OPERATING SYSTEMS

OS STRUCTURE

Operating System
Services

Giorgio Giacinto 2019 Operating Systems

user and other system programs

GUI batch command line

user interfaces

O p e ratl n g system calls
System .
program 1/O file I resource)
. execution operations systems cammumication allocation Beeournting
Services
error protection
detection) s e?:ﬂ?ity
services

operating system

hardware

Giorgio Giacinto 2019

Operating Systems

* A Human-Machine Interface
- allows a simple interaction with the underlying hardware

_ * A Management Systems
The Opel’atlng * resource sharing among users and programs

Systemiis

* A System that evolves with time
* to keep up with the evolution of hardware platforms
* to keep up with new users’ requests

Giorgio Giacinto 2019 Operating Systems

System Calls

Giorgio Giacinto 2019 Operating Systems

- A system callis a function of the OS usually part of one
the system libraries
- usually written in a high level language such as C, C++,

etc.
Whatis a * small portions might be written in the assembly language
SyStem call? * The programmer interacts with the OS through APIs

(Application Programming Interfaces)

- a high level function performing one user task such as
opening a file, etc.
* it may contain more than one system call

Giorgio Giacinto 2019 Operating Systems

Example

APl and system
calls

Giorgio Giacinto 2019

source file

>

destination file

4 Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

\

4

File copy

Operating Systems

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size_t count)
| | | | | |
return function parameters
value name

* read () - APIUNIX - Linux

- int fd the file descriptor to be read

* void *buf a buffer where the data will be read into

* size t count the maxnumber of bytesto be read intothe
buffer

This function returns the number of bytes that are read

Giorgio Giacinto 2019

Operating Systems

The open ()

system call

Giorgio Giacinto 2019

user
mode

kernel
mode

open ()

user application

system call interface

open ()
Implementation

» of open ()

system call

return

Operating Systems

Thewrite ()

system call

Giorgio Giacinto 2019

user
mode

kemel

mode
Q’"‘“"

Operating Systems

#include <stdio.h>
intmain ()

printf ("Greetings”);

return O;
}

standard C library

write ()
system call

System call
categories

Giorgio Giacinto 2019

{ Il 4

.t Process Control
@ File Management
8 Device Management

OO OS Configuration and Settings

e Communication

Operating Systems

UNIX
Vs. Win32

System Calls

Giorgio Giacinto 2019

Process Control

File Management

Device
Management

System Info

Communication

Protection and
Security

Windows

CreateProcess ()
ExitProcess ()
WaitForSIngleObject ()

CreateFile ()
ReadFile ()
WriteFile ()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole ()

GetCurrentProcessID()
SetTimer ()
Sleep ()

CreatePipe ()
CreateFileMapping ()
MapViewOfFIle ()

SetFileSecurity ()

InitializeSecurityDescriptor ()
SetSecurityDescriptorGroup ()

Operating Systems

UNIX

fork ()
exit ()
wait ()

open ()
read ()
write ()
close ()

ioctl ()
read ()
write ()

getpid()
alarm()
sleep ()

pipe ()
shmget ()
nmap ()

chmod ()
umask ()
chown ()

12

Giorgio Giacinto 2019

free memory

command
interpreter

kernel

(@)

at system startup

Operating Systems

free memory

process

command
interpreter

kernel

(b)

running a program

13

process D

free memory

process C

FreeBSD

interpreter

process B

kernel

Giorgio Giacinto 2019 Operating Systems

14

System Programs

Giorgio Giacinto 2019 Operating Systems

System

Programs

Giorgio Giacinto 2019

- Utilities
* File management, modification, and backup
* Status information

* Programming environments (text editors, compilers,
debugger, etc.)

* Application programs usually distributed with the
OS but nor part of the OS

* Web browser
 Office automation
* Music and Video Players

Operating Systems

16

Operating System
Design and Implementation

Giorgio Giacinto 2019 Operating Systems

Three Phases

Giorgio Giacinto 2019

* OS Scope
* Users and system goals

* Policies and mechanisms
* What the OS will have to do and how it will do it

* Implementation
* High-level language and assembly language

Operating Systems

18

Operating System
Structures

Giorgio Giacinto 2019 Operating Systems

Simple

Structure

Giorgio Giacinto 2019

* Typical of old operating systems
* Tightly coupled to an individual hardware architecture
- Limited by hardware functionalities

+ MS-DOS and initial UNIX versions

* Main characteristics
* Not divided into modules
* Monolithic kernel

* User programs have direct access to the 1/O

Operating Systems

20

Simple structure

MS-DOS

Giorgio Giacinto 2019

application program

resident system program

MS-DOS device drivers

ROM BIOS device drivers

Operating Systems

21

Traditional UNIX

System
Structure

Giorgio Giacinto 2019

Kernel

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling

handling

swapping block /O page replacement

character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers

terminals

disks and tapes physical memory

Operating Systems

22

Layered

Approach

Giorgio Giacinto 2019

* Need specific hardware support
* Modularity

* The OS hides most of the low level functionalities
* Protection from improper use

* System update and upgrade is easier
* Programmers interact with APIs

Operating Systems

23

Layered

Approach

Giorgio Giacinto 2019

layer N
user interface

layer O
hardware

Operating Systems

How many layers?

Which functions in
each layer?

System effectiveness

24

Microkernel

Giorgio Giacinto 2019

- '80s: The size of OS kernels was too large

* Microkernel approach
identification of the core functions, all other
functions implemented as user processes
* e.g., the Mach OS (Carnegie Mellon)

* External components are implemented as server
processes

* they interact with each other through message passing
via the kernel
* it can slow down the system

Operating Systems

25

Microkernel

Giorgio Giacinto 2019

Application File Device
Program System Driver
N A PAS A
H messages H H messages H
Interprocess el cPU
Communication managment scheduling
A microkernel i

hardware

Operating Systems

user
mode

kernel
mode

Modular

structure

Giorgio Giacinto 2019

* Designed according to the Object Oriented
Programming paradigm

* the kernel contains only core components

- other functions are implemented as modules that can be
dynamically loaded

* e.g., support for different file systems

* modules can communicate to each other without calling
the kernel

* This structures combines the benefits of microkernel
with the layered structure

Operating Systems

27

Ibrid

Structures

Giorgio Giacinto 2019

* Modern OS does not strictly follow a particular
structures
* Each function can be implemented according to one of
the available structures according to the
* goals
- expected performances
° user experience

Operating Systems

28

L Application programs

Application
programming interface

Application Libraries/utilities Software
binary interface

Operating system
Instruction Set —
M O d e rn O S Architecture
t t Execution hardware
Hardware

I/O devices Main
il memor
networking y

Giorgio Giacinto 2019 Operating Systems

Service processes o
p Applications

System support
processes
Service control SVChost.exe Environment
manager
r Task manager subsystems
Lsass Winmgmt.exe Windors
| Winlogon | Spooler Explorer POSIX
X . User
Session Services.exe application
manager Subsytem DLLs Win32
SRELEELE N \ ’ v
: NtdlLdll
System '
T A Y Y I i Y IS F
c \A A \A Kernel mode \A \4 \
MS Windows ,,
(Kernel-mode callable interfaces)
St t Win32 USER,
ructure vomma] 21 1 [o] 2] <] 2] o] oo
I = 2| g g 5 Tz & 2
» s |z &| 3 51 2 |=28|& g
~ a oe e |B = 2 |. g =
& S |8 - |e< E 152 |s&F e
Device & g |EE| = |B 2 E 8¢ |=c|E2
g B |og 2| B TS 2 |a&|25|78 :
and file & s |g=| B S g E (7| g g Graphics
system §_ a2 g E g e I] drivers
drivers ® . = g8 < g i
Kernel |
Hardware abstraction layer (HAL) |
Lsass = local security authentication server Colored area indicates Executive

POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Operating Systems

Giorgio Giacinto 2019

User Programs

Tra
“.."-. . .
R S Libraries |
T, User Level
- et
A
| System Call Interface |
A A
Inter-process
X communication
File Subsystem P
> rocess
U N IX Control Scheduler
7y Subsystem
St r U Ct U re |Buffer Cach]e Memory
- management
A A
character block
Device Drivers Kernel Level

Giorgio Giacinto 2019

A

Hardware Control

Hardware Level

Operating Systems

31

macOS

Structure

Giorgio Giacinto 2019

hical interf
graphical user interface feE

application environments and services

kernel environment
BSD

Mach

1/O kit kernel extensions

Operating Systems 32

10S

Structure

Cocoa Touch

Media Services

Core Services

Core OS

Operating Systems

33

Android

Structure

Giorgio Giacinto 2019

Player

Activity Manager m‘;‘l‘gj Content Providers View System NK};‘;‘:;“;;:“
Package Manager 11&1:}::;:! Location Manager XMPP Service

System Libraries

[Surface Manager] [Media Framewm'k] [SQLite]

Dalvik Virtual Machine

[OpenGL/ES] [FreeType] [LibWebCore]

[SGL] [SSL] [Libe]

Linux Kernel

[Display Driver] [Camera Driver] [Bluetooth Driver] [Flasgmi':wry] [Bingf‘{v(ell!) ©)]

[USB Driver] [Keypad Driver] [WiFi Driver] [Audio Drivers] [Magggvgveer:‘lent]

Implementation:

. Applications, Application Fr k: Java

I:' . System Libraries, Android Runtime: C and C++

I:' Linux Kernel: C

Operating Systems

34

