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The Operating 
System is

� A Human-Machine Interface
� allows a simple interaction with the underlying hardware

� A Management Systems
� resource sharing among users and programs

� A System that evolves with time
� to keep up with the evolution of hardware platforms

� to keep up with new users’ requests
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System Calls
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What is a 
system call?

� A system call is a function of the OS usually part of one 
the system libraries

� usually written in a high level language such as C, C++, 
etc.

� small portions might be written in the assembly language

� The programmer interacts with the OS through APIs 
(Application Programming Interfaces)

� a high level function performing one user task such as 
opening a file, etc.

� it may contain more than one system call

Giorgio Giacinto 2019 Operating Systems 6



Example
API and system 
calls

File copy
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Example
API � read() - API UNIX - Linux

� int fd the file descriptor to be read
� void *buf a buffer where the data will be read into
� size_t count the max number of bytes to be read into the

buffer
This function returns the number of bytes that are read
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The open()
system call
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The write()
system call
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System call 
categories
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Process Control

File Management

Device Management

OS Configuration and Settings

Communication



UNIX 
Vs. Win32
System Calls
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Windows UNIX
Process Control CreateProcess()

ExitProcess()
WaitForSIngleObject()

fork()
exit()
wait()

File Management CreateFile()
ReadFile()
WriteFile()
CloseHandle()

open()
read()
write()
close()

Device 
Management

SetConsoleMode()
ReadConsole()
WriteConsole()

ioctl()
read()
write()

System Info GetCurrentProcessID()
SetTimer()
Sleep()

getpid()
alarm()
sleep()

Communication CreatePipe()
CreateFileMapping()
MapViewOfFIle()

pipe()
shmget()
nmap()

Protection and 
Security

SetFileSecurity()
InitializeSecurityDescriptor()
SetSecurityDescriptorGroup()

chmod()
umask()
chown()



MS-DOS
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at system startup running a program



FreeBSD
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System Programs
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System 
Programs

� Utilities
� File management, modification, and backup
� Status information
� Programming environments (text editors, compilers, 

debugger, etc.)

� Application programs usually distributed with the 
OS but nor part of the OS

� Web browser
� Office automation
� Music and Video Players
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Operating System 
Design and Implementation
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Three Phases

� OS Scope
� Users and system goals

� Policies and mechanisms
� What the OS will have to do and how it will do it

� Implementation
� High-level language and assembly language
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Operating System 
Structures
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Simple 
Structure

� Typical of old operating systems
� Tightly coupled to an individual hardware architecture
� Limited by hardware functionalities
� MS-DOS and initial UNIX versions

� Main characteristics 
� Not divided into modules

� Monolithic kernel
� User programs have direct access to the I/O
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Simple structure
MS-DOS

ROM BIOS device drivers

application program

MS-DOS device drivers

resident system program
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Traditional UNIX 
System 
Structure
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Layered 
Approach

� Need specific hardware support

� Modularity

� The OS hides most of the low level functionalities
� Protection from improper use
� System update and upgrade is easier
� Programmers interact with APIs
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Layered 
Approach

How many layers?

Which functions in 
each layer?

System effectiveness
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Microkernel

� ’80s: The size of OS kernels was too large

� Microkernel approach
identification of the core functions, all other 
functions implemented as user processes

� e.g., the Mach OS (Carnegie Mellon)

� External components are implemented as server 
processes

� they interact with each other through message passing 
via the kernel

� it can slow down the system
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Microkernel
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Modular 
structure

� Designed according to the Object Oriented 
Programming paradigm

� the kernel contains only core components
� other functions are implemented as modules that can be 

dynamically loaded
� e.g., support for different file systems

� modules can communicate to each other without calling 
the kernel

� This structures combines the benefits of microkernel 
with the layered structure
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Ibrid 
Structures

� Modern OS does not strictly follow a particular 
structures 

� Each function can be implemented according to one of 
the available structures according to the

� goals
� expected performances
� user experience
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Modern OS 
structures
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Figure 2.1  Computer Hardware and Software Structure
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MS Windows 
Structure

User mode

Kernel mode

Figure 2.14  Windows Architecture
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UNIX
Structure
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macOS 
Structure
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iOS 
Structure

Giorgio Giacinto 2019 Operating Systems 33

Cocoa Touch
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Core OS



Android 
Structure
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Figure 2.20  Android Software Architecture
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