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WHAT IS A THREAD?
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Motivations

� Execution of multiple tasks for the same goal
� interactive applications for text, audio, video, etc.
� servers, etc.

� Two main implementations
� child processes
� threads - the context switch between threads of the 

same process requires less resources than the context 
switch between processes

� Implementation of threads
� Libraries
� Hardware support
� Multicore architectures
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Multithreading

� An application may require the concurrent execution 
of multiple functions each devoted to a single task

� interactive graphical (or audio) interface in multimedia 
production and editing apps, CAD, etc.

� Input validation

� Server
� one thread associated to each client process

� Operating Systems
� some functionalities are implemented as a group of 

threads within the same process
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Processes and 
Threads

Figure 4.1   Threads and Processes
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Threads

� The CPU executes threads

� The process holds the resources
� All threads of the same process share the main memory, 

open files, stack, etc.
� Each thread has a program counter, a set of registers, the 
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Figure 4.2   Single Threaded and Multithreaded Process Models
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Multithreaded 
server 
architectures
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RPC and 
threads

Figure 4.3  Remote Procedure Call (RPC) Using Threads
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Advantages of 
Multithreading

� Response time
� A blocked thread does not necessarily block the 

process

� Resource sharing
� Threads within the same process can easily cooperate 

without the help of the OS

� Lightweight management
� The management of concurrent threads requires less 

computational resources than concurrent processes

� Scalability
� Independent threads can exploit the availability of 

multiple cores or multiple processors
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Multithreading
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Figure 4.4    Multithreading Example on a Uniprocessor
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Pthreads
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Pthreads
(cont.)
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Pthreads
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Threads and 
multicore 
architectures

� The design of a multithreaded application that exploits 
multicore architectures requires

� Isolating all independent tasks
� Subdividing the load among tasks
� Data separation to avoid conflicts in data access
� Data integrity for tasks operating on a common set of data 
� A long test e debugging phase for identifying inaccuracies 

due to the uncertainties in the order of execution of 
different tasks.
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Multithread 
Programming
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User-Level 
Threads and
Kernel-Level-
Threads

� User-Level Threads (ULT)
� Do not require a multithreaded OS
� Implemented through libraries of the programmng

language

� Kernel-Level Threads (KLT)
� The OS is in charge of managing threads
� All major OS are multithreaded: Windows, Linux, 

macOS, Solaris, z/OS, INTEGRITY RTOS, etc.
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ULT
Many-to-one 
model

� Thread scheduling is not 
managed by the OS, that 
can only schedule 
processes

� If a thread makes a 
blocking system call, the 
kernel blocks the process

� Multiple threads cannot
make concurrent systems 
calls

� No possibility of exploiting 
multicore architectures

Figure 4.5  User-Level and Kernel-Level Threads
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ULT
Process and 
Thread states
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KLT
One-to-one 
model

� The OS schedule threads and assigns resources to 
processes

� Risk: creating too many threads

� This is the model followed da Windows and Linux
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KLT
Many-to-
many model

The number of kernel threads can be less than or equal to the 
number of user threads
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Combined 
model
ULT and KLT

Figure 4.5  User-Level and Kernel-Level Threads
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Figure 4.5  User-Level and Kernel-Level Threads
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Thread Libraries

Giorgio Giacinto 2019 Operating Systems 22



Thread 
Libraries

� Multithread programming requires the use of 
specific APIs

� User libraries (they do not require any action by the 
kernel)

� Kernel libraries

� Example of thread libraries
� Pthreads - POSIX (user and kernel threads)
� Win32 (kernel threads)
� Java (user level) JRE can use the kernel libraries if the 

host OS supports multithreading
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Multithread Issues
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Main issues

� What happens to a multithread process whena a 
thread makes a call to either fork() or exec() ?

� Which tasks has to be performed when a thread is 
cancelled? 

� Signals are sent to processes and not to individual 
threads. 

� Thread pools to implement the same service for 
multiple clients

� Permanent association between threads and a 
subset of data managed by the process

� Communication between kernel and user libraries 
(LWP and scheduler activation)
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Thread, 
Processes and 
scheduling

� Many-to-many model with 
a third element between 
user and kernel threads

� LWP - LightWeight Process 
(introduced in Solaris)
� This is a data structure 

managed by the kernel
� Typically one LWP for each 

blocking system call
� max number of LWPs set a system 

parameter
� The user library schedule the 

user threads on the available 
LWPs
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Examples of Thread 
state diagrams
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Linux 
Process/Thread 
model
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Windows 
Thread States
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Figure 4.11   Windows Thread States
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