of 
a User 
Program 

Giorgio Giacinto 2019 Operating Systems 13



Binding of 
Instructions 
and Data to 
Memory

� Address binding of instructions and data to memory 
addresses can happen at three different stages

� Compile time
If memory location is known a priori, absolute code can 
be generated. Recompilation needed if starting location 
changes

� Load time
Must generate relocatable code if memory location is not 
known at compile time

� Execution time
Binding delayed until run time if the process can be 
moved during its execution

� Need hardware support for address maps

Giorgio Giacinto 2019 Operating Systems 14



Logical vs. 
Physical 
Address Space

� The OS manages a logical address space that is bound 
to a separate physical address space

� Logical address
generated by the CPU, also referred to as virtual address

� Physical address 
address seen by the memory unit

� Logical and physical addresses are the same in 
compile-time and load-time address-binding schemes 

� Logical (virtual) and physical addresses differ in 
execution-time address-binding scheme

Giorgio Giacinto 2019 Operating Systems 15



Memory-
Management 
Unit (MMU)

� Hardware device that at run time maps virtual to 
physical address

� In the simplest scheme the value in the relocation 
register is added to every address generated by a user 
process at the time it is sent to memory

� base register now called relocation register
� MS-DOS on Intel 80x86 used 4 relocation registers

� The user program deals with logical addresses, it never 
sees the real physical addresses

Giorgio Giacinto 2019 Operating Systems 16



Dynamic 
relocation 
using a 
relocation 
register

� All modules kept on disk in relocatable load format

� A module is not loaded until it is called
� Better memory-space utilization; unused routine is 

never loaded

� Useful when large amounts of code are needed to 
handle infrequently occurring cases

� No special support from the operating system is 
required

Giorgio Giacinto 2019 Operating Systems 17



Swapping

Giorgio Giacinto 2019 Operating Systems 18



Swapping

� A process can be swapped temporarily out of memory 
to a backing store, and then brought back into 
memory for continued execution

� Backing store
fast long-term memory storage (e.g., disks), large 
enough to accommodate copies of memory images for 
all users

� Roll out, roll in 
swapping variant used for priority-based scheduling 
algorithms

� lower-priority processes are swapped out so higher-
priority processes can be loaded and executed

Giorgio Giacinto 2019 Operating Systems 19



Schematic 
View of 
Swapping

Giorgio Giacinto 2019 Operating Systems

Major part of swap 
time is transfer 
time

The OS maintains a 
ready queue of 
ready-to-run 
processes which 
have memory 
images on disk

20



Context 
Switch Time 
including 
Swapping

� If next processes to be put on CPU is not in memory, 
need to swap out a process and swap in target process
Context switch time can then be very high

� Example: 100MB process swapping to hard disk with 
transfer rate of 50MB/sec

� Swap out time of 2000 ms
� Plus swap in of same sized process
� Total context switch swapping component time of 4000ms 

(4 seconds)

� Standard swapping not used in modern operating 
systems, but modified version common

� e.g., swap only when free memory extremely low and one 
process is neither performing any action, nor awaiting for 
any event 

Giorgio Giacinto 2019 Operating Systems 21



Swapping on 
Mobile 
Systems

� Not supported because there is no backing store
� Flash memory based

� Small amount of space
� Limited number of write cycles
� Poor throughput between flash memory and CPU

� When memory is running out of free space
� iOS asks apps to voluntarily relinquish allocated memory

� Read-only data thrown out and reloaded from flash if 
needed

� Failure to free can result in termination

� Android terminates apps if low free memory, but first 
writes application state to flash for fast restart

Giorgio Giacinto 2019 Operating Systems 22



Memory Partitioning

Giorgio Giacinto 2019 Operating Systems 23



Contiguous 
Allocation

� Main memory must support both OS and user 
processes

� Contiguous allocation is one early method

� Main memory usually divided into two partitions
� Resident operating system, usually held in low 

memory with interrupt vector
� User processes then held in high memory

� Each process contained in single contiguous 
section of memory

Giorgio Giacinto 2019 Operating Systems 24



Contiguous 
Allocation 
(Cont.)

� Relocation registers used to protect user processes 
from each other, and from changing operating-system 
code and data

� Base register contains value of smallest physical address
� Limit register contains range of logical addresses – each 

logical address must be less than the limit register 
� MMU maps logical address dynamically

Giorgio Giacinto 2019 Operating Systems 25



Multiple-
partition 
allocation

� Degree of multiprogramming limited by number of 
partitions in the contiguous allocation scheme

� Variable-partition sizes for efficiency (sized to a given 
process’ needs)

� Hole
block of available memory. Holes of various size are 
scattered throughout memory

Giorgio Giacinto 2019 Operating Systems 26



Multiple-
partition 
allocation

� When a process arrives, it is allocated memory from a 
hole large enough to accommodate it

� Process exiting frees its partition, adjacent free 
partitions combined

� Operating system maintains information about:
a) allocated partitions    b) free partitions (hole)

Giorgio Giacinto 2019 Operating Systems 27



Dynamic 
Storage-
Allocation 
Problem

� How to satisfy a request of size n from a list of free 
holes?

� First-fit
Allocate the first hole that is big enough

� Best-fit
Allocate the smallest hole that is big enough

� must search entire list, unless ordered by size  
� Produces the smallest leftover hole

� Worst-fit
Allocate the largest hole; must also search entire list  

� Produces the largest leftover hole

� First-fit and best-fit better than worst-fit in terms of 
speed and storage utilization

Giorgio Giacinto 2019 Operating Systems 28



Fragmentation

� External Fragmentation 
total memory space exists to satisfy a request, but it is 
not contiguous

� Internal Fragmentation
allocated memory may be slightly larger than 
requested memory

� this size difference is memory internal to a partition, but 
not being used

� First fit analysis reveals that given N blocks allocated, 
0.5 N blocks lost to fragmentation

� 1/3 may be unusable -> 50-percent rule

Giorgio Giacinto 2019 Operating Systems 29



Fragmentation 
(Cont.)

� Reduce external fragmentation by compaction
� Shuffle memory contents to place all free memory 

together in one large block
� Compaction is possible only if relocation is dynamic, and 

is done at execution time
� I/O problem

� Latch job in memory while it is involved in I/O
� Do I/O only into OS buffers

Giorgio Giacinto 2019 Operating Systems 30



Segmentation

Giorgio Giacinto 2019 Operating Systems 31



Segmentation

� Memory-management scheme that supports user view 
of memory 

� A program is a collection of segments, where a 
segment is a logical unit such as:

� main program
� procedure 
� function
� method
� object
� local variables, global variables
� common block
� stack
� symbol table
� arrays

Giorgio Giacinto 2019 Operating Systems 32



User’s View of a 
Program

Giorgio Giacinto 2019 Operating Systems 33



Logical View 
of 
Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Giorgio Giacinto 2019 Operating Systems 34



Segmentation 
Architecture 

� Logical address consists of a tuple
<segment-number, offset>

� Segment table 
each table entry has

� base
contains the starting physical address where the 
segments reside in memory

� limit
specifies the length of the segment

� Segment-table base register (STBR)
points to the segment table’s location in memory

� Segment-table length register (STLR)
indicates number of segments used by a program

Giorgio Giacinto 2019 Operating Systems 35



Segmentation 
Hardware

Giorgio Giacinto 2019 Operating Systems 36



0

0
1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process
page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address
(a) Paging

000101
000110
011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address
(b) Segmentation

0010111011100
1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12  Examples of Logical-to-Physical Address Translation

Example of 
Logical-to-
Physical 
Address 
Translation

Operating SystemsGiorgio Giacinto 2019 37



Segmentation 
Example

logical address space

subroutine stack

symbol 
table

main 
program

Sqrt

1400

physical memory

2400

3200

segment 2
4300

4700

5700

6300

6700

segment table

limit
0 
1 
2 
3 
4

1000 
400 
400 

1100 
1000

base
1400 
6300 
4300 
3200 
4700

segment 0

segment 3

segment 4

segment 2segment 1

segment 0

segment 3

segment 4

segment 1

Giorgio Giacinto 2019 Operating Systems 38



Segmentation 
Architecture 
(Cont.)

� Protection
� With each entry in segment table associate

� validation bit = 0 Þ illegal segment
� read/write/execute privileges

� Protection bits associated with segments

� Code sharing occurs at segment level

� Since segments vary in length, memory allocation is a 
dynamic storage-allocation problem

Giorgio Giacinto 2019 Operating Systems 39



Paging

Giorgio Giacinto 2019 Operating Systems 40



Paging

� Partition memory into equal fixed-size chunks that 
are relatively small

� Process is also divided into small fixed-size chunks of 
the same size

� To run a program of size N pages, need to find N 
free frames and load program

Operating Systems

Pages

Chunks of a 
process

Frames

Available chunks of 
memory

Giorgio Giacinto 2019 41



Paging Model 
of Logical and  
Physical 
Memory

Giorgio Giacinto 2019 Operating Systems 42



Paging

� Physical  address space of a process can be 
noncontiguous

� Process is allocated physical memory whenever the 
latter is available

� Avoids external fragmentation
� Avoids problem of varying sized memory chunks

� Set up a page table to translate logical to physical 
addresses

� Backing store likewise split into pages

� Still have internal fragmentation

Giorgio Giacinto 2019 Operating Systems 43



Address 
Translation 
Scheme

� Address generated by CPU is divided into
� Page number (p)

used as an index into a page table which contains base 
address of each page in physical memory

� Page offset (d)
combined with base address to define the physical 
memory address that is sent to the memory unit

For given logical address space 2m and page size 2n

Page size is power of 2, between 512 bytes and 16 Mbytes

Giorgio Giacinto 2019 Operating Systems 44



Paging 
Hardware

Giorgio Giacinto 2019 Operating Systems 45



0

0
1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process
page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address
(a) Paging

000101
000110
011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address
(b) Segmentation

0010111011100
1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12  Examples of Logical-to-Physical Address Translation

Example of 
Logical-to-
Physical 
Address 
Translation 

Operating SystemsGiorgio Giacinto 2019 46



0000010111011110

(a) Partitioning

Relative address = 1502

U
se

r 
pr

oc
es

s
(2

70
0 

by
te

s)

0000010111011110

(b) Paging
(page size = 1K) 

Logical address =
Page# = 1, Offset = 478

Logical address =
Segment# = 1, Offset = 752

Pa
ge

 0
Pa

ge
 1

Pa
ge

 2

In
te

rn
al

fr
ag

m
en

ta
tio

n

0001001011110000

(c) Segmentation

Se
gm

en
t 0

75
0 

by
te

s
Se

gm
en

t 1
19

50
 b

yt
es

47
8 75

2

Figure 7.11   Logical Addresses

Logical 
Addresses 
Comparison

Operating SystemsGiorgio Giacinto 2019 47



Paging 
Example

n=2 and m=4   

32-byte memory and 4-byte pages

Giorgio Giacinto 2019 Operating Systems 48



Free Frames

Before allocation After allocation

Giorgio Giacinto 2019 Operating Systems 49



Implementation 
of Page Table

� Page table is kept in main memory

� Page-table base register (PTBR) 
points to the page table

� Page-table length register (PTLR) 
indicates size of the page table

� In this scheme every data/instruction access requires 
two memory accesses

� One for the page table 
� and one for the data / instruction

� To speed-up the access to the page table, a special fast-
lookup hardware cache is used for the page table 
associative memory or translation look-aside buffers
(TLBs) 

Giorgio Giacinto 2019 Operating Systems 50



Paging 
Hardware with 
TLB

Giorgio Giacinto 2019 Operating Systems 51



Memory 
Protection

� Memory protection implemented by associating 
protection bit with each frame to indicate if read-only or 
read-write access is allowed

� Can also add more bits to indicate page execute-only, and 
so on

� Valid-invalid bit attached to each entry in the page 
table:

� valid
the associated page is in the process’ logical address space, 
and is thus a legal page

� invalid
the page is not in the process’ logical address space

� Any violations result in a trap to the kernel

Giorgio Giacinto 2019 Operating Systems 52



Valid (v) or 
Invalid (i) Bit in 
a Page Table

Giorgio Giacinto 2019 Operating Systems 53



Shared Pages

� Shared code
� One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems)
� Similar to multiple threads sharing the same process 

space
� Also useful for interprocess communication if sharing of 

read-write pages is allowed

� Private code and data
� Each process keeps a separate copy of the code and data
� The pages for the private code and data can appear 

anywhere in the logical address space

Giorgio Giacinto 2019 Operating Systems 54



Shared Pages 
Example

Giorgio Giacinto 2019 Operating Systems 55



Structure of 
the Page Table

� Memory structures for paging can get huge using 
straight-forward methods

� Consider a 32-bit logical address space as on modern 
computers and a page size of 4 KB (212)

� Page table would have 1 million entries (232 / 212)
� If each entry is 4 bytes -> 4 MB of physical address space 

/ memory for page table alone

� Hierarchical Paging

� Hashed Page Tables

� Inverted Page Tables

Giorgio Giacinto 2019 Operating Systems 56



Two-Level 
Hierarchical 
Page-Table 
Scheme

Giorgio Giacinto 2019 Operating Systems 57



Hierarchical 
Page Table
Address-
Translation 
Scheme

Giorgio Giacinto 2019 Operating Systems 58



Hashed Page 
Table

Giorgio Giacinto 2019 Operating Systems 59



Inverted Page 
Table 
Architecture

� Rather than each process having a page table and 
keeping track of all possible logical pages, track all 
physical pages (frames)

� One entry for each real page of memory

Giorgio Giacinto 2019 Operating Systems 60



Examples
Intel IA-32 and ARM

Giorgio Giacinto 2019 Operating Systems 61



The Intel IA-32 
Architecture

� Supports both segmentation and segmentation with 
paging

� Each segment can be 4 GB

� Up to 16 K segments per process

� Divided into two partitions
� First partition of up to 8K segments private to process

(kept in local descriptor table (LDT))
� Second partition of up to 8K segments shared among all 

processes (kept in global descriptor table (GDT))

Giorgio Giacinto 2019 Operating Systems 62



Logical to 
Physical 
Address 
Translation in 
IA-32

The logical address is a (selector, offset) pair.

The selector is a 16-bit number

The offset is a 32-bit number

Giorgio Giacinto 2019 Operating Systems 63



Intel IA-32 
Segmentation

Giorgio Giacinto 2019 Operating Systems 64



Intel IA-32 
Paging 
Architecture

Giorgio Giacinto 2019 Operating Systems 65



Example: ARM 
Architecture

� Dominant mobile platform chip (e.g., Apple iOS and Google Android)
� Energy efficient 32-bit CPU
� 4 KB and 16 KB pages
� 1 MB and 16 MB pages 

(termed sections)

� Two levels of TLBs
� Outer level has two 

micro TLBs 
(data, instruction)

� Inner is single main TLB

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB 
section

32 bits

Giorgio Giacinto 2019 Operating Systems 66


