
OPERATING SYSTEMS
CONCURRENCY: DEADLOCK AND STARVATION

Deadlock: an
illustration

c b

d a

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

4 4

1

1

3

32 2

Giorgio Giacinto 2019 Operating Systems 2

Deadlock

� To understand Deadlock we need to consider each
process as an entity that either requests or holds
resources

� Given a set of processes that either compete for
system resources or communicate with each other,
the set is deadlocked if processes are permanently
blocked

� each process is blocked awaiting an event that can only
be triggered by another blocked process

No efficient solution in the general case

Giorgio Giacinto 2019 Operating Systems 3

Resource
Categories

Reusable
� Can be safely used by only one process at a time and is not

depleted by that use
� Example: processors, I/O channels, main and secondary

memory, devices, and data structures such as files,
databases, and semaphores

Consumable
� One that can be created (produced) and destroyed

(consumed)
� Example: interrupts, signals, messages, and information

In I/O buffers

Giorgio Giacinto 2019 Operating Systems 4

Example of
Processes
competing for
Reusable
Resources

Giorgio Giacinto 2019 Operating Systems 5

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B
Required

B Required

A
Required

A
Required

Release A

Release
A

Release B

Release
B

deadlock
inevitable

P and Q
want A

P and Q
want B

1 2

3

4
5

6

Figure 6.2 Example of Deadlock

= possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

= deadlock-inevitable region

Example of
Deadlock

Giorgio Giacinto 2019 Operating Systems 6

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B
Required

B Required

A
Required

A Required

= possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

Release A

Release
A

Release B

Release
B

1 2 3

4

5

6

Figure 6.3 Example of No Deadlock

P and Q
want A

P and Q
want B

Example of No
Deadlock

Giorgio Giacinto 2019 Operating Systems 7

Consumable
Resources
Deadlock

� Consider a pair of processes, in which each process
attempts to receive a message from the other process
and then send a message to the other process:

� Deadlock occurs if the Receive is blocking

Giorgio Giacinto 2019 Operating Systems 8

Conditions for
Deadlock

Mutual
Exclusion

• Only one
process may
use a resource
at a time

• No process
may access a
resource until
that has been
allocated to
another
process

Hold-and-Wait

• A process may
hold allocated
resources
while awaiting
assignment of
other
resources

No Pre-emption

• No resource
can be
forcibly
removed from
a process
holding it

Circular Wait

• A closed chain
of processes
exists, such
that each
process holds
at least one
resource
needed by the
next process
in the chain

necessary conditions sufficient
condition

Giorgio Giacinto 2019 Operating Systems 9

Resource
Allocation
Graphs

Vertices are either processes or resources.
Arcs represent the processes requesting or holding resources.

P1

P1

P2

Rb

Ra

Ra

Request
s

Request
s

Held by

Held by

(c) Circular wait

(a) Resouce is requested

P1 P2

Rb

Ra

Request
s

Request
s

Held by

Held by

(d) No deadlock

P1 Ra

(b) Resource is held

Figure 6.5 Examples of Resource Allocation Graphs

Requests Held by

Giorgio Giacinto 2019 Operating Systems 10

Example of a
Resource
Allocation
Graph

No cycles, no deadlocks

Giorgio Giacinto 2019 Operating Systems 11

Resource
allocation
graph with a
deadlock

One cycle → deadlock

Giorgio Giacinto 2019 Operating Systems 12

Graph with a
Cycle but No
Deadlock

One cycle but no deadlock
at least one of the processes

holding the resources
is not part of the cycle

Giorgio Giacinto 2019 Operating Systems 13

Deadlock
Approaches

There is no single effective strategy that can deal with all types of deadlock
Three approaches are common

Disallow one of the three necessary conditions for deadlock
occurrence, or prevent circular wait condition from happening

Deadlock Prevention

Do not grant a resource request if this allocation might lead
to deadlock

Deadlock Avoidance

Grant resource requests when possible, but periodically check
for the presence of deadlock and take action to recover

Deadlock Detection

Giorgio Giacinto 2019 Operating Systems 14

Deadlock Prevention

Giorgio Giacinto 2019 Operating Systems 15

Deadlock
Prevention
Restrain the
ways request
can be made

• not required for sharable resources (e.g., read-only
files);

• must hold for non-sharable resources

Mutual Exclusion

must guarantee that whenever a process requests a
resource, it does not hold any other resources
• Require process to request and be allocated all its

resources before it begins execution, or allow process
to request resources only when the process has none
allocated to it.

• Low resource utilization; starvation possible

Hold and Wait

Giorgio Giacinto 2019 Operating Systems 16

Deadlock
Prevention
Restrain the
ways request
can be made

• If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released
• Preempted resources are added to the list of resources

for which the process is waiting
• Process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting

No Preemption

• impose a total ordering of all resource types, and require
that each process requests resources in an increasing
order of enumeration

Circular Wait

Giorgio Giacinto 2019 Operating Systems 17

Deadlock Avoidance

Giorgio Giacinto 2019 Operating Systems 18

Deadlock
Avoidance

Allows the three necessary conditions
but makes judicious choices

to assure that the deadlock point is never reached

A decision is made dynamically whether the current
resource allocation request will, if granted, potentially
lead to a deadlock

Requires knowledge of future process requests

Giorgio Giacinto 2019 Operating Systems 19

Two
Approaches to
Deadlock
Avoidance

Do not start a process if its demands might lead to
deadlock

Process Initiation Denial

Do not grant an incremental resource request to a
process if this allocation might lead to deadlock

Resource Allocation Denial

Giorgio Giacinto 2019 Operating Systems 20

Resource
Allocation
Denial

� Referred to as the Banker’s Algorithm

� State of the system reflects the current allocation of
resources to processes

� Safe state is one in which there is at least one sequence
of resource allocations to processes that does not result
in a deadlock

� Unsafe state is a state that is not safe

Giorgio Giacinto 2019 Operating Systems 21

Banker’s
Algorithm

Giorgio Giacinto 2019 Operating Systems 22

Banker’s
Algorithm

Giorgio Giacinto 2019 Operating Systems 23

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2
P2 6 1 3 P2 6 1 2 P2 0 0 1
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 0 1 1
Resource vector R Available vector V

(a) Initial state

Determination
of a Safe State

Giorgio Giacinto 2019 Operating Systems 24

Determination
of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 6 2 3
Resource vector R Available vector V

(b) P2 runs to completion

Giorgio Giacinto 2019 Operating Systems 25

Determination
of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 0 0 0 P1 0 0 0 P1 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 7 2 3
Resource vector R Available vector V

(c) P1 runs to completion

Giorgio Giacinto 2019 Operating Systems 26

Determination
of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 0 0 0 P1 0 0 0 P1 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 0 0 0 P3 0 0 0 P3 0 0 0
P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 9 3 4
Resource vector R Available vector V

(d) P3 runs to completion (d) P3 runs to completion

Giorgio Giacinto 2019 Operating Systems 27

Determination
of an Unsafe
State

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 1 1 2
Resource vector R Available vector V

(a) Initial state

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 2 0 1 P1 1 2 1
P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 0 1 1

Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State

Giorgio Giacinto 2019 Operating Systems 28

Determination
of an Unsafe
State

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 1 1 2
Resource vector R Available vector V

(a) Initial state

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 2 0 1 P1 1 2 1
P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 0 1 1

Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State

Giorgio Giacinto 2019 Operating Systems 29

Deadlock
Avoidance
Advantages

� It is less restrictive than deadlock prevention

� It is not necessary to preempt and rollback processes,
as in deadlock detection

Giorgio Giacinto 2019 Operating Systems 30

Deadlock
Avoidance
Restrictions

Maximum resource requirement for each process must
be stated in advance

Processes under consideration must be independent
and with no synchronization requirements

There must be a fixed number of resources to allocate

No process may exit while holding resources

Giorgio Giacinto 2019 Operating Systems 31

Deadlock Detection

Giorgio Giacinto 2019 Operating Systems 32

Deadlock
Strategies

Deadlock prevention strategies are very conservative

Limit access to resources by imposing restrictions on
processes

Deadlock detection strategies do the opposite

Resource requests are granted whenever possible

Giorgio Giacinto 2019 Operating Systems 33

Deadlock
Detection

� Allow system to enter deadlock state

� Detection algorithm

� Recovery scheme

Giorgio Giacinto 2019 Operating Systems 34

Deadlock
Detection
Algorithm

A check for deadlock
can be made

as frequently as each
resource request or,

less frequently,
depending on how

likely it is for a
deadlock to occur

Advantages
• It leads to early

detection
• The algorithm is

relatively simple

Disadvantage
• Frequent checks

consume
considerable
processor time

Giorgio Giacinto 2019 Operating Systems 35

Recovery
Strategies

� Abort all deadlocked processes

� Back up each deadlocked process to some previously
defined checkpoint and restart all processes

� Successively abort deadlocked processes until deadlock no
longer exists

� Successively preempt resources until deadlock no longer
exists

Giorgio Giacinto 2019 Operating Systems 36

Recovery from
Deadlock:
Process
Termination

� In which order should we choose to abort?
� Priority of the process
� How long process has computed, and how much longer

to completion
� Resources the process has used
� Resources process needs to complete
� How many processes will need to be terminated
� Is process interactive or batch?

Giorgio Giacinto 2019 Operating Systems 37

Recovery from
Deadlock:
Resource
Preemption

� Selecting a victim – minimize cost

� Rollback – return to some safe state, restart process
for that state

� Starvation – same process may always be picked as
victim, include number of rollback in cost factor

Giorgio Giacinto 2019 Operating Systems 38

Integrated
Deadlock
Strategy

� Rather than attempting to design an OS facility that
employs only one of these strategies, it might be more
efficient to use different strategies in different
situations

� Group resources into a number of different resource
classes

� Use the linear ordering strategy defined previously for
the prevention of circular wait to prevent deadlocks
between resource classes

� Within a resource class, use the algorithm that is most
appropriate for that class

Giorgio Giacinto 2019 Operating Systems 39

Classes of
resources

� Swappable space
� Blocks of memory on secondary storage for use in

swapping processes

� Process resources
� Assignable devices, such as tape drives, and files

� Main memory
� Assignable to processes in pages or segments

� Internal resources
� Such as I/O channels

Giorgio Giacinto 2019 Operating Systems 40

Class
Strategies

� Swappable space
� Prevention of deadlocks by requiring that all of the required

resources that may be used be allocated at one time, as in
the hold-and-wait prevention strategy

� This strategy is reasonable if the maximum storage requirements
are known

� Process resources
� Avoidance will often be effective in this category, because it

is reasonable to expect processes to declare ahead of time
the resources that they will require in this class

� Prevention by means of resource ordering within this class is also
possible

� Main memory
� Prevention by preemption appears to be the most

appropriate strategy for main memory
� When a process is preempted, it is simply swapped to secondary

memory, freeing space to resolve the deadlock

� Internal resources
� Prevention by means of resource ordering can be used

Giorgio Giacinto 2019 Operating Systems 41

Conclusions
from A.
Tanenabum,
Modern
Operating
Systems

If ever there was a subject that was investigated
mercilessly during the early days of operating systems, it

was deadlock.

The reason for this is that
deadlock is a nice little graph theory problem

that one mathematically-inclined graduate student
can get his jaws around and chew on for 3 or 4 years,

All kind of algorithms were devised, each one more exotic,
and less practical than the previous one.

When an operating system wants to do deadlock
detection or prevention, which few of them do, they use

one of the methods discussed in this chapter.

Giorgio Giacinto 2019 Operating Systems 42

