
OPERATING SYSTEMS
OS STRUCTURE

Operating System
Services

Giorgio Giacinto 2019 Operating Systems 2

Operating
System
Services

Giorgio Giacinto 2019 Operating Systems 3

The Operating
System is

� A Human-Machine Interface
� allows a simple interaction with the underlying hardware

� A Management Systems
� resource sharing among users and programs

� A System that evolves with time
� to keep up with the evolution of hardware platforms

� to keep up with new users’ requests

Giorgio Giacinto 2019 Operating Systems 4

System Calls

Giorgio Giacinto 2019 Operating Systems 5

What is a
system call?

� A system call is a function of the OS usually part of one
the system libraries

� usually written in a high level language such as C, C++,
etc.

� small portions might be written in the assembly language

� The programmer interacts with the OS through APIs
(Application Programming Interfaces)

� a high level function performing one user task such as
opening a file, etc.

� it may contain more than one system call

Giorgio Giacinto 2019 Operating Systems 6

Example
API and system
calls

File copy

Giorgio Giacinto 2019 Operating Systems 7

Example
API � read() - API UNIX - Linux

� int fd the file descriptor to be read
� void *buf a buffer where the data will be read into
� size_t count the max number of bytes to be read into the

buffer
This function returns the number of bytes that are read

Giorgio Giacinto 2019 Operating Systems 8

The open()
system call

Giorgio Giacinto 2019 Operating Systems 9

The write()
system call

Giorgio Giacinto 2019 Operating Systems 10

System call
categories

Giorgio Giacinto 2019 Operating Systems 11

Process Control

File Management

Device Management

OS Configuration and Settings

Communication

UNIX
Vs. Win32
System Calls

Giorgio Giacinto 2019 Operating Systems 12

Windows UNIX
Process Control CreateProcess()

ExitProcess()
WaitForSIngleObject()

fork()
exit()
wait()

File Management CreateFile()
ReadFile()
WriteFile()
CloseHandle()

open()
read()
write()
close()

Device
Management

SetConsoleMode()
ReadConsole()
WriteConsole()

ioctl()
read()
write()

System Info GetCurrentProcessID()
SetTimer()
Sleep()

getpid()
alarm()
sleep()

Communication CreatePipe()
CreateFileMapping()
MapViewOfFIle()

pipe()
shmget()
nmap()

Protection and
Security

SetFileSecurity()
InitializeSecurityDescriptor()
SetSecurityDescriptorGroup()

chmod()
umask()
chown()

MS-DOS

Giorgio Giacinto 2019 Operating Systems 13

at system startup running a program

FreeBSD

Giorgio Giacinto 2019 Operating Systems 14

System Programs

Giorgio Giacinto 2019 Operating Systems 15

System
Programs

� Utilities
� File management, modification, and backup
� Status information
� Programming environments (text editors, compilers,

debugger, etc.)

� Application programs usually distributed with the
OS but nor part of the OS

� Web browser
� Office automation
� Music and Video Players

Giorgio Giacinto 2019 Operating Systems 16

Operating System
Design and Implementation

Giorgio Giacinto 2019 Operating Systems 17

Three Phases

� OS Scope
� Users and system goals

� Policies and mechanisms
� What the OS will have to do and how it will do it

� Implementation
� High-level language and assembly language

Giorgio Giacinto 2019 Operating Systems 18

Operating System
Structures

Giorgio Giacinto 2019 Operating Systems 19

Simple
Structure

� Typical of old operating systems
� Tightly coupled to an individual hardware architecture
� Limited by hardware functionalities
� MS-DOS and initial UNIX versions

� Main characteristics
� Not divided into modules

� Monolithic kernel
� User programs have direct access to the I/O

Giorgio Giacinto 2019 Operating Systems 20

Simple structure
MS-DOS

ROM BIOS device drivers

application program

MS-DOS device drivers

resident system program

Giorgio Giacinto 2019 Operating Systems 21

Traditional UNIX
System
Structure

Giorgio Giacinto 2019 Operating Systems 22

Layered
Approach

� Need specific hardware support

� Modularity

� The OS hides most of the low level functionalities
� Protection from improper use
� System update and upgrade is easier
� Programmers interact with APIs

Giorgio Giacinto 2019 Operating Systems 23

Layered
Approach

How many layers?

Which functions in
each layer?

System effectiveness

Giorgio Giacinto 2019 Operating Systems 24

Microkernel

� ’80s: The size of OS kernels was too large

� Microkernel approach
identification of the core functions, all other
functions implemented as user processes

� e.g., the Mach OS (Carnegie Mellon)

� External components are implemented as server
processes

� they interact with each other through message passing
via the kernel

� it can slow down the system

Giorgio Giacinto 2019 Operating Systems 25

Microkernel

Giorgio Giacinto 2019 Operating Systems 26

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

Modular
structure

� Designed according to the Object Oriented
Programming paradigm

� the kernel contains only core components
� other functions are implemented as modules that can be

dynamically loaded
� e.g., support for different file systems

� modules can communicate to each other without calling
the kernel

� This structures combines the benefits of microkernel
with the layered structure

Giorgio Giacinto 2019 Operating Systems 27

Ibrid
Structures

� Modern OS does not strictly follow a particular
structures

� Each function can be implemented according to one of
the available structures according to the

� goals
� expected performances
� user experience

Giorgio Giacinto 2019 Operating Systems 28

Modern OS
structures

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction Set
Architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Figure 2.1 Computer Hardware and Software Structure

Application programs

Application
binary interface

Operating system

Libraries/utilities

Giorgio Giacinto 2019 Operating Systems 29

MS Windows
Structure

User mode

Kernel mode

Figure 2.14 Windows Architecture

Session
manager

System
threads

System service dispatcher

Winlogon
Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Colored area indicates Executive

System support
processes

Service processes Applications

Environment
subsystems

Service control
manager

Services.exe

Spooler
Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
Explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

File system
 cache

O
bject m

anager

Plug and play
m

anager

Pow
er m

anager

Security reference
m

onitor

V
irtual m

em
ory

Processes and
threads

C
onfiguration

m
anager (registry)

Local procedure
call

POSIX

Device
and file
system
drivers

I/O manager

Kernel

Giorgio Giacinto 2019 Operating Systems 30

UNIX
Structure

Hardware Level

Kernel Level

User Level

User Programs

Trap

Hardware Control

System Call Interface

Libraries

Device Drivers

File Subsystem Process
Control

Subsystem

character block

Buffer Cache

Inter-process
communication

Scheduler

Memory
management

Figure 2.15 Traditional UNIX KernelGiorgio Giacinto 2019 Operating Systems 31

macOS
Structure

Giorgio Giacinto 2019 Operating Systems 32

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

iOS
Structure

Giorgio Giacinto 2019 Operating Systems 33

Cocoa Touch

Media Services

Core Services

Core OS

Android
Structure

Giorgio Giacinto 2019 Operating Systems 34
Figure 2.20 Android Software Architecture

Display Driver

Implementation:

Applications, Application Framework: Java

System Libraries, Android Runtime: C and C++

Linux Kernel: C

Contacts Voice Dial Email Calendar Media
Player Albums Clock

Home Dialer SMS/MMS IM Browser Camera Alarm Calculator

Camera Driver Bluetooth Driver

Linux Kernel

Application Framework

Applications

System Libraries Android Runtime
Core Libraries

Dalvik Virtual Machine

Flash Memory
Driver

Binder (IPC)
Driver

USB Driver Keypad Driver WiFi Driver

SGL SSL Libc

OpenGL/ES FreeType LibWebCore

Surface Manager Media Framework SQLite

Audio Drivers Power
Management

Activity Manager Windows
Manager Content Providers View System Notification

Manager

Package Manager Telephony
Manager Resource Manager Location Manager XMPP Service

