
OPERATING SYSTEMS
CONCURRENCY
MUTUAL EXCLUSION AND SYNCHRONIZATION

Introduction

Giorgio Giacinto 2019 Operating Systems 2

Concurrency

� Interleaving and overlapping

� The relative speed of execution of processes cannot be
predicted in uniprocessor systems because it depends on

� Activities of other processes
� The way the OS handles interrupts
� Scheduling policies of the OS

� Difficulties
� Sharing of global resources
� Management of the optimal allocation of resources
� Locate programming errors as results are not deterministic

and reproducible

Giorgio Giacinto 2019 Operating Systems 3

Operating
System
Concerns

Be able to keep track of various processes

Allocate and de-allocate resources for each active process

Protect the data and physical resources of each process
against unintended interference by other processes

The functioning of a process, and the output it produces, must
be independent of the speed at which its execution is carried out
relative to the speed of other concurrent processes

Giorgio Giacinto 2019 Operating Systems 4

Goals

� The core concept is the Critical Section , where two or
more processes compete to acquire the same resource

� The related hardware and software approaches to
address the issue will be presented

� The classical mutual exclusion and synchronization
problems will be presented

Giorgio Giacinto 2019 Operating Systems 5

register1 := count
register1 := register1 + 1
count := register1

use of a shared variable count set to 0

Producer

while (true) {

/* produce an item in next_product */

while (count == DIM_BUFFER)

/* do nothing */;

buffer[in] = next_product;

in = (in + 1) % DIM_BUFFER;

count++;

}

A revised
version of the
Producer /
Consumer
problem

Giorgio Giacinto 2019 Operating Systems 6

register1 := count
register1 := register1 - 1
count := register1

A revised
version of the
Producer /
Consumer
problem

Consumer

while (true) {

while (count == 0)

/* do nothing */;

next_consumed = buffer[out];

out = (out + 1) % DIM_BUFFER;

count--;

/* consume an item in next_consumed */

}

Giorgio Giacinto 2019 Operating Systems 7

Race condition

� When the result of a sequence of instructions from
concurrent processes depends on the order in which
they are executed-

Let’s assume that count == 5

T0 prod register1 = count {register1 == 5}

T1 prod register1 = register1 + 1 {register1 == 6}

T2 cons register2 = count {register2 == 5}

T3 cons register2 = register2 - 1 {register2 == 4}

T4 prod count = register1 {count == 6}

T5 cons count = register2 {count == 4}

Giorgio Giacinto 2019 Operating Systems 8

Critical Section

Giorgio Giacinto 2019 Operating Systems 9

Process
execution and
Critical
Section

� Any protocol to address the Critical Section issue must satisfy
� Mutual exclusion
� Progress
� Bounded Waiting

Process writing on shared
variables, updating tables, etc.
When one process in critical
section, no other should be

in its critical section

waits for its turn
to enter the critical

section

Giorgio Giacinto 2019 Operating Systems 10

Critcal Section
and kernel
tasks

Two approaches depending on the kernel being pre-
emptive or non pre-emptive

� Pre-emptive
allows pre-emption of process when running in kernel
mode

� Non pre-emptive
runs until exits kernel mode, blocks, or voluntarily
yields CPU

� Essentially free of race conditions in kernel mode

Giorgio Giacinto 2019 Operating Systems 11

Software Solutions to
the Critical Section
problem

Giorgio Giacinto 2019 Operating Systems 12

Peterson
Algorithm

two processes Pi and Pj where i = 1 - j

Shared variables
int turn; the next process to execute the critical section
boolean flag[2]; process requesting the critical section

Algorithm for Process Pi

do {
flag[i] = true;
turn = j;
while (flag[j] && turn == j);

critical section
flag[i] = false;

remainder section
} while (true);

Giorgio Giacinto 2019 Operating Systems 13

Hardware Support for
the Critical Section

Giorgio Giacinto 2019 Operating Systems 14

Critical
Section Using
Locks

do {
acquire lock

critical section
release lock

remainder section
} while (TRUE);

Giorgio Giacinto 2019 Operating Systems 15

Hardware
Solutions

� Disabling interrupts in uniprocessor systems has the
effect of a lock

� No pre-emption
� Difficult to implement in multiprocessor systems

� Special atomic operations are available In current
hardware architectures to implement locks

Giorgio Giacinto 2019 Operating Systems 16

test_and_set
atomic
instruction

boolean test_and_set (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv;

}
1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

Giorgio Giacinto 2019 Operating Systems 17

Critical
Section with
test_and_set

! Shared Boolean variable lock, initialized to FALSE

do {
while (test_and_set(&lock))

; /* do nothing */
/* critical section */

lock = false;
/* remainder section */

} while (true);

Giorgio Giacinto 2019 Operating Systems 18

compare_and
_swap
instruction

int compare _and_swap(int *value,
int expected, int new_value) {

int temp = *value;

if (*value == expected)
*value = new_value;

return temp;
}

1.Executed atomically
2.Returns the original value of passed parameter value
3.Set the variable value the value of the passed parameter
new_value but only if value == expected.

Giorgio Giacinto 2019 Operating Systems 19

Critical
Section with
compare_and
_swap

Shared integer lock initialized to 0;

do {
while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */
/* critical section */

lock = 0;
/* remainder section */

} while (true);

Giorgio Giacinto 2019 Operating Systems 20

Bounded
waiting with
test_and_set

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);
waiting[i] = false;
/* critical section */
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
/* remainder section */

} while (true);

shared variables
boolean waiting[n];
boolean lock;
intialized to false

Giorgio Giacinto 2019 Operating Systems 21

Mutex Locks

Giorgio Giacinto 2019 Operating Systems 22

Mutex Lock

The simplest OS built-in tool

do {
acquire lock

critical section
release lock
remainder section

} while (true);

� Calls to acquire() and release() must be atomic
� Usually implemented via hardware atomic instructions

Giorgio Giacinto 2019 Operating Systems 23

acquire()
and
release()

acquire() {
while (!available)

; /* busy wait */
available = false;;

}

release() {
available = true;

}

� This solution requires busy waiting and therefore the
lock is called a spinlock

Giorgio Giacinto 2019 Operating Systems 24

Semaphores

Giorgio Giacinto 2019 Operating Systems 25

Definition

� Synchronization tool that provides more sophisticated ways
than Mutex locks for process to synchronize their activities.

� Semaphore S – integer variable

� Can only be accessed via two indivisible (atomic) operations
� wait() and signal()

� Originally called P() and V()

Giorgio Giacinto 2019 Operating Systems 26

Semaphore
usage

� Counting semaphore
integer value can range over an unrestricted domain

� Binary semaphore
integer value can range only between 0 and 1

� Same as a mutex lock

� Can solve various synchronization problems

Giorgio Giacinto 2019 Operating Systems 27

wait() and
signal()

wait(S) {
while (S <= 0)

; // busy wait
S--;

}

signal(S) {
S++;

}

Giorgio Giacinto 2019 Operating Systems 28

Mutual
exclusion

� Consider P1 and P2 that require S1 to happen before S2

Semaphore synch initialized to 0
P1:

S1;
signal(synch);

P2:
wait(synch);
S2;

Giorgio Giacinto 2019 Operating Systems 29

Semaphore
implementation

� No two processes can execute the wait() and
signal()on the same semaphore at the same time

� The implementation becomes the critical section
problem

� Can be implemented in hardware or firmware

� Software schemes such as Peterson’s algorithm

� Could now have busy waiting in critical section
implementation

� But implementation code is short
� Little busy waiting if critical section rarely occupied

� Another alternative is to use one of the hardware-
supported schemes for mutual exclusion

Giorgio Giacinto 2019 Operating Systems 30

Semaphore
implementation
without busy
waiting

typedef struct{
int value;
struct process *list;
} semaphore;

� Each semaphore has an associated waiting queue

� Two operations
� block – place the process invoking the operation on the

appropriate waiting queue
� wakeup – remove one of processes in the waiting queue

and place it in the ready queue

Giorgio Giacinto 2019 Operating Systems 31

Semaphore
implementation
without busy
waiting
wait()

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

Giorgio Giacinto 2019 Operating Systems 32

Semaphore
implementation
without busy
waiting
signal()

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

Giorgio Giacinto 2019 Operating Systems 33

Strong/Weak
Semaphores

• The process that has been blocked the longest is
released from the queue first (FIFO)

Strong Semaphores

• The order in which processes are removed from the
queue is not specified

Weak Semaphores

Giorgio Giacinto 2019 Operating Systems 34

Simulating
semaphores
and other
concurrency
primitives

� BACI – Ben Ari Concurrent Interpreter
A Mutual Exclusion Toolkit
https://inside.mines.edu/~tcamp/baci/baci_index.html

Giorgio Giacinto 2019 Operating Systems 35

Problems with
semaphores

Giorgio Giacinto 2019 Operating Systems 36

Deadlock

� Two or more processes are waiting indefinitely
for an event that can be caused by only one of
the waiting processes

� Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);
... ...
signal(S); signal(Q);
signal(Q); signal(S);

Giorgio Giacinto 2019 Operating Systems 37

Starvation
� indefinite blocking

A process may never be removed from the semaphore
queue in which it is suspended

Giorgio Giacinto 2019 Operating Systems 38

Priority
Inversion

� When a process with a high priority (H) is waiting for a
lock held by a lower priority process (L) that is
executing

� If a process with a medium priority level (M) pre-empts
process L, it delays the execution of H

� Solution: priority-inheritance protocol
process L inherits the priority H until it releases the
lock requested by H

Giorgio Giacinto 2019 Operating Systems 39

Problems with
semaphores

� Incorrect use of semaphore operations

� signal(mutex) … wait(mutex)

� wait(mutex) … wait(mutex)

� Omitting of wait(mutex) or signal(mutex) (or both)

� Deadlock and starvation are possible

Giorgio Giacinto 2019 Operating Systems 40

Classical Problems of
Synchronization

Giorgio Giacinto 2019 Operating Systems 41

Three
problems

� Bounded buffer Producer/Consumer problem

� Readers/Writers problem

� Dining Philosophers problem

Giorgio Giacinto 2019 Operating Systems 42

Bounded
buffer
Producer/
Consumer
problem

� The producer can put its product in the buffer until it is
full

� if no empty cell is available, the producer must wait

� The consumer can take products in the buffer until it is
empty

� if no products are available, the consumer must wait

� Operations on the buffer represent the critical section
of both the producer and the consumer

Giorgio Giacinto 2019 Operating Systems 43

Producer/
Consumer
problem with
Semaphores

� buffer of size N

� Semaphore s initialized to 1
� s plays the role of the mutex

� Semaphore n initialized to 0
� n used to count the number of items in the buffer

� Semaphore e initialized to N
� e used to count the number of empty cells in the buffer

Giorgio Giacinto 2019 Operating Systems 44

Producer
process

Giorgio Giacinto 2019 Operating Systems 45

 /* program boundedbuffer */
 const int sizeofbuffer = /* buffer size */;
 semaphore s = 1, n= 0, e= sizeofbuffer;
 void producer()
 {
 while (true) {
 produce();
 semWait(e);
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
 }
 }
 void consumer()
 {
 while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 semSignal(e);
 consume();
 }
 }
 void main()
 {
 parbegin (producer, consumer);
 }

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer

Problem Using Semaphores

Consumer
process

Giorgio Giacinto 2019 Operating Systems 46

 /* program boundedbuffer */
 const int sizeofbuffer = /* buffer size */;
 semaphore s = 1, n= 0, e= sizeofbuffer;
 void producer()
 {
 while (true) {
 produce();
 semWait(e);
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
 }
 }
 void consumer()
 {
 while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 semSignal(e);
 consume();
 }
 }
 void main()
 {
 parbegin (producer, consumer);
 }

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer

Problem Using Semaphores

Readers /
Writers
Problem

� A data area is shared among many processes
� Some processes only read the data area, (readers) and

some only write to the data area (writers)

� Conditions that must be satisfied
� Any number of readers may simultaneously read the file
� Only one writer at a time may write to the file
� If a writer is writing to the file, no reader may read it

Giorgio Giacinto 2019 Operating Systems 47

The Writer
process
readers have
priority

Giorgio Giacinto 2019 Operating Systems 48

/* program readersandwriters */
int readcount;
semaphore x = 1, wsem = 1;
void reader()
{
 while (true) {
 semWait (x);
 readcount++;
 if (readcount == 1) semWait (wsem);
 semSignal (x);
 READUNIT();
 semWait (x);
 readcount--;
 if (readcount == 0) semSignal (wsem);
 semSignal (x);
 }
 }
void writer()
{
 while (true) {
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 }
}

void main()
{
 readcount = 0;
 parbegin (reader, writer);
}

Figure 5.25 A Solution to the Readers/Writers Problem Using

Semaphores: Readers Have Priority

/* program readersandwriters */
int readcount;
semaphore x = 1, wsem = 1;
void reader()
{
 while (true) {
 semWait (x);
 readcount++;
 if (readcount == 1) semWait (wsem);
 semSignal (x);
 READUNIT();
 semWait (x);
 readcount--;
 if (readcount == 0) semSignal (wsem);
 semSignal (x);
 }
 }
void writer()
{
 while (true) {
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 }
}

void main()
{
 readcount = 0;
 parbegin (reader, writer);
}

Figure 5.25 A Solution to the Readers/Writers Problem Using

Semaphores: Readers Have Priority

The Reader
process
readers have
priority

Giorgio Giacinto 2019 Operating Systems 49

/* program readersandwriters */
int readcount;
semaphore x = 1, wsem = 1;
void reader()
{
 while (true) {
 semWait (x);
 readcount++;
 if (readcount == 1) semWait (wsem);
 semSignal (x);
 READUNIT();
 semWait (x);
 readcount--;
 if (readcount == 0) semSignal (wsem);
 semSignal (x);
 }
 }
void writer()
{
 while (true) {
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 }
}

void main()
{
 readcount = 0;
 parbegin (reader, writer);
}

Figure 5.25 A Solution to the Readers/Writers Problem Using

Semaphores: Readers Have Priority

The Writer
process
writers have
priority

Giorgio Giacinto 2019 Operating Systems 50

The Reader
process
writers have
priority

Giorgio Giacinto 2019 Operating Systems 51

Dining
Philosophers
Problem

Five dining philosopher

They spend their time
alternating thinking with
eating

They share
� A bowl full of rice or

spaghetti
� Chopsticks or forks

Each philosopher finds a
chopstick or fork at the
right and one at the left

P3

Figure 6.11 Dining Arrangement for Philosophers

P0

P2

P4

P1

Giorgio Giacinto 2019 Operating Systems 52

First solution
to the Dining
Philosophers
Problem

Giorgio Giacinto 2019 Operating Systems 53

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal(fork [(i+1) mod 5]);
 signal(fork[i]);
 }
}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher
(2),
 philosopher (3), philosopher (4));
 }

Deadlock and starvation are possible…

Other
solutions to
the Dining
Philosophers
Problem

� To avoid deadlock, one of the following constraints
should be added

� Only four out of five philosophers can request the forks
� Forks must be picked in pairs and not one at a time
� Each philosopher occupying an odd position must pick

the fork in this order: first the left and then the right fork.
Each philosopher occupying an even position must pick
the fork in this order: first the right and then the left fork.

Giorgio Giacinto 2019 Operating Systems 54

Only four
philosopher
are allowed to
request the
forks

Giorgio Giacinto 2019 Operating Systems 55

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (room);
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal (fork [(i+1) mod 5]);
 signal (fork[i]);
 signal (room);
 }

}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher (2),
 philosopher (3), philosopher (4));
}

Monitor

Giorgio Giacinto 2019 Operating Systems 56

Monitor

� Programming language construct that provides
equivalent functionality to that of semaphores and is
easier to control

� A Monitor is a software module consisting of
� one or more procedures
� an initialization sequence
� and local data

� Implemented in a number of programming languages
� Concurrent Pascal, Pascal-Plus, Modula-2, Modula-3,

Java

Giorgio Giacinto 2019 Operating Systems 57

Monitor
Structure

Giorgio Giacinto 2019 Operating Systems 58

monitor monitor-name
{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}
}

Monitor
Characteristics

Operating Systems

Only one process may be executing in the monitor at a time

Process enters monitor by invoking one of its procedures

Local data variables are accessible only by the monitor’s
procedures and not by any external procedure

Giorgio Giacinto 2019 59

Schematic
view of a
Monitor

Giorgio Giacinto 2019 Operating Systems 60

Sinchronization

� A monitor supports synchronization by the use of
condition variables that are contained within the
monitor and accessible only within the monitor

� Condition variables are a special data type in
monitors which are operated on by two functions

� cwait(c): suspend execution of the calling process on
condition c

� csignal(c): resume execution of some process blocked
after a cwait on the same condition

Giorgio Giacinto 2019 Operating Systems 61

Structure of a
Monitor with
Condition
Variables

Giorgio Giacinto 2019 Operating Systems 62

Producer /
Consumer
problem using
a Monitor

Giorgio Giacinto 2019 Operating Systems 63

Producer /
Consumer
problem using
a Monitor

Giorgio Giacinto 2019 Operating Systems 64

Solution to the
Dining
Philosophers
Problem with
a Monitor

Giorgio Giacinto 2019 Operating Systems 65

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{
 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/
 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */
 fork[left] = false;
 /*grant the right fork*/
 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */
 fork[right] = false:
}
void release_forks(int pid)
{
 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/
 if (empty(ForkReady[left]) /*no one is waiting for this fork */
 fork[left] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);
 /*release the right fork*/
 if (empty(ForkReady[right]) /*no one is waiting for this fork */
 fork[right] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

Solution to the
Dining
Philosophers
Problem with
a Monitor

Giorgio Giacinto 2019 Operating Systems 66

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{
 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/
 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */
 fork[left] = false;
 /*grant the right fork*/
 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */
 fork[right] = false:
}
void release_forks(int pid)
{
 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/
 if (empty(ForkReady[left]) /*no one is waiting for this fork */
 fork[left] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);
 /*release the right fork*/
 if (empty(ForkReady[right]) /*no one is waiting for this fork */
 fork[right] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

Solution to the
Dining
Philosophers
Problem with
a Monitor

Giorgio Giacinto 2019 Operating Systems 67

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{
 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/
 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */
 fork[left] = false;
 /*grant the right fork*/
 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */
 fork[right] = false:
}
void release_forks(int pid)
{
 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/
 if (empty(ForkReady[left]) /*no one is waiting for this fork */
 fork[left] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);
 /*release the right fork*/
 if (empty(ForkReady[right]) /*no one is waiting for this fork */
 fork[right] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

Mutual Exclusion and
Synchronization in
Linux and Windows

Giorgio Giacinto 2019 Operating Systems 68

Semaphores
in UNIX

Operating Systems

� Generalization of the semWait and semSignal primitives

� No other process may access the semaphore until all
operations have completed

Consists of

• Current value of the semaphore
• Process ID of the last process to operate on the semaphore
• Number of processes waiting for the semaphore value to be

greater than its current value
• Number of processes waiting for the semaphore value to be zero

Giorgio Giacinto 2019 69

Signals

� A software mechanism that informs a process of the
occurrence of asynchronous events

� Similar to a hardware interrupt, but does not employ
priorities

� A signal is delivered by updating a field in the process
table for the process to which the signal is being sent

� A process may respond to a signal by
� Performing some default action
� Executing a signal-handler function
� Ignoring the signal

Operating SystemsGiorgio Giacinto 2019 70

UNIX Signals

Operating Systems

Value Name Description
01 SIGHUP Hang up; sent to process when kernel assumes that the

user of that process is doing no useful work
02 SIGINT Interrupt
03 SIGQUIT Quit; sent by user to induce halting of process and

production of core dump
04 SIGILL Illegal instruction
05 SIGTRAP Trace trap; triggers the execution of code for process

tracing
06 SIGIOT IOT instruction
07 SIGEMT EMT instruction
08 SIGFPE Floating-point exception
09 SIGKILL Kill; terminate process
10 SIGBUS Bus error
11 SIGSEGV Segmentation violation; process attempts to access

location outside its virtual address space
12 SIGSYS Bad argument to system call
13 SIGPIPE Write on a pipe that has no readers attached to it
14 SIGALRM Alarm clock; issued when a process wishes to receive a

signal after a period of time
15 SIGTERM Software termination
16 SIGUSR1 User-defined signal 1
17 SIGUSR2 User-defined signal 2
18 SIGCHLD Death of a child
19 SIGPWR Power failure

Giorgio Giacinto 2019 71

Spinlocks

� Most common technique for protecting a critical
section in Linux

� Can only be acquired by one thread at a time
� Any other thread will keep trying (spinning) until it can

acquire the lock – busy waiting

� Built on an integer location in memory that is checked
by each thread before it enters its critical section

� Effective in situations where the wait time for
acquiring a lock is expected to be very short

Operating SystemsGiorgio Giacinto 2019 72

void spin_lock(spinlock_t *lock) Acquires the specified lock,
spinning if needed until it is
available

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables
interrupts on the local processor

void spin_lock_irqsave(spinlock_t *lock,
unsigned long flags)

Like spin_lock_irq, but also
saves the current interrupt state
in flags

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables
the execution of all bottom
halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables
local interrupts

void spin_unlock_irqrestore(spinlock_t
*lock, unsigned long flags)

Releases given lock and restores
local interrupts to given
previous state

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables
bottom halves

void spin_lock_init(spinlock_t *lock) Initializes given spinlock
int spin_trylock(spinlock_t *lock) Tries to acquire specified lock;

returns nonzero if lock is
currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is
currently held and zero otherwise

Linux
Spinlocks

Operating SystemsGiorgio Giacinto 2019 73

Semaphores

� User level
� Linux provides a semaphore interface corresponding to

that in UNIX SVR4

� Internally
� Implemented as functions within the kernel and are

more efficient than user-visable semaphores

� Three types of kernel semaphores
� Binary semaphores
� Counting semaphores
� Reader-writer semaphores

Operating SystemsGiorgio Giacinto 2019 74

Traditional Semaphores

void sema_init(struct semaphore
*sem, int count)

Initializes the dynamically created
semaphore to the given count

void init_MUTEX(struct semaphore
*sem)

Initializes the dynamically created
semaphore with a count of 1 (initially
unlocked)

void init_MUTEX_LOCKED(struct
semaphore *sem)

Initializes the dynamically created
semaphore with a count of 0 (initially
locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore,
entering uninterruptible sleep if
semaphore is unavailable

int down_interruptible(struct
semaphore *sem)

Attempts to acquire the given semaphore,
entering interruptible sleep if semaphore
is unavailable; returns -EINTR value if a
signal other than the result of an up
operation is received

int down_trylock(struct semaphore
*sem)

Attempts to acquire the given semaphore,
and returns a nonzero value if semaphore
is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader-Writer Semaphores
void init_rwsem(struct
rw_semaphore, *rwsem)

Initializes the dynamically created
semaphore with a count of 1

void down_read(struct rw_semaphore,
*rwsem)

Down operation for readers

void up_read(struct rw_semaphore,
*rwsem)

Up operation for readers

void down_write(struct
rw_semaphore, *rwsem)

Down operation for writers

void up_write(struct rw_semaphore,
*rwsem)

Up operation for writers

Linux
Semaphores

Operating SystemsGiorgio Giacinto 2019 75

Windows
Concurrency
Mechanisms

� Windows provides synchronization among threads as
part of the object architecture

Operating Systems

• Executive dispatcher objects
• User mode critical sections
• Slim reader-writer locks
• Condition variables
• Lock-free operations

Most important methods are:

Giorgio Giacinto 2019 76

