
OPERATING SYSTEMS
PROCESS SCHEDULING

Processor
Scheduling

� Aim is to assign processes to be executed by the
processor in a way that meets system objectives

� response time
� throughput
� processor efficiency

� Broken down into three separate functions

Long term
scheduling

Medium term
scheduling

Short term
scheduling

Giorgio Giacinto 2019 Operating System 2

Objectives

� CPU scheduling is the basis for multiprogrammed
operating systems

� Various CPU-scheduling algorithms will be described

� Evaluation criteria for selecting a CPU-scheduling
algorithm for a particular system will be discussed

Giorgio Giacinto 2019 Operating System 3

Basic concepts

Giorgio Giacinto 2019 Operating System 4

Scheduling
and process
state
transitions

Figure 9.1 Scheduling and Process State Transitions

Ready/
Suspend

New

Running Exit

Blocked

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Short-term
scheduling

Ready

Blocked/
Suspend

Giorgio Giacinto 2019 Operating System 5

Levels of
scheduling

Running

Ready

Blocked

Short Term

Medium Term

Long Term

Blocked,
Suspend

Ready,
Suspend

New Exit

Figure 9.2 Levels of Scheduling

Giorgio Giacinto 2019 Operating System 6

Queueing
diagram for
scheduling

Figure 9.3 Queuing Diagram for Scheduling

Event Wait

Time-out

ReleaseReady Queue Short-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Interactive
users

Batch
jobs Processor

Ready, Suspend Queue

Event
Occurs

Blocked, Suspend Queue

Blocked Queue

Long-term
scheduling

Giorgio Giacinto 2019 Operating System 7

Short term scheduling

Giorgio Giacinto 2019 Operating System 8

Basic
Concepts

� Multiprogramming allows
attaining maximum CPU
utilization

� CPU–I/O Burst Cycle Process
execution consists of a cycle
of CPU execution and I/O
wait
� CPU burst followed by I/O burst

� CPU burst distribution is of
main concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

Giorgio Giacinto 2019 Operating System 9

Process
characterization
in terms of CPU
burst times

� CPU bound processes
� A small number of long CPU bursts

� I/O bound processes
� A large number of short CPU bursts

Giorgio Giacinto 2019 Operating System 10

CPU
Short-term
Scheduler

� Short-term scheduler selects from among the processes
in ready queue, and allocates the CPU to one of them

� Queue may be ordered in various ways

� The short-term scheduler decision may take place when a
process

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

� Scheduling under 1 and 4 is non pre-emptive
� All other scheduling is preemptive

� Consider access to shared data
� Consider preemption while in kernel mode
� Consider interrupts occurring during crucial OS activities

Giorgio Giacinto 2019 Operating System 11

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler
This involves

� switching context
� switching to user mode
� jumping to the proper location in the user program to

restart that program

� Dispatch latency
time it takes for the dispatcher to stop one process and
start another

Giorgio Giacinto 2019 Operating System 12

Scheduling Criteria

Giorgio Giacinto 2019 Operating System 13

Short Term
Scheduling
Criteria

� Main objective is to allocate processor time to optimize
certain aspects of system behavior

� Criteria to evaluate the scheduling policy

User-oriented criteria
Relate to the behavior of the
system as perceived by the
individual user or process (such
as response time in an
interactive system)

System-oriented criteria
Focus is on effective and
efficient utilization of the
processor (rate at which
processes are completed)
Generally of minor importance
on single-user systems

Giorgio Giacinto 2019 Operating System 14

Criteria can be
classified into:

Performance-related

Quantitative Easily
measured

Non-performance related

Qualitative Hard to
measure

Short-Term
Scheduling
Criteria:
Performance

Giorgio Giacinto 2019 Operating System 15

Example
Response time
and throughput

Example
Predictability

Scheduling
Criteria

� Max CPU utilization
� keep the CPU as busy as possible

� Max Throughput
� # of processes that complete their execution per time unit

� Min Turnaround time
� amount of time to execute a particular process

� Min Waiting time
� amount of time a process has been waiting in the ready queue

� Min Response time
� amount of time it takes from when a request was submitted

until the first response is produced, not output (for time-
sharing environment)

Giorgio Giacinto 2019 Operating System 16

Scheduling Algorithms

Giorgio Giacinto 2019 Operating System 17

Notes on the
examples

� All the following examples show how scheduling
algorithms work when a set of processes are in
execution in the system.

� At a generic time t=0 we will consider
� the state of the ready queue
� the time at which each process joins the ready queue
� the length of the next CPU burst

� We will measure the performance in terms of average
waiting time and average turnaround time

Giorgio Giacinto 2019 Operating System 18

First-Come-
First-Served
(FCFS)

� a.k.a. first-in-first-out (FIFO) or a strict queuing scheme

� This is the simplest scheduling policy
� easy implementation and fast execution

� When the currently running process ceases to execute,
the process that has been in the ready queue the
longest is selected for running

� Performs much better for long processes than short
ones

� Tends to favor CPU-bound processes over I/O-bound
processes

� no pre-emption

Giorgio Giacinto 2019 Operating System 19

FCFS example
Let us assume that the three processes join the reqdy
queue in the following order
P1 P2 P3

P2 has to wait 24 ms and P3 has to wait 27 ms

Average waiting time:17 ms

Process CPU burst

P1 24

P2 3

P3 3

Giorgio Giacinto 2019 Operating System 20

FCFS example

Processo CPU burst

P1 24

P2 3

P3 3

Let us assume that the three processes join the reqdy
queue in the following order
P2 P3 P1

P3 has to wait 3 ms and P1 has to wait 6 ms

Average waiting time: 3 ms

Giorgio Giacinto 2019 Operating System 21

Shortest
Process Next
(SPN)

� The original name of the algorithm was Shortest Job First

� The process with the shortest expected processing time
is selected next

Process CPU burst

P1 6

P2 8

P3 7

P4 3

Average waiting time
SPN 7 ms
FCFS 10.25 ms

Giorgio Giacinto 2019 Operating System 22

SPN
Performances

� SPN aims maximizing the throughput

� A short process will jump to the head of the queue
� low predictability

� Possibility of starvation for longer processes

� One difficulty is the need to estimate the required
processing time of each process

� If the programmer’s estimate is substantially under the
actual running time, the system may abort the job

Giorgio Giacinto 2019 Operating System 23

Determining
Length of
Next CPU
Burst

� Can only estimate the length – should be similar to the
previous one

� Then pick process with shortest predicted next CPU burst

� Can be done by using the length of previous CPU
bursts, using exponential averaging

� Typically, α set to ½

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

££
=

=

+

aa
t 1n

th
n nt

() .1 1 nnn t taat -+==

Giorgio Giacinto 2019 Operating System 24

Prediction of
the Length of
the Next CPU
Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Giorgio Giacinto 2019 Operating System 25

Shortest
Remaining
Time

� This is the pre-emptive version of SPN

� The running process can be pre-empted by the new
process joining the ready queue, if its CPU-burst is
smaller than the CPU-burst of the running process

Process Arrival time CPU burst

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Average waiting time
SRT 6.5 ms
SPN 7.75 ms

Giorgio Giacinto 2019 Operating System 26

Priority
Scheduling

� A priority number (integer) is associated with each
process

� computed by the OS, such as for SPN scheduling, where
priority is the inverse of predicted next CPU burst time

� set by the user

� The CPU is allocated to the process with the highest
priority (smallest integer º highest priority)

� Preemptive
� Nonpreemptive

� Problem º Starvation
low priority processes may never execute

� Solution ºAging
as time progresses increase the priority of the process

Giorgio Giacinto 2019 Operating System 27

Process CPU burst Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2Priority
Scheduling

0 Highest Priority

5 Lower Priority

Average waiting time 8.2 ms

Giorgio Giacinto 2019 Operating System 28

Round Robin
(RR)

� Circular scheduling

� Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds.

� After this time has elapsed, the process is preempted and
added to the end of the ready queue. The next process in the
queue is scheduled.

� If there are n processes in the ready queue and the time
quantum is q, no process waits more than (n-1)q time units.

� Performance
� q large Þ FIFO
� q small Þ q must be large with respect to context switch,

otherwise overhead is too high

Giorgio Giacinto 2019 Operating System 29

RR example time quantum q = 4ms

Average waiting time 5.66 ms

Process CPU burst

P1 24

P2 3

P3 3

Giorgio Giacinto 2019 Operating System 30

Time
Quantum and
Context
Switch Time

Giorgio Giacinto 2019 Operating System 31

Turnaround
Time Varies
With The Time
Quantum

80% of CPU bursts should be
shorter than q

Giorgio Giacinto 2019 Operating System 32

Multilevel
Queue
Scheduling

For each queue, the most appropriate scheduling algorithm is chosen

Giorgio Giacinto 2019 Operating System 33

Multilevel
Queue

� Ready queue is partitioned into separate queues, e.g.
� foreground (interactive)
� background (batch)

� Process permanently in a given queue

� Each queue has its own scheduling algorithm
� foreground – RR
� background – FCFS

� Scheduling must be done between the queues:
� Fixed priority scheduling, i.e., serve all from foreground

then from background. Possibility of starvation.
� Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes

Giorgio Giacinto 2019 Operating System 34

Example of
Multilevel
Feedback
Queue

� Three queues:
� Q0 – RR with time quantum 8 milliseconds
� Q1 – RR time quantum 16 milliseconds
� Q2 – FCFS

� Scheduling
� A new process enters queue Q0

� When it gains CPU,
it receives 8 milliseconds

� If it does not finish in 8 milliseconds,
it is moved to queue Q1

� At Q1 the process receives 16 additional milliseconds
� If it still does not complete, it is preempted and moved to queue Q2

Giorgio Giacinto 2019 Operating System 35

Thread Scheduling

Giorgio Giacinto 2019 Operating System 36

Thread
Scheduling

� When threads supported, threads scheduled, not
processes

� Distinction between user-level and kernel-level threads

� Many-to-one and many-to-many models, thread
library schedules user-level threads to run on LWP

� Known as process-contention scope (PCS) since
scheduling competition is within the process

� Typically done via priority set by programmer

� Kernel thread scheduled onto available CPU is system-
contention scope (SCS) – competition among all
threads in system

Giorgio Giacinto 2019 Operating System 37

Multiprocessor and
Multicore Scheduling

Giorgio Giacinto 2019 Operating System 38

Multiple-
Processor
Scheduling

� CPU scheduling more complex when multiple CPUs
are available

� Homogeneous processors within a multiprocessor

� Asymmetric multiprocessing
only one processor accesses the system data
structures, alleviating the need for data sharing

� Symmetric multiprocessing (SMP)
each processor is self-scheduling, all processes share
the ready queue, or each processor has its own private
queue of ready processes

� Currently, most common solution

Giorgio Giacinto 2019 Operating System 39

Multiple-
Processor
Scheduling

� Processor affinity
process has affinity for processor on which it is
currently running

� soft affinity, when the OS tries to bundle the process to
the processor

� hard affinity, when the OS ensure that each process
always run on the same processor

� Variations including processor sets

� Moving a process from one processor to another
requires moving the associated cache content

Giorgio Giacinto 2019 Operating System 40

NUMA and
CPU
Scheduling

Note that memory-placement algorithms can also consider affinity

CPU

fast access

memory

CPU

fast access
slow access

memory

computer

Non Uniform Memory Access

Giorgio Giacinto 2019 Operating System 41

Multiple-
Processor
Scheduling –
Load
Balancing

� If SMP need to keep all CPUs loaded for efficiency

� Load balancing attempts to keep workload evenly
distributed

� Push migration
periodic task checks load on each processor, and if
found pushes task from overloaded CPU to other CPUs

� Pull migration
idle processors pulls waiting task from busy processor

Giorgio Giacinto 2019 Operating System 42

Multicore
Processors

� Recent trend to place multiple processor cores on
same physical chip

� Faster and consumes less power

� Multiple threads per core also growing
� Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

Giorgio Giacinto 2019 Operating System 43

Multithreaded
Multicore
System

Giorgio Giacinto 2019 Operating System 44

Operating System
Examples

Giorgio Giacinto 2019 Operating System 45

Linux
Scheduling
Through
Version 2.5

� Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm

� Version 2.5 moved to constant order O(1) scheduling time
� Preemptive, priority based
� Two priority ranges: time-sharing and real-time
� Real-time range from 0 to 99 and nice value from 100 to 140
� Map into global priority with numerically lower values indicating

higher priority
� Higher priority gets larger q
� Task run-able as long as time left in time slice (active)
� If no time left (expired), not run-able until all other tasks use their

slices
� All run-able tasks tracked in per-CPU runqueue data structure

� Two priority arrays (active, expired)
� Tasks indexed by priority
� When no more active, arrays are exchanged

� Worked well, but poor response times for interactive processes

Giorgio Giacinto 2019 Operating System 46

Linux
Scheduling in
Version 2.6.23 +

� Completely Fair Scheduler (CFS)
� Scheduling classes

� Each has specific priority
� Scheduler picks highest priority task in highest scheduling class
� Not quantum based, but based on proportion of CPU time

� Quantum calculated based on nice value from -20 to +19
� Lower value is higher priority
� Calculates target latency – interval of time during which task

should run at least once
� Target latency can increase if number of active tasks increases

� CFS scheduler maintains per task virtual run time in variable
vruntime

� Associated with decay factor based on priority of task – lower
priority is higher decay rate

� Normal default priority yields virtual run time = actual run time

� To decide next task to run, scheduler picks task with lowest virtual
run time

Giorgio Giacinto 2019 Operating System 47

Windows
Scheduling

� Windows uses priority-based preemptive scheduling

� Highest-priority thread runs next

� Thread runs until (1) blocks, (2) uses time slice, (3)
preempted by higher-priority thread

� Real-time threads can preempt non-real-time

� 32-level priority scheme

� Variable class is 1-15, real-time class is 16-31

� Priority 0 is memory-management thread

� Queue for each priority

� If no run-able thread, runs idle thread

Giorgio Giacinto 2019 Operating System 48

Windows
Priorities

high above
normal normal below

normal
idle
priority

time-critical

real-
time

31

26

25

24

23

22

16

15

15

14

13

12

11

1

15

12

11

10

9

8

1

15

10

9

8

7

6

1

15

8

7

6

5

4

1

15

6

5

4

3

2

1

highest

above normal

normal

lowest

idle

below normal

Giorgio Giacinto 2019 Operating System 49

Algorithm Evaluation

Giorgio Giacinto 2019 Operating System 50

Algorithm
Evaluation

� How to select CPU-scheduling algorithm for an OS?

� Determine criteria, then evaluate algorithms

� Deterministic modeling
Takes a particular predetermined workload and defines
the performance of each algorithm for that workload

� Consider 5 processes arriving at time 0:

Giorgio Giacinto 2019 Operating System 51

Deterministic
Evaluation

� For each algorithm, calculate minimum average
waiting time

� Simple and fast, but requires exact numbers for input,
applies only to those inputs

� FCFS is 28ms:

� SPN is 13ms:

� RR is 23ms:

Giorgio Giacinto 2019 Operating System 52

Queueing
Models

� Describes the arrival of processes, and CPU and I/O
bursts probabilistically

� Commonly exponential, and described by mean
� Computes average throughput, utilization, waiting time,

etc

� Computer system described as network of servers,
each with queue of waiting processes

� Knowing arrival rates and service rates
� Computes utilization, average queue length, average

wait time, etc

Giorgio Giacinto 2019 Operating System 53

Simulations

� Programmed model of computer system

� Clock is a variable

� Gather statistics indicating algorithm performance

� Data to drive simulation gathered via
� Random number generator according to probabilities
� Distributions defined mathematically or empirically
� Trace tapes record sequences of real events in real systems

Giorgio Giacinto 2019 Operating System 54

Evaluation of
CPU
Schedulers by
Simulation

actual
process

execution

performance
statistics
for FCFS

simulation

FCFS

performance
statistics
for SJF

performance
statistics

for RR (q ! 14)

trace tape

simulation

SJF

simulation

RR (q ! 14)

• • •
CPU 10
I/O 213
CPU 12
I/O 112
CPU 2
I/O 147
CPU 173

• • •

Giorgio Giacinto 2019 Operating System 55

Implementation

� Even simulations have limited accuracy

� Just implement new scheduler and test in real systems
� High cost, high risk
� Environments vary

� Most flexible schedulers can be modified per-site or
per-system

� Or APIs to modify priorities

� But again environments vary

Giorgio Giacinto 2019 Operating System 56

