
OPERATING SYSTEMS
THREADS

WHAT IS A THREAD?

Giorgio Giacinto 2019 Operating Systems 2

Motivations

� Execution of multiple tasks for the same goal
� interactive applications for text, audio, video, etc.
� servers, etc.

� Two main implementations
� child processes
� threads - the context switch between threads of the

same process requires less resources than the context
switch between processes

� Implementation of threads
� Libraries
� Hardware support
� Multicore architectures

Giorgio Giacinto 2019 Operating Systems 3

Multithreading

� An application may require the concurrent execution
of multiple functions each devoted to a single task

� interactive graphical (or audio) interface in multimedia
production and editing apps, CAD, etc.

� Input validation

� Server
� one thread associated to each client process

� Operating Systems
� some functionalities are implemented as a group of

threads within the same process

Giorgio Giacinto 2019 Operating Systems 4

Processes and
Threads

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

Giorgio Giacinto 2019 Operating Systems 5

Threads

� The CPU executes threads

� The process holds the resources
� All threads of the same process share the main memory,

open files, stack, etc.
� Each thread has a program counter, a set of registers, the

stack
Single-Threaded
Process Model

Process
Control
Block

User
Address

Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address

Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread
Control
Block

Thread
Control
Block

Giorgio Giacinto 2019 Operating Systems 6

Multithreaded
server
architectures

Giorgio Giacinto 2019 Operating Systems 7

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

RPC and
threads

Figure 4.3 Remote Procedure Call (RPC) Using Threads

(a) RPC Using Single Thread

(b) RPC Using One Thread per Server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server

Server

Server

Server

RPC
Request

RPC
Request

RPC
Request

RPC
Request

Figure 4.3 Remote Procedure Call (RPC) Using Threads

(a) RPC Using Single Thread

(b) RPC Using One Thread per Server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server

Server

Server

Server

RPC
Request

RPC
Request

RPC
Request

RPC
Request

Giorgio Giacinto 2019 Operating Systems 8

Advantages of
Multithreading

� Response time
� A blocked thread does not necessarily block the

process

� Resource sharing
� Threads within the same process can easily cooperate

without the help of the OS

� Lightweight management
� The management of concurrent threads requires less

computational resources than concurrent processes

� Scalability
� Independent threads can exploit the availability of

multiple cores or multiple processors

Giorgio Giacinto 2019 Operating Systems 9

Multithreading

Time

Blocked

I/O
request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4 Multithreading Example on a Uniprocessor

Ready Running

Request
complete

Time quantum
expires

Time quantum
expires

Process
created

Giorgio Giacinto 2019 Operating Systems 10

Pthreads

Giorgio Giacinto 2019 Operating Systems 11

Pthreads
(cont.)

Giorgio Giacinto 2019 Operating Systems 12

Pthreads

Giorgio Giacinto 2019 Operating Systems 13

Threads and
multicore
architectures

� The design of a multithreaded application that exploits
multicore architectures requires

� Isolating all independent tasks
� Subdividing the load among tasks
� Data separation to avoid conflicts in data access
� Data integrity for tasks operating on a common set of data
� A long test e debugging phase for identifying inaccuracies

due to the uncertainties in the order of execution of
different tasks.

Giorgio Giacinto 2019 Operating Systems 14

Multithread
Programming

Giorgio Giacinto 2019 Operating Systems 15

User-Level
Threads and
Kernel-Level-
Threads

� User-Level Threads (ULT)
� Do not require a multithreaded OS
� Implemented through libraries of the programmng

language

� Kernel-Level Threads (KLT)
� The OS is in charge of managing threads
� All major OS are multithreaded: Windows, Linux,

macOS, Solaris, z/OS, INTEGRITY RTOS, etc.

Giorgio Giacinto 2019 Operating Systems 16

ULT
Many-to-one
model

� Thread scheduling is not
managed by the OS, that
can only schedule
processes

� If a thread makes a
blocking system call, the
kernel blocks the process

� Multiple threads cannot
make concurrent systems
calls

� No possibility of exploiting
multicore architectures

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process
Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Giorgio Giacinto 2019 Operating Systems 17

ULT
Process and
Thread states

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(b)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready

Figure 4.6 Examples of the Relationships Between User-Level Thread States and Process States

Running

Colored state
is current state

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

Giorgio Giacinto 2019 Operating Systems 18

KLT
One-to-one
model

� The OS schedule threads and assigns resources to
processes

� Risk: creating too many threads

� This is the model followed da Windows and Linux

Giorgio Giacinto 2019 Operating Systems 19

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

KLT
Many-to-
many model

The number of kernel threads can be less than or equal to the
number of user threads

Giorgio Giacinto 2019 Operating Systems 20

user thread

kernel threadkkk

Combined
model
ULT and KLT

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Giorgio Giacinto 2019 Operating Systems 21

Thread Libraries

Giorgio Giacinto 2019 Operating Systems 22

Thread
Libraries

� Multithread programming requires the use of
specific APIs

� User libraries (they do not require any action by the
kernel)

� Kernel libraries

� Example of thread libraries
� Pthreads - POSIX (user and kernel threads)
� Win32 (kernel threads)
� Java (user level) JRE can use the kernel libraries if the

host OS supports multithreading

Giorgio Giacinto 2019 Operating Systems 23

Multithread Issues

Giorgio Giacinto 2019 Operating Systems 24

Main issues

� What happens to a multithread process whena a
thread makes a call to either fork() or exec() ?

� Which tasks has to be performed when a thread is
cancelled?

� Signals are sent to processes and not to individual
threads.

� Thread pools to implement the same service for
multiple clients

� Permanent association between threads and a
subset of data managed by the process

� Communication between kernel and user libraries
(LWP and scheduler activation)

Giorgio Giacinto 2019 Operating Systems 25

Thread,
Processes and
scheduling

� Many-to-many model with
a third element between
user and kernel threads

� LWP - LightWeight Process
(introduced in Solaris)
� This is a data structure

managed by the kernel
� Typically one LWP for each

blocking system call
� max number of LWPs set a system

parameter
� The user library schedule the

user threads on the available
LWPs

Giorgio Giacinto 2019 Operating Systems 26

Examples of Thread
state diagrams

Giorgio Giacinto 2019 Operating Systems 27

Linux
Process/Thread
model

Giorgio Giacinto 2019 Operating Systems 28

Stopped

Ready

Running
State

Uninterruptible

Interruptible

Executing Zombie

Figure 4.15 Linux Process/Thread Model

creation
scheduling

termination

signalsignal

event
signal

or
event

Windows
Thread States

Giorgio Giacinto 2019 Operating Systems 29
Figure 4.11 Windows Thread States

Transition

Ready

Waiting

Runnable

Not Runnable

StandbyPick to
Run Switch

Preempted

Block/
Suspend

Unblock/Resume
Resource Available

Resource
Available

Unblock
Resource Not Available

Terminate

Terminated

Running

