
OPERATING SYSTEMS
PROCESSES

Definitions

Giorgio Giacinto 2019 Operating System

Processes

� The OS has to manage the concurrent execution of
programs

� The execution of a program on a computer is called a
process

Giorgio Giacinto 2019 Operating System

Terminology

� Old operating systems where designed to schedule
batch jobs

� When multiprogramming was introduced, as well as
time-sharing, then the concept of process was
introduced.

� However, we still have some algorithms used by the
operating system that still have the word job in their
name.

Giorgio Giacinto 2019 Operating System

Informal
definition of
process

� A process represents a program in execution that is
characterised by

� the sequence of instructions to be executed
� the CPU state (program counter, registers, etc.)
� data, i.e., the program variables
� return addresses related to function and procedure calls

� More than one process can be originated by the same
program

� e.g., two users executing the same program

� Process creation
� console: type the name of the program and hit “return”
� GUI: double click on the icon

Giorgio Giacinto 2019 Operating System

Example
Three
processes

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

Giorgio Giacinto 2019 Operating System

Example
Execution
traces

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

8000
8001
8002
8003

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

 (a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2 Giorgio Giacinto 2019 Operating System

Example
Sequence of
execution

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005
-------------------- Timeout
7 100
8 101
9 102
10 103
11 104
12 105
13 8000
14 8001
15 8002
16 8003
----------------I/O Request
17 100
18 101
19 102
20 103
21 104
22 105
23 12000
24 12001
25 12002
26 12003

27 12004
28 12005
--------------------Timeout
29 100
30 101
31 102
32 103
33 104
34 105
35 5006
36 5007
37 5008
38 5009
39 5010
40 5011
--------------------Timeout
41 100
42 101
43 102
44 103
45 104
46 105
47 12006
48 12007
49 12008
50 12009
51 12010
52 12011
--------------------Timeout

 100 = Starting address of dispatcher program

 Shaded areas indicate execution of dispatcher process;
 first and third columns count instruction cycles;
 second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2 Giorgio Giacinto 2019 Operating System

Example
State
transitions

Dispatcher

= Running = Ready

Figure 3.7 Process States for Trace of Figure 3.4

= Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

Giorgio Giacinto 2019 Operating System

Process States

� A state diagram is used to describe the phases of
execution of a process

� the details differ from one system to another

� Five states
� New

the process is created, data structures are initialised
� Running

in uniprocessor system, only one process is running
� Ready

the process is ready but the CPU is already in use
� Blocked

the process is waiting for some event
� Exit

results are released and data structures are updated

Giorgio Giacinto 2019 Operating System

Five-State
Process Model

New Ready

Blocked

Running Exit

Figure 3.6 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event
Wait

Event
Occurs

Giorgio Giacinto 2019 Operating System

Queues for
process
management

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

Giorgio Giacinto 2019 Operating System

Process image

Process
Identification

Process
Control
Block

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space

(Programs, Data)

Shared Address
Space

Process
Identification

Process 1 Process 2 Process n

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space

(Programs, Data)

Shared Address
Space

Process
Identification

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space

(Programs, Data)

Shared Address
Space

Figure 3.13 User Processes in Virtual Memory
Giorgio Giacinto 2019 Operating System

Process
Control Block
(PCB)

This component contains the
information needed by the OS

to identify the process and
control its execution

Identifier

Figure 3.1 Simplified Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

Giorgio Giacinto 2019 Operating System

PCB and
process switch

process P0 process P1

save state into PCB0

save state into PCB1

reload state from PCB1

reload state from PCB0

operating system

idle

idle

executingidle

executing

executing

interrupt or system call

interrupt or system call

•
•
•

•
•
•

Giorgio Giacinto 2019 Operating System

Thread

� The OS may allow different threads of execution
within the same process space

� e.g., the spell checker in a text editor

� The process structure and the process control
mechanisms are modelled accordingly

� The vast majority of current OS are multithreaded

Giorgio Giacinto 2019 Operating System

Process Description

Giorgio Giacinto 2019 Operating System

Processes and
system
resources

Processor I/O I/O

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

I/O
Main

Memory

Computer
Resources

Virtual
Memory

P1 P2 Pn

At a given time t
- One process has a number of resources allocated
- Each resource is allocated to 0, 1 or more processes
Resource allocation is controlled by the OS

Giorgio Giacinto 2019 Operating System

OS Tables

Giorgio Giacinto 2019 Operating System

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process
Image

Process
1

Process
Image

Process
n

I/O Tables

File Tables

Figure 3.11 General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n

Execution of
the OS

P1 P2 Pn

Kernel

(a) Separate kernel

P1 P2 Pn OS1 OSk

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating
System and User Processes

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

P1 P2 Pn

Kernel

(a) Separate kernel

P1 P2 Pn OS1 OSk

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating
System and User Processes

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

Giorgio Giacinto 2019 Operating System

Process Scheduling

Giorgio Giacinto 2019 Operating System

Goals

� Multiprogramming
� Maximise the use of the CPU

� Time-sharing
� The CPU is shared among different processes and users

and the goal is to minimise the response time for each
process and user

Scheduler
� This is one of the core component of the OS

Each time that one processor (core) is idle, the
scheduler selects one of the processes in the ready
queue

� different criteria can be used

Giorgio Giacinto 2019 Operating System

Ready queues
and I/O Device
Queues

Giorgio Giacinto 2019 Operating System

Queueing
diagram

Giorgio Giacinto 2019 Operating System

Short-term
scheduling

� Also called the dispatcher
� The task is to select the next process to be executed from

the ready queue
� The algorithm should be as fast as possible

� the time required to the dispatcher to take a decision should
be significantly smaller than the average CPU burst
i.e., the time frame in which a process is in the running state

� Process switch is a frequent operation, especially for time-
sharing systems

Giorgio Giacinto 2019 Operating System

Context
switch

� This is the name given to the changes in the CPU
registers when the OS interrupts the execution of
process Pi and starts or resume the execution of
process Pj

� The speed of the context switch depends on
� the hardware architecture

� e g., the CPU may contain different groups of registers, each
group associated to one of the processes in execution

� the size of the context

� When the OS takes control, there is no context switch
but only a mode switch

Giorgio Giacinto 2019 Operating System

Long-term
Scheduling

� Typical of batch systems

� It controls the degree of multiprogramming
� when a process should be created
� when a new process should join the ready queue

e.g., only after the termination of one of the processes in
execution

� UNIX and Windows does not have long-term
scheduling functions

Giorgio Giacinto 2019 Operating System

Long-term
Scheduling

� It is not called with high frequency
� The algorithm is not required to be fast

� The goal of the algorithm is to maximise the overall
system usage through the concurrent execution of
CPU bound and I/O bound processes

� CPU bound processes: they have an intensive use of the CPU
� I/O bound processes: they heavily use I/O

Giorgio Giacinto 2019 Operating System

Medium-term
Scheduling

� This is typical of time-sharing systems

� The degree of multiprogramming is controlled through
swapping, i.e., moving some processes from the main memory
to the hard disk

Giorgio Giacinto 2019 Operating System

Operations on
Processes

Giorgio Giacinto 2019 Operating System

Process
Creation

� UNIX model
a new process is created by another process in
execution

� The new process is called the child and the other
process is called the parent

� Each process is identified by a numerical identifier

� Resources of the new process
� allocated by the OS
� some relations with the resources of the parent process

Giorgio Giacinto 2019 Operating System

Parent-Child
relationship

� The parent process can share the resources with the
child process

� memory locations, open files, communication channels,
etc.

� Cooperation among processes

� The parent process can initialise the child process
� After the child is created

� the parent continue executing until the OS switches to
the child

� the parent waits until the completion of the child
processes

� Two alternatives for the image of the child process
� a copy of the parent process
� a new program

Giorgio Giacinto 2019 Operating System

Process
Termination

� Any process terminates with the exit() system call
� all the resources are deallocated
� a child process sends some data to the parent process

� The exit() system call may terminate any child
process that is still executing

� It is possible to force termination
� the administrator
� a parent process can force the termination of any child

processes
� the OS

Giorgio Giacinto 2019 Operating System

InterProcess
Communication

Giorgio Giacinto 2019 Operating System

Motivations

� Process communication is used to
� share information between cooperating processes
� increase the speed of execution by distributing the

computation on multiple processors or cores
� exploit program modularity when different activities of

the same program are implemented as concurrent
processes or threads

� make the use of the computer more convenient allowing
the user to perform multiple concurrent activities

Giorgio Giacinto 2019 Operating System

IPC
InterProcess
Communication

� This is the name of the group of system calls that
implements process communication and
synchronisation mechanisms

� Two main communication techniques
� use of shared memory locations

� the kernel is called for creating the area, then processes can
communicate without calling the kernel

� message passing
� the kernel is called for the delivery

Giorgio Giacinto 2019 Operating System

message passing shared memory

Communication
models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

Giorgio Giacinto 2019 Operating System

Shared
memory
The producer-
consumer
problem

Typical paradigm for cooperating processes.

Some activities of the operating system are
implemented according to this paradigm

Producer
� Produce some data and insert them in a buffer where the

consumer has access to

Consumer
� Take the data from the buffer and use them

Shared Buffer
� Typically implemented as a circular array

Giorgio Giacinto 2019 Operating System

Buffer of the
producer-
consumer
problem

#define DIM_BUFFER 10

typedef struct {

. . .

} item;

item buffer[DIM_BUFFER];

int in = 0;

int out = 0;

Giorgio Giacinto 2019 Operating System

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Producer

The buffer can store DIM_BUFFER - 1 items at most

Giorgio Giacinto 2019 Operating System

Consumer

Giorgio Giacinto 2019 Operating System

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Message
Passing

� No need for a shared memory space

� Allows the communication between unrelated
processes

� Based on two logical functions
� send(message)
� receive(message)

� Different communication modalities
� direct or indirect
� synchronous or asynchronous
� automatic or explicit buffer management

Giorgio Giacinto 2019 Operating System

Direct
communication

� Between process pairs

� Each process must specify the process he wants to
communicate to

� symmetric communication
both processes have to specify the other process

� asymmetric communication
only the sender specifies the other process

� automatic communication channel provided by the OS

Giorgio Giacinto 2019 Operating System

Indirect
communication

� More flexibility w.r.t. direct communication
mechanisms

� The OS implements ports and mailboxes
� processes communicates by specifying the port
� the port can be associated to one or more processes
� two processes can use more than one port to

communicate

Giorgio Giacinto 2019 Operating System

Synchronization

� Synchronous (a.k.a. blocking) communication
� blocking send

the sender waits until the other process acknowledges
the receipt

� blocking receive
the receiver waits until a message is sent

� Asynchronous (a.k.a. non-blocking) communication
� non-blocking send

the sender sends a message and continues
� non-blocking receive

the receiver either receives a valid message or a null
value

Giorgio Giacinto 2019 Operating System

� Process communication can be implemented by any
combination of synchronous and asynchronous send
and receive

� A typical configuration is the rendez-vouz
� both send and receive are blocking
� it can be used to solve the producer-consumer problem

Giorgio Giacinto 2019 Operating System

Synchronization

Message
queues

� Zero capacity (no buffering)
� The queue cannot contain messages to be delivered

� Limited capacity (automatic buffering)
� The queue can contain up to N messages

When the queue is full, the sender must wait

� Unlimited capacity (automatic buffering)
� The queue has no limit in the number of messages

Giorgio Giacinto 2019 Operating System

Client-server
communication

Giorgio Giacinto 2019 Operating System

Socket
communication

� Services are associated to ports that are identified by an integer
� http port 80, ftp port 21, ssh port 22, etc.

� The client sends a request to one of the standard ports and
waits for the reply to a port with number > 1024

Giorgio Giacinto 2019 Operating System

RPC
Remote
Procedure Call

� Client processes can call a procedure that is physically
stored on a remote server

� The client program includes a stub that allows the
compiler to be unaware of the remote procedure

� The stub is in charge to locate the server, and send the
data to the remote procedure in the correct format

Giorgio Giacinto 2019 Operating System

Pipe

� Communication channel between processes
� unnamed pipe for processes in a parent/child relationship
� named pipe any process pair

unnamed pipe

Giorgio Giacinto 2019 Operating System

