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“It is plain that almost all kinds of atramentum are made of Earth and Water. At 
first they were liquid and afterwards solid, and still they can be redissolved, by 
heat and moisture.” 

Albertus Magnus (1205-1280) Book of Minerals (transl. D. Wyckoff, 1967) 
 

The observation of “efflorescences,” or the fl owering of salts, associated with periods 
of dryness in soils, in closed-basin lakes, in rock outcrops, and in mines and mine wastes 
has been noted since early antiquity. The formation of metal-sulfate salts, in connection 
with the mining of metals, was a phenomenon well known to the early Greek and Roman 
civilizations. Alum, most commonly potash alum KAl(SO4)2·12H2O, which is from the 
Latin alumen, was extensively mined and used by goldsmiths, dyers, paper manufacturers, 
and physicians in ancient civilizations. It forms from the oxidation of pyrite in shales and 
slates and from oxidation of sulfurous gases in geothermal areas. The Greeks and the 
Romans described stalactites of atramentum (soluble metal-sulfate salts) that formed within 
mines and along rock faces (Agricola 1546, 1556). Furthermore, the toxic effects of these 
salts on animals were also noted. For example, in De Natura Fossilium, Agricola (1546) 
stated “….I mention the congealed acid juice which usually produces cadmia. It is white, 
hard, and so acrid that it can eat away walls, grills and even destroy all living matter.” 
Cadmia is thought to be derived from the oxidation of zinc, cobalt, and arsenic sulfides, 
such as cobaltite. He goes on to say that “Pyrite , unless it contains sulphates, is either a 
golden or silver color, rarely any other, while cadmia is black, yellow brown, or gray. The 
former will cure gatherings while the latter is a deadly poison and will destroy any living 
substance. It is used to kill grasshoppers, mice and flies.” These descriptions suggest the 
presence of arsenic compounds. The range of colors from white to black commonly is 
caused by different amounts of admixed pyrite with sulfate minerals. From the days of the 
Greek philosopher Theophrastus (ca 325 BCE) and the Greek physician Dioscorides (first 
century CE), the efflorescent salts atramentum sutorium virida or melanterite (also called 
melanteria) and atramentum sutorium caeruleum or chalcanthite were well known to form 
from the corrosion of pyrite and chalcopyrite by moisture (Agricola 1546, footnotes on          
p. 47-51). By the time of Pliny the Second (Caius Plinius Secundus, 23-79 CE), the names 
“green vitriol” for melanterite and “blue vitr iol” for chalcanthite were in common use and 
continued to be used from the Middle Ages to the 20th century.  



304  Jambor, Nordstrom & Alpers 

Today, we know that the formation and dissolution of metal-sulfate salts play an 
important role in the storage and transport of acids and metals released upon weathering 
of mineralized rocks, coal deposits, metallic ore deposits, and mine wastes. The 
composition of the salts reflects the composition of the evaporated waters from which the 
salts form, including information on whether the waters are acidic, basic, or near neutral. 
The original composition of the waters reflects water–mineral interactions involving 
sulfide-mineral oxidation and reactions with non-sulfide gangue minerals, especially 
carbonates and silicates. Hence, identification of efflorescent salts can provide 
information about water quality and water–rock interactions. 

Oxidation of sulfide minerals in coal and metallic ore deposits typically leads to the 
formation of both insoluble and water-soluble, metal-bearing sulfates, hydroxysulfates, 
and hydrous oxides. The reactions generally lead to the generation of acidic solutions. As 
pH decreases, sulfide oxidation is accelerated because mineral solubilities and metal 
concentrations increase. 

On a global scale, the largest tonnages of metal production are derived from 
remarkably few primary sulfide minerals. For example, the world’s principal sources           
of Pb, Zn, and Cu are galena PbS, sphalerite (Zn,Fe)S, and chalcopyrite CuFeS2, 
respectively. If bornite Cu5FeS4, chalcocite Cu2S, and covellite CuS are added as important, 
albeit minor relative to chalcopyrite, sources of Cu, probably >90% of the world’s annual 
production of Cu + Pb + Zn from mineral deposits would be accounted for. These ore 
minerals, however, are accompanied by gangue minerals. Although most silicate gangue 
minerals are environmentally benign, they are commonly accompanied, or exceeded in the 
case of massive sulfide deposits, by iron sulfides such as pyrite FeS2, pyrrhotite Fe1-xS, and 
marcasite FeS2, which produce sulfuric acid upon oxidation and hydrolysis. The last two 
are locally important, but on a global scale nearly all acid rock drainage, whether natural (as 
in the development of massive or disseminated gossan, the oxidized equivalent of massive 
or disseminated sulfide, respectively) or related to anthropogenic activities (as in the 
generation of wastes from mining and mineral processing) can be traced to the oxidation of 
pyrite. The metal:sulfur ratio in sulfide minerals plays an important role in determining the 
amount of sulfuric acid that is liberated by oxidation. Pyrite and marcasite are more S-rich 
than other sulfides, and consequently produce more acid per mole (Blanchard 1967, Blain 
and Andrew 1977, Alpers and Brimhall 1989, Plumlee 1999). Two important results from 
the oxidation of pyrite are (a) the generation of low-pH conditions, and (b) the consequent 
release of heavy metals into surface and ground waters. 

Metals liberated by sulfide oxidation may precipitate locally as soluble or relatively 
insoluble sulfate minerals, with the latter acting as solid-phase controls on dissolved metal 
concentrations. Soluble sulfates generally act only as temporary ‘sinks’ for the heavy 
metals, but deposits of chalcanthite, CuSO4⋅5H2O, of commercial size have been found in 
arid regions, as at Copaquire, Chile; chalcanthite was also a minor ore in the oxidized zone 
at Butte, Montana, and was shipped in large quantities from the Bluestone mine, Nevada 
(Palache et al. 1951). Many of the soluble minerals have the simplified formula 
MSO4·nH2O, wherein M represents divalent Fe, Mn, Co, Ni, Mg, Cu, or Zn, and n ranges 
from 1 to 7. Mutual substitution among the divalent cations is common, but complete solid 
solutions have been documented for only a few of the binary systems. Although the soluble 
sulfate minerals are generally ephemeral, they provide important clues or direct evidence of 
the pathways of sulfide oxidation and the alteration of the associated mineral assemblages. 
Where soluble metals salts are present, they provide information about the reactions that 
have occurred, the composition of the solutions from which they formed, and the types of 
primary minerals likely to have weathered. 

The purpose of this paper is to summarize the occurrence, geochemical properties, 
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and environmental behavior of metal-sulfate salts, in particular those that are readily water-
soluble, because these minerals are important in trace-metal cycling and have often been 
overlooked or ignored. The relatively insoluble sulfate minerals that result from sulfide 
oxidation are described in three other chapters of this volume. The poorly crystalline, 
relatively insoluble, hydroxysulfates of iron and aluminum are described by Bigham and 
Nordstrom (this volume). The well-crystalline minerals of the alunite supergroup, including 
alunite, jarosite, and related phases, are described by Dutrizac and Jambor (this volume) 
and by Stoffregen et al. (this volume).  

In the following section, variations in the compositions of the more common soluble 
metal-sulfate salts are reviewed. The sequence begins with the simple hydrated salts of the 
divalent cations, progresses to salts of the trivalent cations, and thence to those salts that 
contain both divalent and trivalent cations and (or) monovalent cations. Additional sections 
in this chapter describe processes of formation, transformation, and dissolution of the 
soluble salts, including a summary and synthesis of available data on solubility and stability 
relationships. The chapter concludes with a discussion of the paragenesis of metal-sulfate 
salts. 

COMPOSITIONS AND CRYSTAL CHEMISTRY  
OF HYDRATED METAL SALTS 

Divalent cations 
The simple hydrated salts with divalent cations are of the type M2+SO4·nH2O (Table 

1). Numerous experimental studies have shown that n decreases as relative humidity or 
water activity is decreased, and as temperature or acidity of the mother liquor is increased. 
The melanterite and epsomite groups are both heptahydrates that are distinguished on the 
basis of crystal structure. In most compositionally simple solid solutions, the substituting 
ion is accommodated by various degrees of distortion of the crystal structure of the host 
mineral. When distortion is too severe, a new structure is formed. For the M2+SO4·nH2O 
salts, increasing structure distortion follows the sequence Ni2+ < Zn2+ < Mg2+ < Co2+ < Fe2+ 
< Cu2+ (Aslanian and Balarew 1977). 

Melanterite group. Melanterite, FeSO4·7H2O, is one of the most common soluble 
sulfate minerals formed in nature, whereas the other four minerals in the group (Table 1) 
are relatively rare. Boothite, CuSO4·7H2O, for example, has been reported from only a few 
localities (Palache et al. 1951, Skounakis and Economou 1983), and although the 
supporting morphological and chemical data are good, no modern description has been 
made. No numerical X-ray diffraction (XRD) data are available for either natural or 
synthetic material, although Jambor and Traill (1963) reported that a pentahydrate with 
Cu:Fe:Zn = 70:24:6, from Alameda County, California, gave a melanterite-type X-ray 
pattern upon artificial hydration. Similarly, the mineral zinc-melanterite, 
(Zn,Cu,Fe)SO4·7H2O, is known from fewer than five localities, and no XRD data were 
available prior to the recent description by Tiegeng Liu et al. (1995). Bieberite, 
CoSO4·7H2O, and mallardite, MnSO4·7H2O, are not as rare, and both are also well known 
as synthetic compounds. 

Solid solution in binary subsystems of the heptahydrate metal salts has been examined 
by Aslanian et al. (1972), Balarew et al. (1973), and Siebke et al. (1983). In those studies, 
supersaturated solutions were prepared at 65-70°C, and crystalline precipitates were 
obtained by cooling the solutions to room temperature and slowly evaporating the solvent. 
For the melanterite-group minerals, solid solution between melanterite and bieberite was 
found to be complete. In the Ni-Fe series, the maximum Ni uptake in solid solution is 
(Fe0.54Ni0.46)SO4·7H2O (Fig. 1a); analyses of natural materials are within the lower part of 
the allowable range of Ni substitution (Palache et al. 1951, Rutstein 1980).  
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Table 1. Simple hydrated sulfate salts of the divalent metal cations. 
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In the Zn-Fe series, the maximum Zn uptake is (Fe0.45Zn0.55)SO4·7H2O. The 
consequence is that two heptahydrate minerals of monoclinic structure are possible, one 
with formula Fe > Zn, which is melanterite, and the other with Zn > Fe, which is zinc-
melanterite (Fig. 1b). Analyses of natural melanterite have shown up to 8.92 wt % ZnO 
(Palache et al. 1951), which corresponds to (Fe0.69Zn0.30) Σ0.99SO4·6.8H2O, and Alpers et al. 
(1994) reported an analysis with Fe:Zn:Cu:Mg = 53:29:14:4. Only two complete analyses 
are available for zinc-melanterite; one (Palache et al. 1951) corresponds to 
(Zn0.44Cu0.43Fe0.08) Σ0.95SO4·6.6H2O, and the other (Tiegeng Liu et al. 1995) to 
(Zn0.57Fe0.35Mg0.10Ca0.01) Σ1.03SO4·6.96H2O. The latter slightly exceeds the maximum Zn 
uptake of 55 mol % in the Zn-Fe binary system; however, the Mg content of the mineral is 
10 mol %, and Mg slightly extends the range of substitution within which decreases in Fe 
are tolerated (Fig. 1c). 

Compositions of zinc-melanterite are shown along with other available data for natural 
metal-sulfate heptahydrates in two ternary diagrams, Fe–Cu–(Zn+Mg) (Fig. 2a) and Fe–
(Cu+Zn)–Mg (Fig. 2b). The data points in Figure 2 from Jamieson et al. (1999) for 
heptahydrate salts from Iron Mountain represent Fe:Cu:Zn ratios from electron microprobe 
analyses, in which Mg was not analyzed. The Mg contents of other melanterite samples 
from Iron Mountain are about 2 mol % (Alpers et al. 1994). The Richmond deposit at Iron  
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Figure 1. Binary solid solutions among the synthetic metal-sulfate heptahydrates 
precipitated at room temperature (data from Aslanian et al. 1972, Balarew et al. 1973, and 
Siebke et al. 1983). Dotted pattern shows the miscibility gaps in the solid-solution series: 
(a) Ni-Fe; (b) Zn-Fe, vertical dashed line at 45 mol % Fe (55 mol % Zn) represents the 
maximum solid solution of Zn in monoclinic M2+SO4·7H2O, where M = Fe,Zn. At 0-50 
mol % Fe in (Fe,Zn)SO4·7H2O the equivalent mineral is melanterite, and at >50 mol % Zn 
in (Zn,Fe)SO4·7H2O the equivalent mineral is zinc-melanterite; (c) Mg-Fe; (d) Mg-Co;         
(e) Zn-Co; (f) Ni-Co. Note that, as for zinc-melanterite, narrow fields are available for the 
Mg-dominant analog of melanterite, the Zn analog of bieberite, and the orthorhombic Co 
analog of morenosite. 

Mountain is a massive sulfide that hosts extremely acidic mine waters, some with negative 
pH values (Nordstrom and Alpers 1999a,b; Nordstrom et al. 2000). Some of the melanterite 
from the Richmond mine precipitated from mine water with a pH of -0.7 (Alpers et al. 
1994, Nordstrom et al. 2000). The Mattie deposit at Iron Mountain is located adjacent to the 
Richmond deposit, and is accessed by a common tunnel. Mine waters associated with 
melanterite and zinc-melanterite formation in the Mattie deposit have pH values in the 



308  Jambor, Nordstrom & Alpers 

range of 3-4 (Alpers and Nordstrom, unpublished data).  
The diagram for Fe-Mg solid solution (Fig. 1c) shows that Mg can be accommodated 

up to (Fe0.47Mg0.53)SO4·7H2O. Theoretically, therefore, the Mg analog of zinc-melanterite 
could exist as a mineral. Magnesium-rich melanterite was previously called ‘kirovite,’          
a name no longer in good standing. However, an analysis reported by Palache                      
et al. (1951) contains 7.45 wt % MgO and the corresponding formula is 
(Mg0.48Fe0.47Al0.07Zn0.02Cu0.01Mn0.01)Σ1.06SO4·6.80H2O, which is (barely) the Mg analog of 
zinc-melanterite. A Mg-dominant mineral was also described by Pasava et al. (1986b), who 
obtained the formula (Mg0.48Fe2+

0.32Fe3+
0.07Mn0.21Al0.02)Σ1.00SO4·6.66H2O. 

Synthetic bieberite (Rohmer 1939, Aslanian et al. 1972) incorporates up to 50 mol % 
Mg (Fig. 1d), up to 54 mol % Zn (Fig. 1e), and up to 30 mol % Ni (Fig. 1f); solid solution 
between Co and Fe is complete. Substitution of Co by Mn seems to be limited to about 18 
mol % at 20°C (Balarew et al. 1984), and incorporation of up to 32 mol % Cu at 25°C was 
reported by Crockford and Brawley (1932). Few analyses of natural bieberite are available, 
and these show little range in solid solution. Some of the few available analyses                   
of mallardite, MnSO4·7H2O, are near the end-member (Palache et al. 1951, Nambu                 
et al. 1979), but Pasava et al. (1986a) obtained an analysis corresponding to 
(Mn0.48Fe2+

0.26Mg0.24)Σ0.98SO4·6.52H2O, and another analysis has Mn:Mg:Fe3+ = 50:47:2 
(Pasava et al. 1986b). 

Most analyses of boothite (Palache et al. 1951) are near that of the end-member. 
Skounakis and Economou (1983) described an occurrence of boothite with compositions 
ranging to cuprian melanterite, but analytical results were not reported. Although 
morphological data seem to indicate that boothite and cuprian melanterite are isostructural, 
the two minerals are reportedly separated by a miscibility gap (Palache et al. 1951). 
Cuprian melanterite was previously known as ‘pisanite,’ a name no longer in good 
standing. Keating and Berry (1953) described melanterite with Fe:Cu:Zn = 100:80:3, thus 
corresponding to (Fe0.53Cu0.44Zn0.02)SO4·7H2O, and a slightly more Cu-rich analysis was 
given by Palache et al. (1951). A Cu-Zn-rich melanterite with cation ratios 
Fe0.40Cu0.34Zn0.26 was reported by Dristas (1979). The most Cu-rich analysis (18.81                
wt % CuO) given by Palache et al. (1951) for 'melanterite' corresponds to 
(Cu0.68Fe0.34) Σ1.02SO4·7.12H2O, which is ferroan boothite rather than melanterite. Collins 
(1923) synthesized the Fe-Cu series at room temperature and concluded that the maximum 
Cu uptake is to (Cu0.66Fe0.34)SO4·7H2O, which is almost identical to the composition of the 
above-mentioned ferroan boothite. The range in compositions suggests that, if there is a 
solid-solution gap in the melanterite-boothite series, it must be rather narrow and it may be 
in the Cu-dominant part of the series. It has yet to be demonstrated unequivocally that 
boothite is isostructural with the other members of the melanterite group. However, 
comparison of the cell dimensions of the various members shows that the length of the b 
axis is almost constant; thus, cell parameters for boothite on the basis of its morphological 
axial ratios can be calculated to be a = 13.89, b = 6.50, c = 10.64 Å, β = 105.60º assuming 
isomorphism with melanterite. Cell parameters for other members of the melanterite group, 
and most other sulfate minerals mentioned in this chapter, are given by Hawthorne et al. 
(this volume). 

Epsomite group.  The heptahydrates of the epsomite group are orthorhombic, in 
contrast to those of the melanterite group, which are monoclinic (Table 1). As in the 
monoclinic melanterite group (Baur 1964a, Kellersohn et al. 1991), one of the water 
molecules in the orthorhombic epsomite-group structures is not bonded to a metal ion and 
is readily lost (Beevers and Schwartz 1935, Baur 1964b, Ferraris et al. 1973). 

The three minerals in the epsomite group (Table 1) are defined by their predominance 
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of Mg (epsomite), Zn (goslarite), and Ni (morenosite). In the synthetic system, near room 
temperature, solid solutions of Zn-Ni (Aslanian et al. 1972), Zn-Mg (Balarew et al. 1973), 
and Ni-Mg (Soboleva 1958, 1960) are apparently complete. Presumably, therefore, the Zn-
Ni-Mg ternary system does not contain a miscibility gap. 

Substitution of Fe for Mg in epsomite in the synthetic system (Balarew et al. 1973, 
Siebke et al. 1983) is to a maximum of only 10 mol % (Fig. 1c), but older results (Palache 
et al. 1951) indicated that Mg:Fe ~5:1 was achievable (Fig. 2). In natural material,                
the most Fe-rich analysis listed by Palache et al. (7.77 wt % FeO) corresponds to 
(Mg0.72Fe0.28) Σ1.00SO4·6.99H2O, which is considerably beyond the limit indicated by 
syntheses. 

Substitution of Mg in epsomite by elements such as Co, Cu, and Mn is possible. For 
the Mg-Co binary, the limit is 30 mol % Co (Fig. 1d). Solid-solution of Cu in the Mg-Cu 
binary is apparently limited to a few mol %, beyond which a monoclinic heptahydrate is 
formed (Balarew and Karaivanova 1975). Neither Co nor Cu seems to have been detected 
in appreciable quantities in natural epsomite. The extent of substitution of Mg by Mn in 
natural epsomite is probably large, but supporting data are poor; in synthetic material the 
reported limit is Mg:Mn ~5:2 (Palache et al. 1951). 

For the Zn member, goslarite, solid solutions with Mg and with Ni are complete. 
Substitution of Zn by Fe can extend to 37 mol % Fe (Fig. 1b), and of Zn by Co can extend 
to 27 mol % Co (Fig. 1e). Analyses of natural goslarite also indicate that substantial 
substitution by Cu (up to 15 mol %; Milton and Johnston 1938) and Mn may occur, but the 
limits are not well-defined. 

Few analyses of the Ni member, morenosite, are available because of uncertainties 
about the identification and homogeneity of the older samples. More recent analyses (e.g. 
King and Evans 1964, Otto and Schuerenberg 1974, Boscardin and Colmelet 1977) show 
that substitution of Ni is mainly by Mg, or (Mg+Fe), in agreement with the older analyses. 
In the synthetic system, substitution of Ni by Fe in the binary system is limited to 19 mol % 
Fe (Fig. 1a), but Co in the Ni-Co series can exceed Ni and still maintain the orthorhombic 
structure (Fig. 1f). At 25 °C, substitution of Ni by Cu is limited to about 18 mol % Cu 
(Jangg and Gregori 1967). 

Hexahydrite group.  The hexahydrite group consists of monoclinic sulfates of the type 
M2+SO4·6H2O. The ‘hexa’ in the name alludes to the water content, and coincidentally, 
there are six minerals in the group (Table 1). Except for hexahydrite, MgSO4·6H2O, which 
is known to precipitate in diverse settings such as saline lakes, soils, and weathered mine 
wastes, the minerals of the group occur sparingly and are mainly found as the oxidation 
products of sulfide deposits. An indication of the relative sparseness of the group is that 
only two of the minerals (hexahydrite and bianchite) were discovered prior to the 1960s. 

Although little is known about the limits of solid solution in the hexahydrates, the 
similarity in crystal structure with that of the heptahydrates suggests that comparable levels 
of substitution can be accommodated. Synthetic bianchite, ZnSO4·6H2O apparently can 
contain Fe in solid solution up to Zn:Fe ~2:1, and an analysis of natural material (in Palache 
et al. 1951) corresponds to (Zn0.65Fe0.33) Σ0.98SO4·5.89H2O. Semi-quantitative analysis of 
bianchite from the Sterling mine, New Jersey, gave Zn:Fe:Mn = 55:45:5, with no Mg or Cu 
detected (Jenkins and Misiur 1994). A cupriferous variety with Zn:Fe:Cu = 64:21:15 has 
been reported from Bulgaria (Zidarov 1970). Compositions of natural metal-sulfate 
hexahydrates in the Fe–Cu–(Zn+Mg) system are shown in Figure 3. 

Analysis of chvaleticeite, the Mn member so far known only from the type locality  
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Figure 2. Ternary diagrams showing compositions of natural metal-sulfate heptahydrates:                            
(a) FeSO4·7H2O–CuSO4·7H2O–(Zn,Mg)SO4·7H2O; dashed line indicates possible compositional 
limit of zinc-melanterite (monoclinic); (b) FeSO4·7H2O–(Cu,Zn)SO4·7H2O–MgSO4·7H2O, symbols 
are for both (a) and (b). 
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Figure 3. Ternary diagram showing compositions of natural metal-sulfate hexahydrate 
minerals: FeSO4·6H2O–CuSO4·6H2O–(Zn,Mg)SO4·6H2O; note that CuSO4·6H2O is not a 
known mineral species. 

(Pasava et al. 1986a), gave (Mn0.57Mg0.40) Σ0.97SO4·6.4H2O. For ferrohexahydrite, the 
original analysis showed Fe2+ but no Mg or Zn (Vlasov and Kuznetsov 1962). Although 
several occurrences of the mineral have since been reported, quantitative compositional data 
are sparse. The original analyses of nickelhexahydrite (Oleinikov et al. 1965) correspond to 
(Ni0.78Mg0.16Fe0.10) Σ1.04SO4⋅5.90H2O and (Ni0.49Mg0.28Fe0.23Cu0.01) Σ1.01SO4⋅6.04H2O. 
Analyses of the mineral from other occurrences (Karup-Møller 1973, Nawaz 1973, Otto 
and Scheurenberg 1974) show additional small amounts of Mn, Zn, and Co, but do not 
extend the range for Ni-Mg-Fe solid solution. For hexahydrite, which is the Mg-dominant 
member, Ni substitution to Mg:Ni = 73:27 has been found (Janjic et al. 1980). The Co-
dominant member of the group, moorhouseite, is known only from a single locality. 
Analysis of the type material (Jambor and Boyle 1965) gave cation ratios of 
Co:Ni:Mn:Cu:Fe:Zn = 55:25:12:5:3:1. In the synthetic system, Co-Ni solid solution is 
complete at 61 °C, but mixed phases appear at lower temperatures (Rohmer 1939). At 
50°C, the limit of Fe substitution is about 27 mol % (Balarew and Karaivanova 1976b). 

Retgersite. Retgersite, NiSO4·6H2O is tetragonal, dimorphous with nickel-hexahydrite 
(Angel and Finger 1988; Table 1). The limits of solid solution are not known, and in natural 
occurrences (e.g. Frondel and Palache 1949, Fedotova 1967, Sejkora and Rídkosil 1993) 
only small amounts of substituting elements, especially Fe and Mg, have been detected. A 
mineral with Ni:Mg:Fe:Zn:Co = 65:19:13:2:1 described by Eliseev and Smirnova (1958) 
has since been determined to be nickelhexahydrite (Oleinikov et al. 1965), possibly with 
admixed morenosite (Sejkora and Rídkosil 1993). 

Chalcanthite group.  The chalcanthite group consists of triclinic pentahydrates of 
Cu, Mg, Mn, and Fe (Table 1, Fig. 4). The Cu member, chalcanthite, is of common 
occurrence whereas the Mn member, jôkokuite, is known only from two localities.  
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Figure 4. Ternary diagram showing compositions of natural metal-sulfate 
pentahydrate minerals: FeSO4·5H2O–CuSO4·5H2O–(Zn,Mg)SO4·5H2O; note that 
ZnSO4·5H2O is not a known mineral species. 

The composition of type jôkokuite (Nambu et al. 1978) corresponds to 
(Mn0.94Fe0.04Zn0.03) Σ1.01SO4·5.07H2O, and material from Chvaletice, Czech Republic 
(Pasava et al. 1986b) has the composition (Mn0.63Mg0.31Fe3+

0.02) Σ0.96SO4·5.33H2O. 
Although only small amounts of Mn have been reported as substituting in natural 
occurrences of the other members of the group, in the synthetic system at 21°C the Mn-Cu 
solid solution is evidently complete (Mellor 1932). 

In synthetic chalcanthite at 25°C, up to 20 mol % Ni substitution for Cu was obtained 
by Jangg and Gregori (1967). The isomorphous pentahydrates of Ni and Co are known as 
synthetic products (Hammel 1939, Rohmer 1939) but have not yet been described as 
minerals. Substitution of 5 mol % Co for Cu in chancanthite was obtained by Crockford 
and Brawley (1932), and this increased to only 16 mol % Co at 60°C (Balarew and 
Karaivanova 1976a,c). Solid-solution incorporation of Mg or Zn in chalcanthite at 25°C 
was ≤6 mol % in the experiments by Balarew and Karaivanova (1975), but up to 19 mol % 
Zn was incorporated at 40°C (Balarew and Karaivanova 1976a). Mutual Cu-Fe substitution 
(chalcanthite-siderotil) is extensive in natural and synthetic material, and compositions 
extending to Cu:Fe near 1:1 have been reported for both minerals (Jambor and Traill 1963). 

Relatively few analyses of the Mg member, pentahydrite, are available, and their low 
Fe and Zn contents of a percent or two are unlikely to reflect the solid-solution limits in 
natural material. The highest amounts of substitution for Mg are by Cu and Zn (Palache et 
al. 1951), with one analysis corresponding to (Mg0.63Cu0.35Fe0.03Mn0.01) Σ1.02SO4·4.78H2O, 
and another to (Mg0.53Cu0.26Zn0.16Fe0.04Mn0.01) Σ 1.00SO4·4.95H2O (Fig. 4). These results 
suggest that the extent of mutual substitutions among Cu-Mg-Mn-Fe in the natural 
pentahydrates may be much larger than has yet been observed.  

Rozenite group. The rozenite group consists of five minerals (Table 1), with the Mn 
member, ilesite, the only species known prior to 1960. Nevertheless, the two minerals 
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that occur the most abundantly and which have the widest distribution are rozenite, 
FeSO4·4H2O, and starkeyite, MgSO4⋅4H2O. Ilesite (Mn), aplowite (Co), and boyleite 
(Zn) are known from only a few localities. 

All of the members of the group are readily synthesized, but solid-solution limits, if 
present, have not been established. In natural occurrences, some analyses of the Mg and Fe 
members show small amounts of solid solution (e.g. Kubisz 1960a, Brousse et al. 1966, 
Snetsinger 1973, Baltatzis et al. 1986). Pasava et al. (1986b) reported a manganiferous 
variety with the composition (Fe0.78Mn0.11Mg0.09) Σ0.98SO4·3.85H2O. An analysis of     
ilesite (Palache et al. 1951) corresponds to (Mn0.70Zn0.16Fe0.13) Σ0.99SO4·3.89H2O, and         
a magnesian variety reported by Pasava et al. (1986b) has the composition 
(Mn0.62Mg0.40) Σ1.02SO4·4.2H2O. A Zn-rich variety devoid of Fe and coexisting with the 
monohydrate was mentioned by Jambor and Boyle (1962), but no analyses were given. For 
the Co member, aplowite, cation ratios are Co:Mn:Ni:Cu:Fe:Zn = 50:25:22:1:1:1 (Jambor 
and Boyle 1965), thus indicating that extensive substitution by Mn and Ni is possible. The 
amount of Cu in the analysis is small, and the corresponding Cu tetrahydrate is not known 
in either natural or synthetic material; dehydration of CuSO4·5H2O leads directly to the 
trihydrate or, depending on conditions, to the monohydrate. For the Zn member of the 
group, boyleite, analysis of the type material gave Zn:Mg = 84:16 (Walenta 1978). 

Bonattite. Bonattite, CuSO4·3H2O, is the only trihydrate among the MSO4·nH2O 
minerals (Table 1). The compound crystallizes from solution (Posnjak and Tunell 1929), 
and forms by dehydration of the pentahydrate, chalcanthite, at elevated temperatures 
(Hammel 1939, Guenot and Manoli 1969). The mineral is extremely rare in ore deposits, 
probably in part because it may hydrate to chalcanthite at normal atmospheric humidity. 
Compositions of the mineral are close to that of the end-member (Garavelli 1957, Jambor 
1962). Bonattite has also been observed as an atmospheric weathering product of 
sculptures (Zachmann 1999) and as a corrosion product of buried bronze artifacts (Nord 
et al. 1998). The synthetic analog was among several compounds that formed on 
artificially patinated layers on artistic bronze exposed to laboratory SO2 contamination 
(Bastidas et al. 1997). 

Sanderite. Sanderite, MgSO4·2H2O, is poorly described but is nonetheless a mineral 
in good standing. It occurs with hexahydrite, pentahydrite, and starkeyite in marine salt 
deposits (Berdesinki 1952), and as an efflorescence on Neogene rocks in Greece 
(Schnitzer 1977), and is a well-defined synthetic phase. 

Kieserite group.  The kieserite group of monohydrate sulfates is made up of five 
members (Table 1). The cell volumes of these sulfates, and those of the analogous 
selenates, have been shown by Le Fur et al. (1966), Giester (1988), Wildner and Giester 
(1991), and Giester and Wildner (1992) to increase in accordance with the size of the 
predominant M2+ cation (Fig. 5). The most abundant and widely occurring members of 
the group are kieserite (Mg) and szomolnokite (Fe), with szmikite (Mn) much less 
common. Gunningite (Zn) is thought to be relatively rare, but reports of new occurrences 
seem to be increasing rapidly (e.g. Grybeck 1976, Sabina 1977, 1978; Jambor 1981, 
Avdonin 1984, Perroud et al. 1987, Avdonin et al. 1988, Yakhontova et al. 1988). 
Dwornkite, the Ni member, is known only from its type locality, Minasragra, Peru 
(Milton et al. 1982). 

Analyses of kieserite, the Mg member, generally give compositions near that of the 
end-member, to the extent that kieserite is one of the few minerals for which analytical 
results are not listed in Palache et al. (1951). The stoichiometric compositions probably 
reflect occurrences in marine salt deposits, wherein high-purity, abundant material is 
available. Compositions of szomolnokite, the Fe member, are also commonly near that of  
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the end-member, but Kubisz (1960b) 
analyzed a magnesian variety corresponding 
to (Fe0.59Mg0.41)SO4·H2O, and Jamieson et 
al. (1999) reported szomolnokite compo-
sitions with up to 16 wt % Zn (corres-
ponding to 39 mol % Zn) from Iron 
Mountain, California (Fig. 6). The few 
quantitative analyses for the Mn member, 
szmikite, show little substitution other than 
1-2 wt % FeO (Palache et al. 1951, 
Matsubara et al. 1973). Although Jambor 
and Boyle (1962) reported the occurrence of 
a Zn-rich variety of szmikite, no analyses 
were given. In dwornikite, the Ni member, 
about 10 mol % of the Ni is substituted by 
Fe (Milton et al. 1982). The compositions of 
gunningite were found to range from the Zn 
end-member to Zn:Mn:Cd:Fe = 89:8:1:1 
(Jambor and Boyle 1962).  

In synthetic products (Jambor and Boyle 
1962), up to 39 mol % Mn was substituted in 
gunningite, and indications were that the Zn-
Fe series may be complete. These results 
must be treated with caution, however, 
because it is difficult to distinguish by X-ray 
powder-diffraction patterns the monoclinic 
MSO4⋅H2O members from those  
 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 6. Ternary diagram showing composition of natural metal-sulfate 
monohydrates: FeSO4·H2O–CuSO4·H2O–(Zn,Mg)SO4·H2O. The dashed line 
represents possible compositional limit of triclinic and monoclinic phases. 

 

Figure 5. Dependency of cell volume (Å 3) and 
cell-dimensions a, b, c (Å) on ionic radii of the 
M2+ cations in the minerals of the kieserite 
group. Redrawn from Wildner and Giester 
(1991). 
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that are triclinic. For example, solid solution between Cu and Fe is limited to 20 mol % 
Cu, whereupon a triclinic phase (poitevinite) is formed (Giester et al. 1994). Similarly in 
the Mg-Cu series, a triclinic phase analogous structurally to poitevinite is formed when 
Cu equals or exceeds 20 mol % (Lengauer and Giester 1995). The situation arises 
because the M2+ cations are distributed into two sites, one of which is more distorted than 
the other, and Cu is preferentially accommodated within the distorted site; above 20 mol 
% Cu, this ordering becomes increasingly evident, and at >60 mol % Cu the more 
distorted site is occupied entirely by Cu (Lengauer and Giester 1995). It is likely that the 
relatively restricted range of solid solution for most ions in natural occurrences of the 
kieserite-group minerals (Fig. 6) reflects the small number of quantitative analyses rather 
than limits imposed by crystal-structure considerations. 

Poitevinite. Poitevinite, (Cu,Fe)SO4·H2O, has triclinic symmetry, as noted above, 
thereby distinguishing it from the kieserite group, which is monoclinic. Analysis of the 
type material corresponds to (Cu0.50Fe0.46Zn0.08) Σ1.04SO4·1.2H2O (Jambor et al. 1964). 
Avdonin (1978) obtained (Fe0.61Cu0.38)SO4·1.2H2O for a second occurrence, and the 
mineral has since been reported in association with siderotil, bianchite, apjohnite, and 
other supergene minerals in the Deputatsk tin deposit, Yakutia, Russia (Zhdanov and 
Solov’ev 1998). The analysis of poitevinite reported by Avdonin (1978), however, has Fe 
> Cu and is therefore neither poitevinite nor cuprian szomolnokite, but is instead 
apparently the unnamed Fe-dominant analog of poitevinite (Fig. 6). The situation arises 
because of Cu-Fe immiscibility in the monohydrate series, with Cu substitution in 
szomolnokite limited to 20 mol %. Thus, the remainder is a triclinic series extending 
from (Fe0.80Cu0.20)SO4·H2O to CuSO4·H2O, wherein the mineral with Fe > Cu is 
unnamed, and that with Cu > Fe is poitevinite. 

 
 
 
 
 
 
 
 
 
 
 

Trivalent cations 
The minerals of this type are characterized by the general formula A2(SO4)3⋅nH2O, 

where A is Fe3+ or Al, and n ranges from 6 to 17 (Table 2). The anhydrous compounds 
occur naturally as mikasaite, (Fe,Al)2(SO4)3, and millosevichite (Al,Fe)2(SO4)3. Both 
minerals form in fumarolic conditions and are hygroscopic. In mikasaite, Fe:Al is 
1.56:0.44 (Miura et al. 1994), and in millosevichite, Al:Fe extends to 1.58:0.42 
(Srebrodol’skiy 1974c). The monohydrate Fe2(SO4)3·H2O is known as a synthetic 
product, and an apparently natural occurrence in association with rozenite was noted by 
Omori and Kerr (1963). Coquimbite and alunogen are by far the most commonly 
occurring, whereas lausenite is known from only the type locality (Palache et al. 1951) 
and from a burning coal dump in the Ukraine (Srebrodol’skiy 1974a). The latter has 
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Fe:Al almost 1:1, but total cations are in considerable excess of the formula 
requirements. Kornelite, quenstedtite, and meta-alunogen, although not abundant, have 
been reported from several localities (e.g. Palache et al. 1951, Pemberton 1983, Gaines et 
al. 1997, Nordstrom and Alpers 1999a). In natural settings, the Fe3+ minerals represent a 
more advanced stage in the oxidation sequence insofar as the Fe2+ sulfates are the ones 
that are generally proximal to Fe sulfides. 

Table 2 shows that the hydrated Fe3+ sulfates span a range of water contents,           
reaching a maximum of 11H2O in quenstedtite. A higher hydrate, corresponding to                         
Fe3-x(SO4)2·14H2O was described by Wang and Lee (1988), but the cell dimensions and 
matching triclinic symmetry and space group indicate that the mineral is likely 
lishizhenite, ZnFe3+

2(SO4)4·14H2O (Table 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substitution of Fe3+ by Al is possible in this group of minerals, but analyses 
generally show no more than 1-3 wt % Al2O3 and lower levels of other metals. However, 
in coquimbite, Fe2(SO4)3·9H2O, higher Al contents have been reported, with formula 
Fe:Al extending to 58:42 mol % (Palache et al. 1951, Fang and Robinson 1970). 

The Al-sulfate salts are represented by alunogen and meta-alunogen; the latter is a lower 
hydrate per mole of aluminum (Table 2) and is inadequately described, although occurrences 
have been reported from several localities. The maximum H2O content of alunogen was 
determined by Fang and Robinson (1976) to be 17 molecules; however, loss of water can 
occur without structure breakdown, and the variation is from 17 to 16 H2O (Taylor and 
Bassett 1952). For meta-alunogen, the formula in Table 2 is from Mandarino (1999), 
reflecting the original analysis in which the water content was determined to be 13.5 H2O. 
On the basis of the crystal structure of alunogen, Fang and Robinson (1976) concluded that 
the minimum water content to sustain the structure of alunogen would be 13.5 H2O per 
formula unit. In the Powder Diffraction File, however, synthetic meta-alunogen is assigned 
the formulas Al2(SO4)3·12H2O and Al2(SO4)3·14H2O, and the two XRD patterns have 
distinct differences from one another, and with that of alunogen. It is evident that meta-
alunogen, if it is to be retained as a mineral name, is in need of a formal redefinition. 
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Mixed divalent–trivalent salts 
Many of the mixed divalent–trivalent sulfate salts have the general formula 

AR2(SO4)2·nH2O, where A is Mg, Fe2+, Mn2+, Co2+, or Zn, and R is Al, Fe3+, or Cr3+ 
(Table 3). The minerals described in the previous sections can be considered as “simple” 
salts, on the basis that sulfate is the only anion and that formula OH is absent. In the 
discussion of the divalent–trivalent category, however, the OH-bearing copiapite group, 
generally AR4(SO4)6(OH)2·20H2O, is included because its minerals meet the divalent-
trivalent criterion and they are among the most commonly observed metal-bearing 
soluble salts derived from the oxidation of mineral deposits rich in Fe sulfides. 

Ransomite, Cu(Fe,Al)2(SO4)4·6H2O, is known from only one locality, at which it 
formed as a result of a fire in a mine. Compounds that form under such conditions are no 
longer accepted as new minerals (Nickel 1995). In lishizhenite, which is also known only 
from a single locality, the A position has Zn:Mn:Fe:Mg = 86:9:1:1, and R has Fe3+:Al = 
1.96:0.06 (Li and Chen 1990). Compositions of römerite (Palache et al. 1951; also 
summarized by Van Loan and Nuffield 1959) show formula Fe:Zn:Mg up to 65:30:5, 
suggesting that a series may extend to lishizhenite. Appreciable substitution of Al for 
Fe3+ in römerite is generally not present, and the maximum that has been observed is 
Fe:Al = 84:16.  

Halotrichite group. In contrast to the preceding minerals, extensive solid solution 
occurs in the minerals of the halotrichite group. Intermediate compositions in the Mg-
Fe2+ solid-solution series on the A site (pickeringite-halotrichite) are known (Fe:Mg = 
51:49, Martin et al. 1999; Fe:Mg = 63:37, Cody and Grammer 1979), and solid solution 
seems likely to be complete (Bandy 1938, Palache et al. 1951). For apjohnite (A = Mn2+), 
compositions extend from near the Mn end-member, to Mn2+:Mg:Zn:Fe2+ = 64:28:6:2 
(Menchetti and Sabelli 1976) and to Mn:Mg:Fe = 58:31:11 (Paulis 1991); Mn-rich 
halotrichite with Fe2+:Mn2+ = 62:38 is also known, and it is likely that ternary Fe2+-Mg-
Mn2+ solid solution on the A site is complete (Palache et al. 1951).  

Each of dietrichite (A = Zn, R = Al), redingtonite (A = Fe2+, R = Cr,Al), and 
wupatkiite (A = Co, R = Al) is known from single or no more than two or three localities, 
and compositional data are accordingly sparse. For dietrichite, reported Zn:Fe2+:Mn2+ = 
42:33:25, and the Zn end-member apparently has been synthesized (Palache et al. 1951). 
Wupatkiite, known only from a single locality, has Co:Mg:Ni:Mn:Fe:Ca:Cu = 
40:36:6:2:2:2:1 (Williams and Cesbron 1995). Bilinite (A = Fe2+, R = Fe3+) is known 
from several localities (Palache et al. 1951, Bolshakov and Ptushko 1967, Srebrodol’skiy 
1977, Keith and Runnells 1998). Data for redingtonite are incomplete and the mineral has 
not been described adequately. The extent of substitution in R3+ within the mineral group 
is not well known, but an analysis of halotrichite with Al:Fe3+ = 62:38 is recorded in 
Palache et al. (1951), and Srebrodol’skiy (1974b) gave an analysis with Mg:Fe2+ = 85:17 
and Al:Fe3+ = 120:76. 

Thus, some of the sulfate minerals in the divalent–trivalent category are rather rare 
with regard to data and number of reported occurrences. Halotrichite is the most 
abundant and widely distributed, followed by pickeringite and römerite. In some cases 
the distinction between halotrichite and pickeringite is not made, but both are appreciably 
more abundant than römerite. Römerite has b een observed in sulfate deposits and as an 
oxidation product of coals and massive sulfides. Römerite occurred at the Alcaparrosa 
sulfate deposit in Chile in sufficient abundance to be mined and processed as an acid 
source (Bandy 1938) and is locally abundant in the Richmond mine at Iron Mountain 
(Nordstrom and Alpers 1999a), but most occurrences are in oxidized sulfide deposits in 
which only minute quantities of the mineral are present. 
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Copiapite group. The general formula of the copiapite group is 
A2+R3+

4(SO4)6(OH)2·20H2O, wherein R is dominated by Fe3+ in all members. The seven 
minerals of the copiapite group are listed in Table 3, wherein all of the members are 
assigned 20 formula H2O in accordance with the conclusions of Bayliss and Atencio 
(1985). Substitution of Al and Fe3+ in the A2+ position leads to the peculiarity that the 
aluminocopiapite and ferricopiapite end-members are trivalent rather than mixed divalent-
trivalent salts. Substitution of trivalent ions in A leads to excess positive charge that is 
accommodated by vacancies, hence the formula is written with Al2/3 for aluminocopiapite, 
and Fe3+

2/3 for ferricopiapite (see also the discussion by Hawthorne et al., this volume). 
Because the A-site cations form such a small proportion of the total formula mass, small 
changes in analytical wt % have a pronounced effect on the mol % of the A-site cations. For 
example, end-member magnesiocopiapite contains 3.31 wt % MgO, and end-member 
copiapite contains 5.75 wt % FeO. Small amounts of contamination, or analytical errors, 
may therefore have a significant effect on the apparent range of solid solution. 

With regard to A-site solid solution in the copiapite group, the 42 analyses listed by 
Berry (1947), and other analyses reported or discussed by Palache et al. (1951), Jolly and 
Foster (1967), Fanfani et al. (1973), Zodrow (1980), Bayliss and Atencio (1985), and 
Robinson (1999) strongly suggest that mutual substitution among Mg-Fe2+-Fe3+-Al is 
complete. Significant amounts of Na and Ca may be present in A, and only 4.54 wt % CaO 
is required for end-member calciocopiapite. For calciocopiapite, however, occurrences 
other than that of the type locality (Fleischer 1962) have not been documented. 

The range in Cu contents found within the copiapite group (Palache et al. 1951, 
Escobar and Gifford 1961) is large, and includes compositions near that of cuprocopiapite, 
the Cu end-member. Type zincocopiapite (in Fleischer 1964) has 
(Zn0.75Fe2+

0.07Mn2+
0.06Ca0.04K0.04Na0.01)Σ0.97 for the A site, and an analysis of the naturally 

occurring pure end-member is given by Perroud et al. (1987). Manganese contents within 
the copiapite group are generally <1 wt % MnO, but Pasava et al. (1986b) obtained an 
unusual composition for magnesiocopiapite that corresponds to 
(Mg0.93Mn0.07)Σ1.00(Fe3+

3.50Fe2+
0.43Mn0.17) Σ4.10(SO4)6(OH)2·19.9H2O. Copiapite-group 

minerals from the Richmond mine at Iron Mountain have two distinct textures and 
compositions (Fig. 7). The larger platy minerals, 10-50 μm in diameter, are magnesio- 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Scanning electron micrograph showing magnesiocopiapite (plates 10-50 μm in diameter) and 
Al-bearing ferricopiapite (spheroidal rosettes). Reproduced with permission from Robinson (1999). 
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copiapite, whereas the spheroidal aggregates are Al-bearing ferricopiapite, which may 
have formed by evaporation of pore waters after sample collection (Robinson 1999, 
Robinson et al. 2000a). Partial Al-for-Fe3+ substitution in R3+ has been demonstrated by 
Berry (1947), but the extent of possible accommodation of divalent metals in the R3+ 
position is not known. The synthesis of all of the minerals in the copiapite group, 
including calciocopiapite, was reported by Atencio et al. (1996), who also obtained the 
Mn, Ni, and Co analogs not yet known as minerals.  
Other minerals 

Two complex, hydrated sulfate salts, fibroferrite, Fe3+(SO4)(OH)·5H2O, and botryogen 
MgFe3+(SO4)2(OH)·7H2O, particularly the former, are commonly associated with 
M2+SO4·nH2O assemblages. The dimorphs butlerite and parabutlerite have the composition 
Fe3+(SO4)(OH)·2H2O; one would expect them to form as dehydration products of 
fibroferrite, but the authors are not aware of this having been documented. 

Among the numerous other sulfates commonly associated with the preceding soluble 
sulfates in acidic environments, gypsum, CaSO4·2H2O, occurs almost universally. With the 
availability of alkalis, as is typical in saline soils, the variety of salts can increase 
considerably. Alkali sulfates are not discussed in detail in this chapter (see Spencer, this 
volume, for end-member compositions and paragenetic relations among evaporite 
minerals).  

It is appropriate to mention two K-bearing metal sulfates that form in association 
with the metal salts described previously: rhomboclase and voltaite. The formula of       
rhomboclase is variously written as HFe3+(SO4)2·4H2O, (H3O)Fe3+(SO4)2·3H2O, or 
(H5O2)Fe3+(SO4)·2H2O, with the last formula from the crystal-structure determination             
by Mereiter (1974). A phase related in composition to rhomboclase is goldichite, 
KFe3+(SO4)2·4H2O, which has K instead of H, and which is not isostructural with 
rhomboclase (Hawthorne et al., this volume). Unlike hydronium jarosite, which has a 
comparatively low solubility, dissolution of rhomboclase is fairly rapid, and the mineral 
can be an efficient, albeit temporary, storage place for sulfuric acid because of the extra 
H+ in the formula. Several localities for rhomboclase are known, typically for 
occurrences in oxidized sulfide deposits. Nordstrom and Alpers (1999a) described the 
formation of rhomboclase stalagmites at Iron Mountain in association with water of pH = 
-3.6, the lowest value recorded in a field setting (Nordstrom et al. 2000). 

Voltaite, K2Fe2+
5Fe3+

4(SO4)12·18H2O, occurs in oxidized sulfide deposits and in 
fumarolic deposits. One of the analyses included for voltaite by Palache et al. (1951) 
corresponds to that of an unnamed Mg analog (Mg > Fe2+). In the Zn analog, zincovoltaite, 
which is known only from an oxidized sphalerite-galena-pyrite deposit in China, the 
divalent Fe site is occupied by (Zn3.69Fe2+

0.91Mn0.35)Σ4.95 (Li et al. 1987). Zoned crystals         
of voltaite, intergrown with szomolnokite, were determined to vary systematically in          
Zn-for-Fe substitution for samples collected from Iron Mountain, California (Jamieson and 
Przybylowicz 1997, Jamieson et al. 1999). 

PROCESSES OF FORMATION, TRANSFORMATION,  
AND DISSOLUTION 

Pyrite oxidation 
The oxidation of pyrite to form sulfate involves a series of reactions, reviewed by 

Nordstrom (1982a), Lowson (1982), Nordstrom and Southam (1997), and Nordstrom and 
Alpers (1999b). The overall process is most commonly reported by the following reaction:  

FeS2(s) + 15/4 O2(aq) + 7/2 H2O(l) → Fe(OH)3(s) + 2 H2SO4(aq)  (1) 
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where Fe(OH)3 is generally regarded to be a surrogate for ferrihydrite, a Fe3+ 
oxyhydroxide whose formula is contentious (see Bigham and Nordstrom, this volume). 
Other oxyhydroxides, such as goethite, α-FeOOH, and (rarely) lepidocrocite, γ-FeOOH, 
also form as insoluble precipitates. Reaction (1) forms sulfuric acid, and in acidic 
conditions ferrous iron can be generated 

FeS2(s) + 14 Fe3+
(aq) + 8 H2O(l) → 15 Fe2+

(aq) + 2 SO4
2-

(aq) + 16 H+
(aq)   (2) 

Indeed, soluble ferric iron and pyrite cannot coexist for any significant length of time 
because pyrite rapidly reduces Fe3+

(aq). This observation begs the question: how do goethite 
pseudomorphs after pyrite form? Such pseudomorphs are common for single pyrite crystals 
of generally large crystal size (≥1 mm), relatively discrete occurrence of pyrite, and within 
rock that contains sufficient buffering capacity to keep the ground water near neutral (or 
even alkaline) in pH. Hence, the low surface area slows the reaction rate considerably, and 
the buffered water maintains low concentrations of Fe3+

(aq) in association with the formation 
of insoluble Fe3+-bearing minerals. In this manner, conditions are optimized for direct 
transformation from pyrite to goethite without the formation of sulfate minerals. However, 
during formation of gossans, which commonly are the oxidized equivalent of massive 
sulfide deposits, there are large quantities of pyrite in contact with ground water in systems 
that do not have the buffering capacity to override the acid production from pyrite 
oxidation. 

In the initial stage of gossan development, oxidation of sulfides leads to the formation 
of Fe oxyhydroxides and soluble Fe sulfates. The soluble sulfates form in the upper parts of 
the vadose zone as the acid waters evaporate and dry out. These waters may have extremely 
low pH values (e.g. Nordstrom and Alpers 1999a,b; Nordstrom et al. 2000). The soluble 
sulfates, if detectable, initially form within the oxidized rims of the sulfide minerals, with 
melanterite usually the first to appear (Nordstrom 1982a, Nordstrom and Alpers 1999b). In 
the pH range of 2.5 to 8 typical of the saturated zone at and below the water table, Fe 
oxyhydroxides form. By far the most abundant of the oxyhydroxide products is goethite, 
with smaller amounts of ferrihydrite and possibly the sulfate-bearing oxyhydroxide 
schwertmannite (see Bigham and Nordstrom, this volume). The Fe oxyhydroxides are fine-
grained, and in mineral deposits they may contain large amounts (commonly low 
percentages) of sorbed elements, including those of the heavy metals, as well as sulfate. 
Ferrihydrite and schwertmannite are metastable with respect to goethite, and thus goethite 
attains overwhelming predominance both by direct precipitation and by conversion of 
metastable Fe phases. As oxidation progresses and an overall acidic domain is established, 
the initial oxidation scenario moves downward, in concert with the evolving low-pH front. 
In the zone nearer surface, however, the Fe oxyhydroxide assemblage seems to undergo a 
recycling, which is probably recrystallization and the concomitant development of a coarser 
grain size; the attendant effect is that sorption capacity decreases, and thus the bulk of the 
sorbed elements is lost and moves downward. The near-surface product is a purer 
oxyhydroxide, most commonly goethite. Over time, the goethite may convert to hematite; 
there may also be pathways directly from ferrihydrite to hematite, depending on pH and the 
presence of trace elements (e.g. Alpers and Brimhall 1989; and references therein). The 
soluble sulfates are dissolved and the low-pH, sulfate-rich pore waters may precipitate 
jarosite, generally of composition (K,Na,H3O)Fe3(SO4)2(OH)6 (see Dutrizac and Jambor, 
this volume; Stoffregen et al., this volume). In sialic rocks lacking carbonates, even minor 
dissolution of aluminosilicates typically occurs only after acidic conditions have already 
been established. Among the common rock-forming minerals that are potential sources of 
the K that is incorporated in jarosite, the trioctahedral micas (e.g. biotite) have been 
observed to be the most susceptible to alteration (Jambor and Blowes 1998, Malström and 
Banwart 1997).  
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With the maturation of a gossan, the near-surface sulfides are depleted and the 
aluminosilicate minerals are leached, leaving a goethite-rich, siliceous residue (Blanchard 
1967, Blain and Andrew 1977). Relatively insoluble sulfate minerals may accumulate at 
depth, and soluble sulfates and other metal oxides may precipitate at lateral seeps if 
climatic conditions are appropriate.  

In mine settings, contemporary precipitates of soluble sulfates are generally most 
noticeable on the older walls of open pits and underground mine workings, and at the 
exposed surfaces of accumulated mine wastes, such as undisturbed tailings impoundments. 
The walls of open-pit mines that exploit porphyry copper deposits commonly display blue 
to pale green stains that consist predominantly of chalcanthite and melanterite. Such 
efflorescent blooms are generally temporary because of the high solubility of the salts and 
their susceptibility to dissolution by rain or snowmelt. Underground mines not only provide 
a more sheltered environment for the preservation of water-soluble minerals, but such 
mines also have yielded a wider spectrum of oxidation minerals because the ore types are 
commonly more diverse than those extracted by open-pit methods.  
Field studies 

Metal-sulfide deposits.  Metal-sulfate salts occur most commonly in association with 
the oxidation of metal-sulfide mineral deposits. Many of the most famous deposits of the 
world (Rio Tinto, Spain; Rammelsberg, Germany; Chuquicamata, Chile; Bingham, USA; 
Butte, USA; Cornwall, UK; Sain Bel, France; Falun, Sweden) have efflorescent metal-
sulfate salts of various types in mine workings, in open pits, and on waste rock and 
tailings piles. The classic paper on this subject is the work of Bandy (1938), who 
described in considerable detail the mineralogy of salts at Chuquicamata, Quetena, and 
Alcaparrosa, Chile. 

Numerous efflorescent sulfate minerals have been reported from the Rio Tinto mines 
in Spain. Among those listed by García García (1996) are chalcanthite, copiapite, 
coquimbite, botroygen, epsomite, fibroferrite, gypsum, goslarite, halotrichite, mallardite, 
melanterite, and römerite. At the Nikitov merc ury deposits, Donet’sk, Ukraine, oxidation of 
melanterite was concluded by Bolshakov and Ptushko (1971) to have produced 
rhomboclase, römerite, bilinite, copiapite, and voltaite. Numerous reports of similar 
assemblages are available in the Russian literature. Among the many examples, Velizade et 
al. (1976) identified chalcanthite, melanterite, siderotil, halotrichite, jarosite, alunogen, and 
slavikite NaMg2Fe3+

5(SO4)7(OH)6·33H2O in the oxidation zone of the Datsdag deposit, and 
Kravtsov (1971, 1974) reported jarosite, copiapite, römerite, and quenstedtite from 
cassiterite–sulfide deposits at Sakha, Azerbaijan. The processes of sulfide oxidation and 
sulfate formation in cryogenic zones have been discussed by Kravtsov (1974), Chernikov et 
al. (1994), Yurgenson (1997), and others. Permafrost conditions generally limit the 
availability of aqueous solutions, thereby simulating, in some respects, arid conditions. 

Many examples of occurrences of soluble metal salts in the United States could be 
cited. Milton and Johnston (1938) photographically documented extensive blooms of 
epsomite and pickeringite associated with gypsum, melanterite, goslarite, pentahydrite, 
copiapite, voltaite, and rhomboclase at the Comstock Lode, Nevada. At the Dexter Number 
7 mine, Utah, chalcanthite, melanterite, copiapite, coquimbite, römerite, fibroferrite, 
halotrichite, alunogen, voltaite, butlerite, parabutlerite, goldichite, and other minerals 
cement a talus breccia (Rozenzweig and Gross 1955). Stalactitic material at the San Manuel 
mine, Pinal County, Arizona, contained the first occurrence of jurbanite, AlSO4OH·5H2O, 
which was associated with epsomite, hexahydrite, starkeyite, pickeringite, and lone-
creekite, (NH)4Fe(SO4)2·12H2O. At the Leviathan mine, California, chalcopyrite and 
cryptocrystalline pyrite (Pabst 1940) oxidized and produced chalcanthite, halotrichite, 



322  Jambor, Nordstrom & Alpers 

melanterite, and römerite (Gary 1939). Nordstrom (1982a) demonstrated, with a color 
photograph, the conversion of melanterite to rozenite and to copiapite from an efflorescence 
taken from the face of the Brick Flat massive sulfide at Iron Mountain, California. 
Nordstrom and Alpers (1999a) observed massive quantities of melanterite, rhomboclase, 
voltaite, coquimbite, copiapite, halotrichite, and römerite in underground workings of the 
Richmond Cu-Zn-pyrite mine at Iron Mountain. Acid waters that seemed to be in 
equilibrium with many of these minerals had, in several instances, negative pH values 
(Nordstrom et al. 2000). Solubility studies that examined Cu-Zn partitioning in melanterite 
from Iron Mountain showed a greater incorporation of Cu over Zn during precipitation 
relative to the starting solutions. These results help to explain the variations in Zn/Cu ratios 
of the effluent water during the annual wet-dry cycle (Alpers et al. 1994). 

Tailings impoundments. The surfaces, channels, and vadose zones in tailings 
impoundments in arid climates have yielded a rich array of soluble salts. Agnew (1998), 
for example, reported the presence of several Fe and Mg salts of the type M2+SO4⋅nH2O 
at impoundments in Australia. At some sites these were accompanied by rare or unusual 
minerals such as: blödite Na 2Mg(SO4)2·4H2O, hydrobasaluminite Al4(SO4)(OH)10·12-
36H2O, hemimorphite Zn4Si2O7(OH)2·H2O, a mineral in the picromerite group 
A2Mg(SO4)2·6H2O, and possibly wattevillite Na2Ca(SO4)2·4H2O(?). The latter two are 
from the Ranger uranium mine, at which sulfuric acid used in mineral processing 
apparently accounts for the acid source. The association between arid climate and 
elevated temperatures is common but, as has been noted, the metal salts also form in 
cryogenic (permafrost) zones, as in the Antarctic (Keys and Williams 1981). 

Mineralogical studies of tailings impoundments have revealed the presence of many 
of the sulfate minerals of the types listed in Tables 1, 2, and 3 (Jambor 1994, Jambor and 
Blowes 1998). Most weathered sulfide-rich impoundment surfaces contain blooms of the 
FeSO4·nH2O minerals. Blowes et al. (1991) observed that near-surface melanterite was 
sufficiently abundant to form a hardpan layer at the Heath Steele tailings impoundment in 
New Brunswick, Canada. In various impoundments, the simple hydrated sulfates (e.g. 
Tables 1 and 2) are commonly accompanied by those of more complex formulation, such 
as rhomboclase, copiapite, fibroferrite, and halotrichite (Shcherbakova and Korablev 
1998, Jambor et al. 2000). Dagenhart (1980) noted that, during dry-weather conditions, 
melanterite, rozenite, magnesiocopiapite, aluminocopiapite, halotrichite, pickeringite, and 
gypsum were abundant on tailings and related wastes at the Sulfur, Boyd Smith, and 
Arminius Cu-Zn mines along Contrary Creek, Virginia. He also identified lesser amounts 
of alunogen, ferricopiapite, chalcanthite, ferrohexahydrite, siderotil, szomolnokite, 
gunningite, bianchite, epsomite, hexahydrite, pentahydrite, rhomboclase, fibroferrite, 
coquimbite, paracoquimbite, jarosite, the Cu minerals antlerite Cu3SO4(OH)4, brochantite 
Cu4(SO4)(OH)6, and serpierite Ca(Cu,Zn)4(SO4)2(OH)6·3H2O, and the Pb minerals 
anglesite PbSO4 and linarite PbCu(SO4)(OH)2.  

Although the sulfate minerals in tailings impoundments are typically Fe-dominant, 
the Mg-dominant sulfates have been noted to form abundantly where the gangue minerals 
contain dolomite. As well, the identification of Zn-dominant minerals such as gunningite, 
boyleite, and goslarite in mine wastes (Avdonin et al. 1988) serves to emphasize that, 
although the sulfates are overwhelmingly those of Fe, the compositions of the sulfate 
salts will reflect those of the oxidizing source materials. 

Coal deposits.  Soluble metal-sulfate salts commonly occur in coal or form by the 
oxidation of pyrite and marcasite in coal wastes (Gruner and Hood 1971, Taylor and 
Hardy 1974, Wagner et al. 1982, Baltatzis et al. 1986, Foscolos et al. 1989, Ward 1991). 
Sulfate efflorescences in coal deposits commonly contain melanterite (± rozenite and 
szomolnokite), copiapite, and the pickeringite-halotrichite series (McCaughey 1918, 
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Nuhfer 1967, Young and Nancarrow 1988, Cravotta 1994, Rose and Cravotta 1998, Querol 
et al. 1999). Cravotta (1994) observed römerite , copiapite, and coquimbite on mine spoils, 
coal outcrops, and overburden at the bituminous coalfields of western Pennsylvania. Wiese 
et al. (1987) showed that melanterite and rozenite were the earliest Fe-sulfate hydrates to 
form from the oxidation of pyrite and marcasite in Utah and Ohio coalfields; also noted was 
that szomolnokite and halotrichite appeared to be the most stable phases. 

McCaughey (1918) observed the common occurrence of melanterite in bituminous 
coal mines and described one specimen that formed a 14 kg (30 lb) mass. After storage 
for a year, the mineral was noted to be transforming to copiapite (and possibly some 
rozenite-szomolnokite). Similar transformations have been noted for other melanterite 
specimens stored in museums (Nordstrom, unpublished data). The dehydration of 
melanterite to rozenite has been observed frequently, beginning with the reports of 
Kubisz (1960a) and Kossenberg and Cook (1961).  

Nuhfer (1967, 1972) studied the occurrence of efflorescent sulfates in the bituminous 
coal deposits near Morgantown, West Virginia. Melanterite, szomolnokite, pickeringite, 
copiapite, gypsum, and hexahydrite were observed to be common; thenardite, Na2SO4, and 
possible boothite were uncommon, and the thenardite may have had an anthropogenic 
source. The following is a summary of Nuhfer’s observations and inferences: 

1. Melanterite and szomolnokite were the first to form as a result of pyrite 
oxidation. 

2. Copiapite was abundant and likely included significant quantities of 
ferricopiapite and minor magnesiocopiapite. 

3. Epsomite was known to occur in the area, but he detected only hexahydrite. 
4. Halotrichite-pickeringite and copiapite occur in sheltered areas in close 

proximity to pyrite. 
5. Sulfate efflorescences reflect the composition of the waters from which they 

form. 
6. Sulfate efflorescences are easily dissolved by rainwater, and the sulfate-rich 

solutions move into adjacent streams. 
7. Formation of hydrated sulfate minerals contributed to fracturing and 

spallation of rock faces. 
The presence of hydrated iron sulfates in the Sydney coalfield of Cape Breton, Nova 

Scotia, was observed by Zodrow and colleagues (Zodrow and McCandlish 1978, Zodrow 
et al. 1979, Zodrow 1980), who identified melanterite (as the first mineral formed), 
rozenite, epsomite, pickeringite, halotrichite, aluminocopiapite, fibroferrite, rhombo-        
clase, thenardite, sideronatrite Na2Fe3+(SO4)2(OH)3·3H2O, and metasideronatrite 
Na2Fe3+(SO4)2(OH)·H2O. Zodrow et al. (1979) noted that the sulfate efflorescences 
induced mechanical stress and rock erosion; thus, the buildup of salts in fractures, with 
consequent heaving and slippage, was at least partly responsible for some of the pillar 
collapses in the coal mines. Oxidation of pyrite-bearing shales and mudrocks is a 
common geotechnical problem because of the ensuing heaving and cracking of many 
types of structures (Hawkins and Pinches 1997, Cripps and Edwards 1997, Hawkins and 
Higgins 1997), and because of the rapid erosion of highway material (Byerly 1996).  

Zodrow (1980) demonstrated a wide range of substitutions by Al, Mg, Na, Cu, Ni, 
and Zn in copiapite, and complex transformations of aluminocopiapite on storage: 
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(The formula of amarantite is Fe3+
2(SO4)2O·7H2O; Mandarino 1999). 

Other occurrences. Metal-sulfate salts can form in diverse environments other than 
weathering zones of coal and metallic deposits. Hexahydrite has been identified in human 
concretions (Gibson 1974), and the Mg salts are common in evaporites. For example, 
kieserite occurs widely in marine evaporite deposits in Germany and several other 
countries, among which in the United States are the Permian salt deposits of Texas and 
New Mexico (Palache et al. 1951). Epsomite occurs similarly, and both it and hexahydrite 
form as precipitates in saline lakes. Both minerals are also present in some soils and their 
efflorescences (Doner and Lynn 1977, Skarie et al. 1986, Timpson et al. 1986, Ducloux et 
al. 1994), and these minerals may have formed evaporite deposits on the surface of Europa, 
one of the satellites of Jupiter (McCord et al. 1998). Melanterite, rozenite, and copiapite 
have been reported commonly to form at or near the surfaces of active acid sulfate soils 
(Van Breemen 1982, Wagner et al. 1982, Fanning et al. 1993, Montoroi 1995).  

Metal-sulfate salts are common around active crater lakes, fumaroles, and acid hot 
springs. In these environments, H2S oxidizes to elemental sulfur, which accumulates and is 
further oxidized by microbial activity to form sulfuric acid. The acid reacts with the 
surrounding silicate bedrock and, upon evaporation, can form a variety of metal-sulfate 
salts. In deposits of native sulphur in the Ukraine, Srebrodol’skiy (1977) determined that 
alteration of melanterite resulted in two different assemblages. One of the paragenetic 
associations consisted of ferrohexahydrite, siderotil, rozenite, and szomolnokite, i.e. the        
7-, 6-, 5-, 4-, and 1-hydrates of FeSO4. The other association consisted of melanterite, 
römerite, bilinite, copiapite, and Fe oxyhydroxides.  The formation of soluble sulfates in 
other sulfur deposits and in aluminite deposits has been reported in numerous papers (e.g. 
Srebrodol’sky 1971, Smirnova 1971, Vdovichenko et al. 1974, Sokolov et al. 1985, Lizalek 
et al. 1989, Zavalía and Galliski 1995). Among the minerals most commonly observed are 
melanterite, siderotil, rozenite, szomolnokite, epsomite, basaluminite (felsöbányaite), 
halotrichite, pickeringite, copiapite, fibroferrite, and voltaite. Charles et al. (1986) included 
szomolnokite, rozenite, halotrichite, and alunogen in the vapor-produced alteration 
assemblage in the Sulphur Springs hydrothermal system at Valles Caldera, New Mexico. 
Delines (1975) observed chalcanthite among the sublimates at Nyamuragira Volcano, 
Zaire, and Africano and Bernard (2000) reported alunite, schlossmacherite (hydronium-
dominant alunite), anhydrite/gypsum, and an Fe-Mg sulfate close to magnesiocopiapite in 
composition in the fumarolic environment of Usu Volcano, Japan. 

There are a number of localities that use the name of Alum Creek or Alum Rock. 
One striking example is the deposit of alum rock next to the Gila River in Grant County, 
New Mexico, where an andesitic breccia is highly altered and contains aluminum sulfate 
salts in addition to large quantities of kaolinite (Hayes 1906). Alunogen and halotrichite 
are present, and one incrustation of alunogen was described as being more than a meter 
thick. The weathering of fine-grained pyrite and acid hydrothermal alteration seem to 
have been responsible for the occurrence of metal-sulfate salts rich in aluminum. 

Stoiber and Rose (1974) identified 29 metal-sulfate salts at 14 Central American 
volcanoes; most of the salts were soluble hydrated minerals and are the same as those at 
metal-sulfide mines and mineral deposits. In fumarolic incrustations at Mount St. Helens, 
Washington, Keith et al. (1981) observed that halotrichite and gypsum are common, and 
also present are anhydrite, melanterite, alunite, thenardite, sal ammoniac NH4Cl, and 
glauberite Na2Ca(SO4)2. Melanterite and other salts occur as volcanic sublimates in 
Japan (Ossaka 1965) and Kamchatka, Russia (Vergasova 1983), as authigenic minerals 
from volcanic emanations in Greece (Stamatakis et al. 1987, Kyriakopoulos et al. 1990), 
and as pseudofumarolic deposits in burning coal dumps (Lazarenko et al. 1973, Novikov               
and Suprychev 1986). Martin et al. (1999) found alunogen, meta-alunogen,          
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halotrichite, melanterite, potash alum, mirabilite Na2SO4·10H2O, and tschermigite 
(NH4)Al(SO4)2·12H2O as products of the sulfuric-acid alteration of ignimbrite at Te Kopia 
geothermal field in New Zealand. Gypsum, alunite, jarosite, halite NaCl, kalinite 
KAl(SO4)2·11H2O, and tamarugite NaAl(SO4)2·6H2O also occur in the field (Rodgers et al. 
2000). Diverse assemblages that include water-soluble simple sulfates such as rozenite, 
coquimbite, halotrichite, and alunogen have been observed in other geothermal fields           
(Zhu and Tong 1987). Among the minerals identified by Minakawa and Noto (1994)            
as occurring in a tufa deposit at the Myoban hot spring, Oita Prefecture, Japan, are 
melanterite, halotrichite, copiapite, alunogen, tamarugite, voltaite, and metavoltine 
K2Na6Fe2+Fe3+

6(SO4)12O2·18H2O. 
Shales commonly contain fine-grained pyrite that forms salt efflorescences upon 

weathering. Badak (1959) and Kubisz and Michalek (1959) detected melanterite and 
epsomite in weathered oil shales, and Ievlev (1988) reported the occurrence of melanterite, 
rozenite, halotrichite, copiapite, and coquimbite that formed from the weathering of shale in 
permafrost conditions. Development of efflorescences is typical during dry periods when 
evaporation takes place, which may occur in a variety of climates. However, the salts tend 
to persist for longer periods of time in regions with prolonged dry seasons, i.e. hyper-arid, 
arid, and semi-arid climates. In the Upper Colorado River Basin, for example, Whittig        
et al. (1982) observed gypsum, epsomite, hexahydrite, pentahydrite, starkeyite,          
kieserite, thenardite, mirabilite Na2SO4·10H2O, löweite Na 12Mg7(SO4)13·15H2O, and 
blödite Na 2Mg(SO4)2·4H2O as efflorescences on the Mancos Shale. Their dissolution was 
determined to be responsible for the high contents of dissolved salts in some of the streams 
draining into the Upper Colorado River. 

As has been emphasized, the compositions of soluble metal-sulfate minerals reflect 
the compositions of the solutions from which the minerals precipitate. In supergene 
zones, therefore, these sulfates are closely linked to the compositions of the sulfide 
minerals that have been oxidized, as well as to the composition of the surrounding 
minerals that have been susceptible to dissolution by the ensuing low-pH solutions.  
Dissolution during rainfall events 

Dissolution of Fe sulfates during storm runoff (Dagenhart 1980, Olyphant et al. 
1991, Bayless and Olyphant 1993) or after reclamation efforts (Cravotta 1994) can 
acidify streams, can rapidly increase metal loading to surface waters, and can lead to the 
development of acidic groundwaters. Such dissolution can also lead to deleterious 
consequences for remediation efforts that involve the flooding of mine voids by plugging 
of mine openings (e.g. Cravotta 1994, Nordstrom and Alpers 1999a).  

Dissolution of metal-sulfate salts during storm runoff events has been found to cause 
a spiked increase in the concentrations of dissolved metals and sulfate even as the stream 
discharge increased (Dagenhart 1980). Figure 8 shows spiked increases in Fe, Cu, and Zn 
during the rising limb of the discharge in Contrary Creek, Virginia, for a rainstorm event 
of June 19, 1978. Careful mineralogical examination showed that the spiked increases in 
solute concentrations were related to the dissolution of efflorescent salts on mine tailings.  

Keith and Runnells (1998) and Keith et al. (1999) noted that the dissolution of sulfates, 
accumulated at base-metal waste sites during the dry season, gave a pronounced 
hydrogeochemical response following the first storm of the wet season. Rapid response to 
local climatic conditions has also been noted by Alpers et al. (1994), who observed that 
dissolution of melanterite, in which solid solutions of other metals were present, led to 
seasonal variations of Zn/Cu in acidic effluents at Iron Mountain, California. Cyclical 
changes in metal and sulfate concentrations through storm events (Dagenhart 1980) and 
cyclical changes in Zn/Cu ratios through seasonal wet-dry cycles (Alpers et al. 1992, 1994)  
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Figure 8. Variations in Zn, Cu, and Fe, and decrease in pH in relation to 
stream discharge after a rainstorm at Contrary Creek, Virginia (after 
Dagenhart 1980). 

can be attributed to dissolution and reprecipitation of soluble metal-sulfate salts.  
One of the environmental consequences of metal concentrations increasing during 

the rising limb of a stream discharge during storm events is that downstream aquatic life 
receives a much greater loading of metals than if the rainstorm simply diluted the existing 
water quality. Indeed, fish kills are commonly associated with some of the early 
rainstorm events of the wet season in areas with a periodically dry climate. 

Plugging of mine adits and the consequent rise in underground water levels can cause 
the dissolution of soluble salts that have accumulated in the mine workings. For the 
Richmond mine at Iron Mountain, California, it was estimated by Nordstrom and Alpers 
(1999a) that about 600,000 m3 of highly acidic water (pH < 1) containing many grams per 
liter of dissolved heavy metals could accumulate underground as a result of proposed (and 
later rejected) plans for remediation by mine plugging. Figure 9 shows the anticipated drop 
in pH with increasing dissolution of soluble salts that was computed on the basis of the  
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Figure 9. Calculated decrease in pH related 
to the potential volume of metal-sulfate salts 
dissolved at Iron Mountain, California (from 
Nordstrom and Alpers 1999a). 

 

 
observed mineralogy and composition of salts found underground at Iron Mountain. A 
plot similar to Figure 9 was produced by Keith et al. (1999) to show the effect on 
predicted pH by the dissolution of different mass amounts of specific salts. 
Laboratory studies  

One of the more accessible examples of the development of soluble sulfate minerals is 
their presence, as a result of spontaneous growth, on laboratory and museum specimens 
(Workman and Rader 1961, Buurman 1975, Wiese et al. 1987). Such sulfates formed so 
readily on samples of cored pyritiferous mine tailings that the minerals were included in 
Jambor’s (1994) classification as ‘quaternary’ minerals to distinguish them from ‘tertiary’ 
sulfates that had crystallized from pore waters during drying of the cores. In a study of 
museum and collectors’ specimens of pyrite and marcasite, Blount (1993) identified ten     
Fe-sulfate minerals, and two other sulfates that were concluded to have formed as alteration 
products as a result of humidity variations during storage of pyrite and marcasite 
specimens. Luzgin (1990) noted that, in addition to szomolnokite and chalcanthite, the Co 
arsenate mineral erythrite had formed during long-term storage of collected specimens. 
Grybeck (1976) observed that specimens of sphalerite continued to form coatings of 
gunningite even after repeated washings had cleansed the sphalerite surfaces.  

 
 

Figure 10. Stability of the simple sulfates of 
Mg as a function of temperature and water 
(modified from Keller et al. 1986a). 

 
 

 
Many of the simple salts are extremely sensitive to atmospheric conditions and will 

change their hydration state, in some cases reversibly, in response to the local temperature 
and humidity conditions (Fig. 10; Keller et al. 1986a,b; Waller 1992, Chou et al. 2000). 
Preservation of samples in their original, as-collected state is thus a common problem for 
mineralogical studies. Waller (1992) compiled data on humidity-controlled reactions among 
hydrous minerals (Table 4) and discussed various strategies for sample conservation. 
Solubilities and stability relationships 

Ferrous sulfate hydrates. Pure, synthetic forms of three of the naturally occurring 
ferrous sulfate minerals, melanterite, rozenite, and szomolnokite, have been the subject of  
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Table 4, continued 
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Figure 11. Solubility data for melanterite (FeSO4·7H2O), rozenite 
(FeSO4·4H2O), and szomolnokite (FeSO4·H2O); data of Bullough et al. 
(1952) and Reardon and Beckie (1987). 

numerous laboratory studies of solubility. These studies help to define the range of 
environmental stability for each mineral. Early data have been compiled by Mellor 
(1923), International Critical Tables (1927), Gmelins Handbuch (1932), and Linke and 
Seidell (1958). Phase equilibria and electrolyte properties in the FeSO4–H2SO4–H2O 
system have been studied more recently by Bullough et al. (1952) and Reardon and 
Beckie (1987). In anoxic systems the solubility equilibria for the three hydrate minerals 
are shown in Figure 11. Rozenite appears to be a metastable phase in aqueous solutions 
according to the carefully reversed solubility measurements of Bullough et al. (1952) and 
as discussed by Reardon and Beckie (1987). Bursa and Stanisz-Lewicka (1982) found 
rozenite to be a metastable intermediate during the recrystallization of melanterite with 
increasing sulfuric acid concentrations at temperatures of 45, 55, and 60°C. Rozenite 
formed first and then slowly recrystallized to szomolnokite. Hence, the solubility curve 
of rozenite is estimated to be slightly above the point of intersection of the solubilities for 
melanterite and szomolnokite. A conclusion to be drawn from these data is that the 
occurrence of rozenite would require dehydration of melanterite (or rehydration of 
szomolnokite) in the absence of a solution phase. Rozenite must form by dehydration at 
<100% relative humidity. For example, Mitchell (1984) determined that melanterite 
dehydrated to rozenite when the relative humidity is less than 65%. Parkinson and Day 
(1981) measured an equilibrium relative humidity of 55.8% at 20°C.  

The dotted line in Figure 11 shows the effective lowering of the solubilities by the 
additional of 4.8 wt % sulfuric acid. This concentration of acid is close to the maximum 
concentration of sulfuric acid commonly observed for acid mine waters, and it would be 
equivalent to a pH range of 0 to 1. The presence of sulfuric acid produced by pyrite 
oxidation can be seen to enhance the formation of melanterite and szomolnokite by 
decreasing their solubility through the common-ion effect. Melanterite commonly 
contains some divalent metals in solid solution (Fig. 2), which further decreases its 
solubility (Mellor 1923) and increases its stability (see Glynn, this volume). 

The question mark in Figure 11 suggests that there are several inadequacies in the 
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solubility data. Solubility data for rozenite are not well-established, and no data seem to 
exist for ferrohexahydrite or siderotil to confirm their metastability. The solubility data 
between 50 and 65°C are in need of detailed study because that is the temperature range 
in which ferrohexahydrie and siderotil would form, and the existing measurements 
contain inconsistencies. The data of Reardon and Beckie (1987) produce a melanterite-
szomolnokite transition temperature of about 65°C instead of the 56.7°C measured by 
Bullough et al. (1952), but it is likely that the data cannot be fit much better at this time. 
Mitchell (1984) was able to prepare rozenite both by recrystallization from solution at 
60°C and by hydration of an X-ray amorphous monohydrate in the relative humidity 
range of >0 to 65%. Above 65% the heptahydrate formed. A dihydrate salt reported 
rarely in lab studies requires verification and has not been reported to occur in nature. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Univariant equilibria for the coexistence of melanterite and 
szomolnokite as a function of temperature and concentration of H2SO4; 
data sources as in Figure 11. 

A number of solubility studies over a range of sulfuric acid concentrations help to 
define the stability relationships and provide convincing evidence that only melanterite and 
szomolnokite are stable in contact with saturated solutions. Figure 12 shows the variation in 
the stable univariant equilibrium for the coexistence of melanterite and szomolnokite as a 
function of temperature and sulfuric acid concentration. Estimated curves for the metastable 
extensions of the melanterite-rozenite and rozenite-szomolnokite equilibria in the presence 
of water (100% relative humidity) are shown as dashed lines in Figure 12. The metastable 
equilibria intersect the stable equilibrium line at <100% relative humidity. Both the 
concentrations of sulfuric acid and the relative humidity are independent measurements of 
the activity of water and can be used to confirm the consistency and accuracy of the 
stability relations and to recover thermodynamic properties. 

Zinc sulfate hydrates. Solubility data for the zinc sulfate hydrates, goslarite (7H2O), 
bianchite (6H2O), and gunningite (1H2O) are based on the best fits by Linke and Seidell 
(1958) and the data shown in Figure 166 of Gmelins Handbuch (1956). The solubility 
curves (Fig. 13) are similar to the ferrous sulfate data except that bianchite, the 
hexahydrate, is the stable intermediate hydrate between 37.9 and 48.8°C. The enthalpy of  
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Figure 13. Solubility data for the ZnSO4–H2O system, from Gmelins 
Handbuch (1956) and Linke and Seidell (1958). 

transition for the reaction goslarite to bianchite plus water in aqueous solution was 
determined by Grønvold and Meisi ngset (1982) to be 16.5 kJ mol-1 at 38°C. The 
tetrahydrate, boyleite, and the dihydrate are metastable in aqueous solutions. The 
hemiheptahydrate, the trihydrate, and the pentahydrate have been reported from lab 
studies but these are not confirmed as metastable phases from the solubility studies. The 
dashed lines in Figure 13 show the metastable extensions of each solubility, and the 
dotted line shows the lowering of the solubility of the stable phases with the addition of 
4.8 wt % sulfuric acid. Impurities of divalent metal also lower the solubility of the zinc 
sulfate hydrates (Mellor 1923, Petlicka 1971).  

Solubility data for the zinc sulfate system in sulfuric acid are sufficient to plot the 
univariant equilibria as a function of temperature (Fig. 14). The quadruple point for the 
coexistence of goslarite, bianchite, gunningite, and solution does occur for saturated 
solution conditions (at 21.5°C) although it is outside the acid range of most acid mine 
waters. These equilibria demonstrate that all three zinc hydrates can form directly from 
solution and that the temperature and sulfuric acid concentrations for their stability range 
fall within well-defined limits. Furthermore, boyleite (like rozenite) is metastable and 
must form by dehydration of bianchite or goslarite (or hydration of gunningite). The 
solubility studies also predict the metastability of a zinc sulfate dihydrate phase that has 
not yet been identified as a mineral. There are several examples of synthetic compounds 
that were later identified as minerals. For example, the solubility of boyleite was known 
from the 1930s, but the compound was not identified as a mineral until 1962 (Jambor and 
Boyle 1962, Walenta 1978).  

Inconsistencies occur in the phase-equilibria data for the aqueous zinc sulfate 
system. For example, the equilibrium for the coexistence of bianchite and gunningite has 
been determined by more than one investigator and, in the absence of sulfuric acid, it 
occurs at 48.8°C. However, carefully measured solubilities over a range of sulfuric acid 
concentrations extrapolate to about 56°C at zero sulfuric acid concentration (Fig. 14). 
This difference is greater than the error of the measurements. 



  Metal‐sulfate Salts from Sulfide Mineral Oxidation  333 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Univariant equilibria for the ZnSO4 system; sources of data 
as in Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Vapor-pressure equilibria for zinc sulfate hydrates; data 
from Gmelins Handbuch (1956). 

Considerable data on equilibrium vapor-pressure studies exist for the zinc sulfate 
hydrate thermal transitions. These data are summarized in Gmelins Handbuch (1956) and 
are plotted here in Figure 15. As in Figure 14, the stable three-phase univariant equilibria 
are shown by solid lines and the metastable extension for the goslarite-gunningite-vapor 
line is dashed. The invariant quadruple point (coexisting goslarite, bianchite, gunningite, 
and water vapor) is located in Figure 15 at 21.5°C, consistent with the solubility diagram 
(Fig. 14). The vapor-pressure data demonstrate the range of stability for goslarite, 
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bianchite, and gunningite, with boyleite an unmeasured metastable phase.  
Copper sulfate hydrates . Solubility and other phase-equilibria studies summarized 

by Mellor (1923) and in the Gmelins Handbuch (1958) indicate that only the penta-, the       
tri-, and the monohydrate (chalcanthite, bonattite, and poitevinite, respectively) are stable 
phases in the CuSO4–H2O system. Experimental work has demonstrated that pure 
boothite is very unstable but there are indications that it can be made more stable with the 
substitution of divalent cations. For example, de Boisbadran (cited in Mellor 1923) was 
able to synthesize boothite by adding a seed crystal of melanterite to a supersaturated 
solution of copper sulfate. This observation, combined with the difficulty in sythesizing 
pure boothite in solubility studies and its rare occurrence in nature, indicates that boothite 
is unlikely to be found as end-member, monoclinic CuSO4·7H2O. 

The transition from chalcanthite to bonattite occurs at 95.9°C (Collins and Menzies 
1936) which helps to explain the rare occurrence of bonattite and its tendency to hydrate to 
chalcanthite under most environmental conditions. The pure copper sulfate monohydrate 
has an even higher transition temperature of 116.6°C (Collins and Menzies 1936). 

 
Figure 16. Solubility of the hydrates 
of copper sulfate in sulfuric acid; 
modified from Mellor (1923) and 
Gmelins Handbuch (1958). 

 
 
 
 
 
 
 
The ternary phase diagram for the solubility of copper sulfate hydrates in sulfuric 

acid solutions is shown in Figure 16. Note that chalcanthite covers a large field of 
stability which also accounts for the rare occurrence of bonattite and boothite. Recent 
evaluations of aqueous copper-sulfate electrolyte systems using the Pitzer approach have 
made refinements on the solubility of chalcanthite for systems involving sulfuric acid 
(Baes et al. 1993) and copper chloride and sodium sulfate (Christov 2000). 

Nickel sulfate hydrates. The relatively evenly spaced solubilities of morenosite      
(7H2O, orthorhombic), retgersite (6H2O, tetragonal), and nickelhexahydrite (6H2O, 
monoclinic) as a function of temperature are shown in Figure 17. Dwornikite, the 
monohydrate, is not stable until the temperature is above 84°C. The solubilities for the 
first three minerals also have nearly congruent slopes because morenosite and retgersite 
differ by only one water molecule of hydration, and retgersite and nickelhexahydrite are 
dimorphs. Four metastable hydrates have been measured at temperatures above 90°C: the 
di-, tri-, tetra-, and pentahydrate. Reardon (1989) has applied the Pitzer model to the 
solubilities of morenosite, retgersite, and nickelhexahydrite in water and in sulfuric acid 
for temperatures of 0 to 70°C. 

Cobalt sulfate hydrates. The solubilities of the cobalt sulfate hydrates (Fig. 18)  
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Figure 17. Solubility of the hydrates of nickel sulfate; data from 
Gmelins Handbuch (1966) and Reardon (1989). 

 

 

 

 

 

 

 

 

 

Figure 18. Solubility of the hydrates of cobalt sulfate; data from 
Gmelins Handbuch (1961). 

are similar to, but have a larger range than, those of the zinc sulfate hydrates. The 
monohydrate is stable at temperatures above 62°C, and the dihydrate and tetrahydrate 
form two metastable phases. 

Magnesium sulfate hydrates. The pattern of solubility for the magnesium sulfate 
hydrates (Fig. 19) is similar to that for iron, zinc, nickel, and cobalt in that the heptahydrate 
(epsomite) covers the largest temperature range of stability. With increasing temperature,  
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Figure 19. Solubility of the hydrates of magnesium sulfate; data from 
Gmelins Handbuch (1939). 

the heptahydrate transforms to the hexahydrate mineral (hexahydrite), and then to the 
monohydrate (kieserite). No stability fields are present at 100% relative humidity for the 
pentahydrate (pentahydrite), the tetrahydrate (starkeyite), or the dihydrate (sanderite), 
and no metastable solubility data are reported. It is unusual that hexahydrite solubility 
can be measured far into its temperature range of metastability on both the high-
temperature end and the low-temperature end. Isopiestic measurements and a 
thermodynamic evaluation of the MgSO4–H2O system by Archer and Rard (1998) 
includes a measurement of epsomite solubility at 25°C. 

Aluminum sulfate hydrates. The dissolution of aluminum sulfate in water causes 
considerable hydrolysis to occur. Solubilities of aluminum sulfate hydrates can only be 
measured in sulfuric acid solutions. Hence, we have reproduced in Figure 20 the more  
 
 

Figure 20. Solubility relation-ships 
of selected minerals in the Al2O3–
SO3–H2O system at 25°C, modified 
from Nordstrom (1982b) and based 
on data from Bassett and Goodwin 
(1949).  
A = alunogen Al2(SO4)3·17H2O;  

J = jurbanite Al(SO4)(OH)·5H2O;  
          S = synthetic phase, 

 Al10(SO4)6(OH)18·37H2O;  
gibbsite = Al(OH)3. 
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soluble portion of the ternary system Al2O3–SO3–H2O (or Al2SO4–H2SO4–H2O) from 
Nordstrom (1982b), which is based on the work of Bassett and Goodwin (1949). On this 
diagram there are three phases, A (alunogen), J (jurbanite), and S (synthetic compound 
Al10(SO4)6(OH)18·37H2O) that appear at 25°C. The phase at S, which has not been 
identified as a mineral, has a composition similar to that of alunite, but with a much higher 
water content. Several other relatively insoluble minerals of aluminum sulfate are known 
and are discussed by Bigham and Nordstrom (this volume). Reardon (1988) applied the 
Pitzer approach to the aqueous aluminum-sulfate system and established mixing parameters 
for sulfate solutions of Cu, Ni, Fe(II), and Mg (see Ptacek and Blowes, this volume). The 
work included refinements of the solubility for alunogen, halotrichite, and pickeringite. The 
solubility of potassium alum was evaluated with the Pitzer model by Reardon and Stevens 
(1991). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Solubility 
relationships of minerals 
in the Fe2O3–SO3–H2O 
system at 50°C, modi-
fied from Posnjak and 
Merwin (1922). 

Figure 22. Solubility relationships of minerals in the Fe2O3–SO3–H2O 
system at 30 to 40°C, modified from Merwin and Posnjak (1937). 

Ferric sulfate hydrates. The most extensive work on the ferric sulfate solubilities was 
from Posnjak and Merwin (1922); their ternary system solubilities for Fe2O3–SO3–H2O for 
50°C is shown in Figure 21, and a similar diagram estimated for       30-40°C is shown in 
Figure 22 (Merwin and Posnjak 1937). The only significant difference between Figures 21 
and 22 is the appearance of a stability field for coquimbite, replacing part of the kornelite 
field. The sequence of mineral formation from hydronium jarosite → butlerite → 
ferricopiapite → coquimbite → kornelite → rhomboclase describes  
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Figure 23. Phase diagram for the system Fe2O3–SO3–H2O as a function of temperature 
(redrawn from Atencio and Hypolito 1992, 1992/1993). Sulfate-mineral equivalents are  

mikasaite = Fe 2
3+(SO 4 )3 ,  lausenite = Fe 2

3+(SO 4 )3 ⋅6H2 O,   
rhomboclase = (H3O)Fe3+(SO4)2⋅3H2O, kornelite = Fe 2

3+(SO 4 )3 ⋅7H2 O,   
ferricopiapite = Fe 2/3

3+ Fe 4
3+(SO4 ) 6 (OH)2 ⋅20H2 O,  butlerite = Fe3+(SO4)(OH)⋅2H2O,  

hydronium jarosite = (H3O)Fe 3
3+(SO 4 )2 (OH) 6 , goethite = FeOOH, and hematite = Fe2O3. 

solution conditions in which the pH continually decreases and the solution SO4/Fe ratio 
increases. This observation is consistent with field pH measurements of mine waters that 
have been found in equilibrium with jarosite (pH = 1 to 2.35), copiapite (pH = -1), and 
rhomboclase (pH = -2.5 to -3.6) from Iron Mountain, California (Alpers et al. 1989, 
Nordstrom and Alpers 1999a,b; Robinson 1999, Robinson et al. 2000a,b). A phase 
diagram for the ferric sulfate hydrate solubilities as a function of temperature from 50 to 
200°C is shown in Figure 23. 

Sideronatrite and ferrinatrite. Sideronatrite Na2Fe3+(OH)(SO4)2·3H2O and ferri-
natrite Na3Fe3+(SO4)3·3H2O are minerals of moderately high solubility. Ferrinatrite is 
trigonal and transforms to sideronatrite, which is orthorhombic, in moist air. Solubilities 
of these two minerals were determined by Linke and Seidell (1958) and by Flynn and 
Eisele (1987). 

Ferrous-ferric sulfate hydrates. There are only limited solubility data for mixed 
divalent–trivalent Fe sulfate salts, including römerite and bilinite (Gmelins Handbuch 
1932). There has been no systematic effort to describe phase stability relations in the 
FeSO4–Fe2(SO4)3–H2O system. The lack of an aqueous model that can account for mineral 
precipitation from Fe3+-sulfate or Fe2+–Fe3+-sulfate solutions at high concentrations makes 
it difficult to obtain a complete picture of phase relations in acid mine waters and other 
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settings where the solubility of Fe and other metals may be controlled by the formation of 
sulfate minerals. Ptacek and Blowes (this volume) discuss the available aqueous models for 
predicting sulfate-mineral solubilities in concentrated solutions.  

PARAGENESIS 
Paragenesis in this context refers to the sequence of mineral formation and alteration 

that occurs as metal-sulfate minerals form and continue to evolve with time. It was 
mentioned previously that the general sequence observed, both at the mineral-deposit scale 
and on a microscopic scale, is from initial Fe2+SO4⋅nH2O salts to those of Fe3+, and thence 
to jarosite and ultimately to Fe oxyhydroxides. 

Within the Fe2+SO4⋅nH2O minerals, the sequence melanterite (n = 7) → siderotil            
(n = 5) → rozenite (n = 4) → szomolnokite (n = 1) can reflect decreasing local moisture 
contents or increasing temperature; reversibility of hydration states among the tetrahydrate– 
pentahydrate–heptahydrate is easy, but the monohydrate is relatively more stable. The 
sequence from the heptahydrate to the monohydrate is also known to be favored as liquor 
acidity increases. 

The sequences melanterite → fibroferrite → aluminocopiapite, or melanterite → 
fibroferrite → jarosite → ‘limonite’ (goethite), or melanterite → halotrichite → botryogen 
have been observed in various oxidized deposits (Cherkasov 1975, Zodrow et al. 1979, 
Kravtsov 1984, Minakawa and Noto 1994). Bolshakov and Ptushko (1967) noted a 
sequence in which melanterite altered to siderotil, szomolnokite, and copiapite, and 
subsequent decomposition of these products led to the formation of rhomboclase, 
römerite, voltaite, and bilinite. A similar sequence  (Fig. 24) at another oxidized deposit 
was observed by Bolshakov and Ptushko (1971). The preservation of these types of 
sequences seems to be best in cryogenic or arid regions, wherein the sulfates can evolve 
with minimal climatic perturbation. In the cold, dry climate of northern Greenland, 
Jacobsen (1989) observed that in fault zones, römerite, melanterite, and rozenite occurred 
at depth, followed upward by fibroferrite, and then by surface crusts of copiapite.  
 

Figure 24. Natural dehydration and 
decomposition products of melanterite, 
as observed by Bolshakov and Ptushko 
(1971). 

 

In his classical study of the sulfate deposits of Chile, Bandy (1938) observed the 
following (abridged) sequence at Alcaparrosa: pyrite → szomolnokite → römerite → 
quenstedtite → coquimbite → pickeringite → copiapite → parabutlerite → jarosite. Thus the 
trend is from the divalent to the mixed divalent–trivalent, and thence from the trivalent to 
the basic sulfates. In oxidized deposits in Kazakhstan, under arid conditions similar to those 
of northern Chile, Chukhrov (1953) observed the following trend downward from surface: 
‘limonite’ (goethite) → jarosite → parabutlerite → Fe3+ sulfate hydrates (copiapite, 
metavoltine, ferrinatrite, quenstedtite, coquimbite, römerite) → divalent salts (halotrichite, 
szomolnokite). This general pattern was also observed to be present in oxidized ore 
deposits in the arid climate of northwestern China, where Tu and Li (1963) noted that the 
zonation was from 'limonite'-hematite at the surface, downward to Fe3+ sulfates (copiapite, 
sideronatrite, fibroferrite, römerite), and thence to gypsum, sulfur, melanterite, and  
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Table 5. Paragenetic sequences of Fe-sulfate minerals from pyrite oxidation. 

 
 
 

 
 
 
 
 
 
 
 
 
halotrichite at depth. These weathering profiles are consistent with the paragenetic 
sequences noted above, in that the deepest minerals correspond to the most recently 
formed, as the oxidation front descends in response to erosion and landscape evolution. 

Buurman (1975) immersed pyritiferous concretions in distilled water at 25°C for one 
week, filtered the resulting solution, and determined the sequence of crystallization that 
evolved as the solution slowly evaporated. The results, summarized in Table 5, show a 
remarkable correlation with the approximate sequence of deposition that has been 
established to date for secondary minerals in the underground workings at the Iron 
Mountain massive sulfide deposits in California (Nordstrom and Alpers 1999a). 
Although there are some variations in the order of precipitation, Table 5 illustrates well 
the general sequential crystallization of the soluble metal salts. 
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